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Abstract: The Wiener model is a block oriented model having a linear dynamic system followed
by a static nonlinearity. The dominating approach to estimate the components of this model has
been to minimize the error between the simulated and the measured outputs. We show that this
will in general lead to biased estimates if there is other disturbances present than measurement
noise. The implications of Bussgang’s theorem in this context are also discussed. For the case
with general disturbances we derive the Maximum Likelihood method and show how it can be
efficiently implemented. Comparisons between this new algorithm and the traditional approach
confirm that the new method is unbiased and also has superior accuracy.

1. INTRODUCTION

So called block-oriented models have turned out to be very
useful for the estimation of non-linear systems. Such mod-
els are built up from linear dynamic systems and nonlinear
static mappings in various forms of interconnection. These
models are of interest both as reflecting physical realities
and as approximations of more general systems. See, e.g.
Schoukens et al. (2003) or Hsu et al. (2006) for some
general aspects on block-oriented models.
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Fig. 1. The Wiener model. The input u(t) and the output
y(t) are measurable, but not the intermediate signal
x(t). w(t) and e(t) are noise sources. xo(t) denotes the
output of the linear dynamic system G. f is nonlinear
and static (memoryless).
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The Wiener model, Figure 1, is one such block oriented
model. It describes a system where the first part is linear
and dynamic, and the second part, in series with the first,
is static and nonlinear. This is a reasonable model for, e.g.,
a distillation column (Zhu, 1999a) a pH control process
(Kalafatis et al., 1995), biological examples (Hunter &
Korenberg, 1986), or a linear system with a nonlinear
measurement device. If the blocks are multi-variable, it can
be shown (Boyd & Chua, 1985) that almost any nonlinear
system can be approximated arbitrarily well by a Wiener
model. In this paper, however, we focus on single input -
single output systems.

We will use the notation defined in Figure 1. The input
signal is denoted by wu(t), the output signal by y(t) and x(t)
denotes the intermediate, unmeasurable signal. We will
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call w(t) process noise and e(t) measurement noise, and
assume that they are independent. Note that since G is a
linear system, the process noise can equally well be applied
anywhere before the nonlinearity with an additional filter.

The Wiener system can be described by the following
equations:

xo(t) = G(q,0)u(t)
z(t) = zo(t) + wit ) (1)
y(t) = f(=(t),n) +

This paper will focus on parametric models. We will
assume f and G each belongs to a parameterized model
class. Examples of such a model class may be polynomials,
splines, or neural networks for the nonlinear function f —
in general a basis function expansion. The nonlinearity f
may also be a piecewise linear function, like a saturation
or a dead-zone. Common model classes for G are FIR
filters, rational transfer functions (OE models) or state
space models, but also for example Laguerre filters may
be used.

If the intermediate signal = is unknown, then the param-
eterization of the Wiener model is not unique. A linear
block G and a nonlinear block f gives the same complete
system as a linear block KG in series with a nonlinear
block f(+-). (We may also need to scale the process noise
variance with a factor K.)

Given input and output data, and model classes for G and
f, we want to find (estimate) the parameters 6 and 7 that
best match the data.

2. A STANDARD METHOD AND POSSIBLE BIAS
PROBLEMS

Several different methods to identify Wiener models have
been suggested in the literature. A common approach is
to parameterize the linear and the nonlinear block, and
to estimate the parameters from data, by minimizing an
error criterion.

10.3182/20080706-5-KR-1001.0269
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If the process noise w(t) in Figure 1 is disregarded, or zero,
a natural criterion is to minimize

N 2
0.1 = 5 D2 (v0) — F(Ga.00u.n) (@)

This is a standard approach, and has been used in several
papers, i.e., Bai (2003), Westwick & Verhaegen (1996),
Wigren (1993). It is also the method for Wiener models,
used in available software packages like Ninness & Wills
(2006) and Ljung (2007). If the process noise is indeed zero,
this is the prediction error criterion. If the measurement
noise is white and Gaussian, (2) is also the Maximum
Likelihood criterion, see Ljung (1999), and the estimate
is thus consistent.

While measurement noise e is discussed in several papers,
few consider process noise w. Hunter & Korenberg (1986)
is one exception where both the input and the output are
subject to noise. Consistency of the estimation method
is however not discussed in that paper. It may seem
reasonable to use an error criterion like (2) even in the case
where there is process noise. However, f(G(q,@)u(t),n)
is not the true predictor in this case. We will name this
method the approximative Prediction Error Method, and
we will show that the estimate obtained this way is not
necessarily consistent.

2.1 Conditions for Consistency

Suppose that the true system can be described within
the model class (cf. Figure 1), i.e., there exist parameters
(00,mo0) such that (c.f. Equation (1))

y(t) = f(G(g, 0o)u(t) +w(t),no) + e(t) (3)
An estimate from a certain estimation method is said to be

consistent if the parameters converge to their true values
when the number of data, N, tends to infinity.

To investigate the minimum of the approximative PEM
criterion (2) we write the true system as

y(t) = f(G(q,00)u(t),m) + w(t) + e(t) (4)
where
w(t) = f(G(q,00)u(t)+w(t),no)—f(G(q,00)u(t),no) (5)

We may regard w(t) as a (input-dependent) transforma-
tion of the process noise to the output. The stochastic
properties such as mean and variance of the process noise
will typically not be preserved in the transformation from
w to w.

Now insert the expression for y in Equation (4) into the
criterion (2):

Vn(0,m) = - i(fo fHw(t) +e(t ))2 (6)
1 ~ 1 Y
= v 2(h- )+ +y 200
Jr%t:il(fo ) (t) +e(t ))
where

fo £ F(Gla,00)u(t),m),  f= f(Glq,0)ult),n). (7)

Now, assume all signals are ergodic, so that ensemble
averages tend to their mathematical expectations as N
tends to infinity. Assume also that u is a (quasi)-stationary

sequence, so that is also has well defined sample aver-
ages. Let, I/ denote both mathematical expectation and
averaging over time signals (cf. F in Ljung (1999)). Using
the fact that the measurement noise e is zero mean, and
independent of the input u and the process noise w means
that several cross terms will disappear. The criterion then
tends to

V(f,n) = E(fo — f)2 + Ew?(t) + Ee*(t)

+28(fo— f)a) ()

The transformed process noise w, however, need not be
independent of u, so the last term will not disappear.

Note that the criterion (8) has a quadratic form, and
the true values (0p,n0) will minimize the criterion if (and
essentially only if)

E(fo— f)i(t) = 0 (9)

This condition typically does not need to hold, due to
the possible dependence between u and w. The parameter
estimates will thus be biased in general. This is illustrated
by the simulation in Section 5.

2.2 Bussgang’s Theorem and its Implication for Wiener
Models

Bussgang’s theorem (Bussgang, 1952) says the following;:

Theorem 1. [Bussgang| Let m(t) and n(t) be two real-
valued, jointly Gaussian stationary processes. Let f(-) be
a nonlinear function and let the stochastic process g(t) be
defined by

g(t) = f(n(t))

Then the cross spectrum between m and n, ®,,,(w), is
proportional to the cross spectrum between m and g:

D,0(w) = Py (w)
where k is a real-valued constant (that may be zero.)

(10)

This theorem has been applied to the estimation of Wiener
model by many authors, e.g. (Westwick & Verhaegen,
1996), (Greblicki, 1994). It can be used to obtain a good
estimate of the linear part of the model. It is interesting
to note that the result applies also to our more general
situation with process noise w as in Figure 1. In fact, we
have the following Lemma:

Lemma 2. Consider the model structure defined by Fig-
ure 1. Assume that the the input u(¢) and the process
noise w(t) are independent, Gaussian, stationary processes
(not necessarily white). Assume that the measurement
noise e(t) is a stationary stochastic process, independent
of w and w (but not necessarily white nor Gaussian). Let
G(q,0) be an arbitrary transfer function parameterization
with freely adjustable gain, such that G(q,00) = Go(q)
(the true linear part of the system) for some parameter
value 0y. Let 6 be estimated from u and y using an
output error method, neglecting any possible presence of
a nonlinearity:

N

On = arg min tzzl(y(t) -

G(a,0)u(t))? (11)

Then
G(q,0n) — kGo(q) as
for some real constant k£ (that may be zero).

Proof: (see Hagenblad et. el. (2007)).

N — o (12)
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The theorem is a consequence of the fact that the best
linear system approximation (cf Ljung, 2001) that relates
u to y is proportional to the linear part Gy of the true
system.

Basically this means that an estimate of the linear system
G(q) will be consistent (up to the gain) for many other
common linear identification methods. Note that the gain
of G cannot be estimated anyway, since a gain factor can
be moved between G and f without affecting the input-
output behavior.

Remark: It is essential that no noise model is built simul-
taneously with estimating G. The best linear description of
the noise will be pretty complicated, since all the nonlinear
effects are pushed to the residuals. This means that AR-
MAX, ARX and state-space models in innovations form
that have common dynamics between noise and input,
will not give an input dynamics model subject to (12).
Also subspace methods, like N4SID (e.g. Van Overschee
& DeMoor, 1996) will give biased results if they employ
prediction horizons with past outputs. (More precisely, in
the language of the system identification toolbox, (Ljung,
2007), the property NAHORIZON must be of the form
[r,0,su].) This is in line with the use of MOESP as a
subspace method in (Westwick & Verhaegen, 1996).

Having found G means that we know 2 (up to scaling).
If there is no process noise w so z(t) = zo(t), it is a
simple problem to estimate the static nonlinearity y(t) =
flx(t)) +e(t) from y and x.

However, if w is non-zero, the remaining problem to
estimate f is still non-trivial: Find f from zy and y, where

y(t) = f(xo(t) +w(t)) + e(t) (13)
This is a nonlinear regression problem with disturbances
affecting the regressors. The estimate of the parameters of
f need not be consistent if simple methods are applied, as
illustrated in Section 5.

3. MAXIMUM LIKELITHOOD ESTIMATION

3.1 Derivation of the Likelihood Function for White
Disturbances

The likelihood function is the probability density function
(PDF) of the outputs ¥y = {y(1),y(2), ..., y(N)} for given
parameters 6 and n. We shall also assume that the input
sequence u = {u(1),u(2),...u(N)} is a given, determinis-
tic sequence. (Alternatively, we condition the PDF wrt to
this sequence, if it is described as a stochastic process.) Let
Py (0, n;uY) denote this PDF. For an observed data set
yN the ML estimate is the one maximizing the likelihood
function: .

(6,7) = axg maxpy v (6,75 Z.7) (14)
where ZN = {uN,yN}.

For the Wiener model (Figure 1) we first assume that the
disturbance sequences e(t) and w(t) are white noises. This
means that for given vV, y(¢) will also be a sequence of
independent variables. This in turn implies that the PDF
of ¥ will be the product of the PDFs of y(¢),t = 1,..., N.
It is thus sufficient to derive the PDF of y(t). To simplify
notation we shall use y(t) = y, z(t) = « for short.

To find the PDF, we introduce the intermediate signal x
as a nuisance parameter. The PDF of y given z is basically

a reflection of the PDF of e, since y(t) = f(z(t)) +e(t) It
is easy to find if e is white noise:

py(yla) = pe(y — f(x,m))
where p. is the PDF of e.

(15)

The same is true for the PDF of z given u'V if w is white
noise:

x(t) = G(q, 0)u(t) + w(t) = xo(t, 0) + w(t) (16)

With given uV and 6, x¢ is a known, deterministic variable,
SO

pac(30|uN7 0) = puw (x — a:o(e)) = Duw (x - G(q, H)u(t)) (17)
where p,, is the PDF of w.

Now by integrating over all x € R, we then eliminate this
unmeasurable signal from our equations:

Py (0, m; Ziv):/ Py (@, y|0, ;0™ ) dae
zeR
:/ Pyla W0, m, 25 0™ ) pe (216, 1; u ) dae
z€R
[ bl f@n) pule - Gla,0pu(t)) do
z€R
(18)
We now assume that the process noise w(t) and the

measurement noise e(t) are Gaussian, with zero means and
variances \,, and \. respectively, i.e.

__1 2 1 1,2
pe(f(t)) = me 2%e (t)7 pw(U(t)) :—me D @)

(19)
for each time instant ¢. Since the noise is white, the joint
likelihood is the product over all time instants, and thus

N
1 N Oo 1
N Ny — -3 E(t,0,n)
6, m; = 2 dx(t
py(y™ 10, m5u™) (277\/)\5/\w) tl_[1/ooe x(t)

1 A ~
(27‘(’\/ )\e>\w) /ac(l)——OO /x(N)_—OO

where

2
B(t.0.) = 1 (s~ (200m) )+ 1 (=)~ Gla.0)u(v)* 1)

_1NTN
e QthlE(tﬂ,n) daN

(20)

Given data ZY = {ul,yN}, we can calculate p, and
its gradients for each 6 and 7. This means that the ML
criterion (14) can be maximized numerically.

We may also note that each integral in (20) depends on
x(t) for only one time instant ¢, so they can be computed
in parallel.

If the noise covariances \,, and A\, are unknown, they can

just be included among the parameters ¢ and 7 and their
ML estimates are still obtained by (14). The derivation of

‘Ehe L;kelihood function appeared in Hagenblad & Ljung
2000).

Note that if there is no process noise, then the above
criterion reduces to (2).

3.2 Colored Noise

The following equations give the output:
z(t) = G(q, 0)u(t) + Hu (g, 0)w(t)
y(t) = f(z(t),n) + He(q,n)e(t)

By using predictor form, see (Ljung, 1999), we may write
this as

(22)
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z(t,u,0) = @tz =1 u™, 0) + w(t)
E(tl' 1w, 0) £ a(t) + Hy, ' (q,0)(Glg, 0)u(t) — (1))

y(t) = g(tly" " 2™ n) + e(t)
Ity 2N n) = y(t) + He ( ) (f (z(t),n) —y(t)).

(23)
The only stochastic parts are e and w. For a given sequence

2N, the joint PDF of "V is obtained in the standard way,
cf eq (5.74), Lemma 5.1, in Ljung (1999):

pyv (™ |2 Hpe g(tly'~
By the same calculations, the joint PDF for z%V is

pr t|y

is thus obtained from (24)
N using its

La (W, 0),m) (24)

p:vN auNaH)) (25)
The likelihood function for y~

by integrating out the nuisance parameter x
PDF (25):

9977,)

/NeRN pr (G(q,@) (t )*IE(t))) X

Pe (Hgl(q,n)(f(w(t),n) - y(t))) dz™  (26)
In the case e and w are Gaussian, we obtain
Hpe H(g,0) [x(t) — G(g, 0)u(t)])
% b (H; (0,) [y(t) — f (2(),m)] ) = &= 3 s 000
(27)

similar to (20), where, this time,

i (Hy'(q,0) [2(t) — G(q,0)u(t)))”

+ %Q(Hgl(q,n) [y(t) — f(x(t),n)})Q (28)

Notice that this time filtered versions of x(t) enter the
integral, so the integration is a true multi-integral over all
sequences V. This is hardly doable by direct integration
in practice. It would then be interesting to evaluate the
integration over zV by probabilistic techniques.

E(t,0,n) =

4. IMPLEMENTATION

It was mentioned in Section 3 that numerical methods
could be used to evaluate the likelihood integral in Equa-
tion (20), which could in turn be used as part of an itera-
tive search procedure to find for the maximum likelihood
estimate. While this may appear intractable, this section
describes a practical algorithm for achieving the above.

In particular, we use a gradient-based iterative search
method combined with numerical integration to form
the ML estimate. The algorithm is profiled against the
approximative PEM in Section 5 where the results from
several Monte-Carlo simulations are discussed. It should
be noted that the computation time for this algorithm is
relatively modest and can easily be carried out on standard
desktop computers.

In order to avoid numerical conditioning problems, we
consider the equivalent problem of minimizing the negative
log-likelihood function provided below.

(0,9, Aoy Ae) = arg min_ L(0,7, Ay Ae)  (29)
0,1m,A\w, e

where
L(0,m, Ay Ae) 2 = 1og (py (60,7, Aw, Ae; Z1))

N oo}
N
= Nlog(2m) + - log(AwAe) — E log (/_oo e%E(t,emdx)

t=1
(30)
and E(t) is given by Equation (21).
An essential element of solving (29) via gradient-based

search is to have access to the gradient vector for a given
value of the parameters

9207 57 Ay AT (31)

If we denote the gradient vector at iteration k of the search
procedure as g, then the i’th element of gj, denoted gi(7),
is given by
. N dlog(A\w) N c’)log()\w)
9lD) = |5 g
2 819( ) 2 (z)
[ OE(t,0.n) ,—F E(t,0,1) 4,

4= Z —o0 819( )
V=1

7lE(t707n)dx
This in turn requires that we compute the integrals
in (30) and (32). Note, that the exponential term
exp(—5E(t,0,m)) appears in both these integrals, and the

derlvatlves of E(t,0,n) with respect to § and n can be
computed prior to evaluating the integral.

(32)

In general, evaluating these integrals will amount to
approximating them via numerical integration methods,
which is the approach used in this paper. In particular, we
employ a fixed-interval grid over = and use the composite
Simpson’s rule to obtain the approximation (Press et al.,
1992, Chapter 4). More generally however, the reason
for using a fixed grid (not necessarily of fixed-interval as
used here) is that it allows straightforward computation of
L(Y) and its derivative gy at the same grid point. Hence,
a more elaborate approach might employ an adaptive
numerical integration method that ensures the same grid
points in calculating L(¥y) and gy.

Algorithm 2 details this computation and generates a
number L and a vector g such that L(J) ~ L and g(9) ~ g.
For clarity, the algorithm is written as iterations over ¢
and j, but these steps are not interdependent, and can be
computed in parallel. The algorithm can also be extended
to compute the Hessian if desired.

Algorithm 2:Numerical computation of likelihood and
derivatives

Given and odd number of grid points M, the parameter vector ¥ and
the data ZY, perform the following steps.

NOTE: After the algorithm terminates, L(9) ~

(1) Simulate the system zo(t) =

(2) Specify grid vector A € RM
the limits [a b], so that A( ) =aand A(i+1) =
forallt=1,...,M —

(3) Set L = Nlog(27r) + o 5 log(AwAe), and g(i) = 0 for i =

1,...,ny9.

G(9, q)u(t).
as M equidistant points between
A(i)+(b—a)/M
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(4) FOR t=1:N,
(a) FOR j=1:M, compute

z =wxo(t) + A>), (33)
a=x—xo(t), (34)
B=yt)— f(z,mn), (35)
'Yj :e_%(0‘2/)‘“1""[32/)\6)7 (36)
. OE(t) .
05 (1) =5 Ok i=1,...,ng9, (37)
ENDFOR
(b) Compute (for each ¢ = 1,...,ny where necessary)
M—1 M—3
b—a) pi z
K:(3M 71+4Z’Yzj+2272j+1+7M )
j=1 j=1
M—-1 M—3
2 2
_G-a)

(1)

— | s+ Z 525 (i) +2 Z Saj41 () + Snr (3)

j=1 j=1

L =L — log(k),

1 (810g(>\w)\€) N w(i))

g(i) = g(i) + 3 29(1) -

ENDFOR

5. SIMULATION STUDY

In this study we considered a Wiener system in the form
of Figure 1, where the static nonlinearity f(-) was chosen
as a saturation. More precisely,

zo(t) = G(q, O)u(t) (38)
G(g,0) = 111213_1 IZ‘;_Q (39)
x(t) =zo(t) +w(t) (40)
y(t)=f(x(t) +e(t) (41)

c1 for z(t) < 1
fz(t) =< z(t) for cr <a(t) < ey (42)

co for co < x(t)

We conducted a Monte-Carlo simulation with 1000 data
sets, and each set contained 1000 data points. In each
case the input u and process noise w were sampled from a
Gaussian distribution, with zero mean and unity variance,
while the measurement noise e is Gaussian with zero mean
and variance 0.1.

The parameter values {a1, as, b1, ba, c1, ca} were estimated
using the two different methods described in the paper,
namely the approximative PEM described in Section 2,
and the ML method described in Section 3.

The prediction error criterion was minimized using the
UNIT toolbox, (Ninness & Wills, 2006). To help avoid
possible local minima, the search was initialized using the
true values.

The ML implementation is described in Section 4. In
addition to the system parameters, the noise covariances
Aw and A, were estimated. The parameter search was
initialized with the results from the approximative PEM.
The limits for the integration [a, b] (see Algorithm 2) were
selected as +6+/\,,, which corresponds to a confidence
interval of 99.9999 % for the signal z(¢) (at least when
Aw is estimated correctly). The number of grid points was
chosen to be 1001.

The true values of the parameters, and the results of the
approximative PEM and ML estimation are summarized in
Table 1. The estimates of the nonlinear saturation function
f(z(t)) from Equation (42) are plotted in Figure 2.

Parameters True Approx. PEM ML

al 0.3000 0.3007 4+ 0.2059 0.3091 + 0.1735
as -0.3000  -0.2805 4 0.2193  -0.2922 4+ 0.1846
b1 -0.3000  -0.2889 4+ 0.1600 -0.2932 4+ 0.1339
ba 0.3000 0.3031 4+ 0.1109 0.3034 + 0.0947
c1 -0.4000 -0.2932 4+ 0.0212  -0.4005 4 0.0206
[ 0.2000 0.0997 4+ 0.0198 0.2004 + 0.0205
Aw 1.0000 n.e. 0.9734 + 0.2020
Ae 0.1000 n.e. 0.1000 + 0.0074
Table 1. Parameter estimates with standard

deviations for Example 1, using approxima-
tive PEM and ML. The mean and standard
deviations are computed over 1000 runs. The
notation n.e. stands for “not estimated” as
the noise variances are not estimated with the

approximate PEM.

Parameters True Approx. PEM ML

al 0.3000 0.2873 4+ 0.1181 0.2980 + 0.1000
az -0.3000 -0.2852 4+ 0.1224  -0.2980 4+ 0.1058
b1 -0.3000  -0.3005 4+ 0.0886  -0.3009 4+ 0.0752
bo 0.3000 0.3046 4+ 0.0672 0.3025 + 0.0560
c1 -0.4000 -0.3686 4+ 0.0198 -0.4011 4+ 0.0191
[ 0.2000 0.1712 4+ 0.0171 0.2011 + 0.0166
Aw 0.1765 n.e. 0.1724 + 0.0540
Ae 0.1000 n.e. 0.0995 + 0.0057
Table 2. Parameter estimates with standard

deviations for Example 1 with colored noise,
using approximative PEM and ML. See Table 1
for details.

This simulation confirms that while a straightforward,
approximative PEM gives biased estimates, the Maximum
Likelihood method derived in this paper gives a consis-
tent estimate of the system parameters, including noise
variances, even when starting the numerical search in the
biased estimate obtained from the approximative PEM.
In these examples, also the variance of the approximative
PEM estimates is larger than the estimates from the ML
method.

As a further test, we were interested to know if the
estimates were consistent in the ML case even if the
process noise was colored. Therefore, we repeated the
above simulation, but replaced the process noise with

0.3¢g7+
w(t) = mw(t%

where w(t) was sampled from a Gaussian distribution with
zero mean and unity variance. The results are collected in
Table 2 and show that the ML method generates consistent
estimates while the approximate PEM method does not.

(43)

6. SUMMARY AND CONCLUSIONS

In the quite extensive literature on Wiener model esti-
mation, the most studied method has been to minimize
the criterion (2). We have called that approach the Ap-
proximative Prediction Error Method in this contribution.
This method apparently is also the dominating approach
for Wiener models in available software packages, like
Ljung (2007) and Ninness & Wills (2006). We have in
this contribution shown that this approach may lead to
biased estimates in common situations. If disturbances
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Saturation estimated with the approximative PEM
0.3 T T T T T T T

-02 -0.1 0 01 02 03
x(t)

Saturation estimated with the ML method
0.3 T ‘ . : :

035 04 03 02 —oi 0 01 02 03

Fig. 2. Example 1: The true saturation curve as a thick
black line and the 1000 estimated saturations, appear-
ing as a grey zone. Top: approximative PEM. Bottom:

are present in the system before the nonlinearity at the
output, the estimates of the linear part and the nonlinear-
ity will typically be biased, even when true descriptions
are available in the model parameterizations. For example,
Figure 2 clearly shows the bias in the estimate of an output
saturation, in an otherwise ideal situation: Gaussian input,
unbiased estimate of the linear part of the model. The
reason for the bias is, in short, that the disturbances when
transformed to the output error are no longer zero mean
and independent of the input.

These deficiencies of the Approximative Prediction Error
Method led us to a more serious statistical study of the
Wiener model problem in the realistic case of both dis-
turbances at the output measurements and process dis-
turbances inside the dynamic part. We formulated the
Likelihood function for the full problem. Although the
maximization of this function at first sight may appear
forbidding, an algorithm was developed that is not con-
siderably more time-consuming than the Approximative
Prediction Error Method. This ML method has the general

property of consistency, which was also illustrated in the
simulations.

In the general case of colored process noise, the Likelihood
function is more complex to evaluate. However, in tests it
has been found that the ML-method based on an assump-
tion of white process noise produce consistent results also
in the colored noise case. No proof of this observation has
been established, though. A further challenge is to find
efficient methods to evaluate the true likelihood function
for this situation.
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