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Abstract: One of the approaches to sampled-data controller design for nonlinear continuous-
time systems consists of obtaining an appropriate model and then proceeding to design a
controller for the model. Hence, it is important to derive a good approximate sampled-data
model because the exact sampled-data model for nonlinear systems is often unavailable to the
controller designers. Recently, Yuz and Goodwin have proposed an accurate approximate model
which includes extra zero dynamics corresponding to the relative degree of the continuous-
time nonlinear system. Such extra zero dynamics are called sampling zero dynamics. A more
accurate sampled-data model is, however, required when the relative degree of a continuous-time
nonlinear plant is two. The reason is that the closed-loop system becomes unstable when the
more accurate sampled-data model has unstable sampling zero dynamics and a controller design
method based on cancellation of the zero dynamics is applied. This paper derives the sampling
zero dynamics of the more accurate sampled-data model and shows a condition which assures
the stability of the sampling zero dynamics of the model. Further, it is shown that this extends
a well-known result for the stability condition of linear systems to the nonlinear case.

1. INTRODUCTION

Advances in digital electronics that occurred in the second
half of the 20th century have led to a rapid development
in computer technology and this has had a great impact
on engineering areas, including control engineering. Since
recent control systems usually employ digital technology
for controller implementation, the study of sampled-data
control systems has become an important issue in control
fields. Significant progress has been achieved in this area
during this decade.

There are two distinct approaches to sampled-data con-
troller design for nonlinear systems (Laila et al. (2006)).
The first one, so-called controller emulation, involves digi-
tal implementation of a continuous-time stabilizing control
law at a sufficient high sampling rate. The second approach
consists of obtaining a sampled-data model and then pro-
ceeding to design a controller for the model. Emulation
is regarded as the simple method, whereas it is typically
inferior to the second in terms of stability and achievable
performance. On the other hand, the second approach
requires a good approximate sampled-data model because
the exact sampled-data model for nonlinear systems is
often unavailable to the controller designers.

Therefore, the accuracy of the approximate sampled-data
model has proven to be a key issue in the context of
control design, where a controller designed to stabilize an
approximate model may fail to stabilize the exact discrete-
time model (Nešić and Teel (2004)).

Recently, Yuz and Goodwin have proposed an accurate ap-
proximate model (Yuz and Goodwin (2005)). The result-
ing model includes extra zero dynamics which are called
sampling zero dynamics. It has been shown explicitly that
they have no counterpart in the underlying continuous-
time system and are the same as those for linear case
(Åström et al. (1984)), although an implicit character-
ization has been given in (Monaco and Normand-Cyrot
(1988)). It is worth noting here that Yuz and Goodwin’s
model has a mode corresponding to the sampling zero
dynamics just on the unit circle when the relative degree
of a continuous-time nonlinear system is two. For linear
systems, the sampling zeros correspond to the sampling
zero dynamics for nonlinear systems. The properties of
the sampling zeros for linear systems have been discussed
in many papers (Åström et al. (1984), Hagiwara et al.
(1993), Passino and Antsaklis (1988), Ishitobi (1996),
Hayakawa et al. (1983), Weller (1999), Ishitobi (2000)).

A previous study shows that to derive a more accurate
sampled-data model is required when the relative degree
of a continuous-time nonlinear plant is two (Ishitobi and
Nishi (2008)). The reason is that the closed-loop system
becomes unstable when the more accurate sampled-data
model has unstable sampling zero dynamics and a con-
troller design method based on cancellation of the zero
dynamics is applied.

This paper derives the sampling zero dynamics of the
more accurate sampled-data model than that of Yuz
and Goodwin, and shows a condition which assures the
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stability of the sampling zero dynamics of the model.
Further, the relationship between the result of this paper
and that for linear systems is discussed.

2. SYSTEM DESCRIPTION AND PREVIOUS
RESULTS

Consider a class of the following single-input single-output
nth-order nonlinear system{

ẋ = f(x) + g(x)u

y = h(x)
(1)

where x is the state evolving on an open subset M ⊂ Rn,
and where the vector fields f(·) and g(·), and the output
function h(x) are analytic on M.

First, the following assumptions are introduced.

Assumption 1: The unique equilibrium point lies on the
origin.

Assumption 2: The continuous-time nonlinear system (1)
has the uniform relative degree r(≤ n) and is minimum
phase in the open subset M, where the state x evolves.

Then, the system can be expressed in its so-called normal
form (Isidori (1995), Khalil (2002)).⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ζ̇ =
[
0r−1 Ir−1

0 0T
r−1

]
ζ

+
[
0r−1

1

]
(b(ζ, η) + a(ζ, η)u)

η̇ = c(ζ, η)

y = z1

(2)

ζ =

⎡
⎢⎣

z1

...
zr

⎤
⎥⎦ , η =

⎡
⎢⎣

zr+1

...
zn

⎤
⎥⎦ , (3)

z =
[

ζ
η

]
, c =

⎡
⎢⎣

cr+1(ζ, η)
...

cn(ζ, η)

⎤
⎥⎦ (4)

where a(0,0)�= 0, b(0,0) =0 and c(0,0) = 0.

Under the assumptions 1 and 2, the zero dynamics of (2)
is determined by

η̇ = c(0, η) (5)

and is asymptotically stable in M.

We are interested in the sampled-data model for the non-
linear system (2) when the input is a piecewise constant
signal generated by a zero-order hold (ZOH); i.e.,

u(t) = u(kT ), kT ≤ t < (k + 1)T,

k = 0, 1, · · · (6)
where T is a sampling period.

For small sampling periods, Yuz and Goodwin have de-
rived an approximate sampled-data model of the following
form

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ζk+1 = Fsζk + gs (bk + akuk)

ηk+1 = ηk + Tc(ζk, ηk)

yk = [1 0T
r−1]ζk

(7)

Fs =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 T
T 2

2
· · · T r−1

(r − 1)!

0 1 T · · · T r−2

(r − 2)!
. . . . . .

...

O
. . . T

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, gs =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

T r

r!
T r−1

(r − 1)!
...

T 2

2!
T

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(8)

bk ≡ b(ζk, ηk), ak ≡ a(ζk, ηk) (9)

where the subscripts k and k + 1 denote the time instants
kT and (k + 1)T , respectively.

Then, the zero dynamics of the sampled-data model (7)
consist of the sampled counterpart of the continuous-time
zero dynamics and the additional zero dynamics produced
by the sampling process (Yuz and Goodwin (2005)). The
latter are called the sampling zero dynamics, and equiva-
lent to the same as those which appear asymptotically for
the linear case when the sampling period tends to zero,
namely, the roots of the following equations.

z + 1 = 0, r = 2

z2 + 4z + 1 = 0, r = 3

(z + 1)(z2 + 10z + 1) = 0, r = 4
...

It thus follows that a continuous-time nonlinear system
with the relative degree r larger that three will always give
a sampled-data model with the sampling zero dynamics
strictly outside the unit disc. The question is what happens
in the case when the relative degree r is two and the
sampled-data model (7) has the sampling zero dynamics
just on the unit circle. It is an important issue because
the relative degree of many nonlinear systems such as
mechanical systems in the practical field is two.

For example, consider a controlled Van der Pol system
with the following equation (Khalil (2002)).

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ẋ1 = x2

ẋ2 = −x1 + ε(1 − x2
1)x2 + u, ε > 0

y = x1

(10)

It is obvious that the relative degree of the system (10) is
two, and that the system does not have zero dynamics.

A sampled-data model by Yuz and Goodwin for (10) is
represented as
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⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

x1,k+1 = x1,k + Tx2,k

+
T 2

2
[−x1,k + ε(1 − x2

1,k)x2,k + uk

]
x2,k+1 = x2,k + T

[−x1,k + ε(1 − x2
1,k)x2,k + uk

]
yk = x1,k

(11)

When we design a discrete-time model following controller
on the basis of the sampled-data model (11), and apply it
to the original continuous-time system through a ZOH,
then the input and the output result in divergence in
simulation (Ishitobi and Nishi (2008)). The reason is that
the sampling zero dynamics of the more accurate sampled-
data model is unstable. Hence, it is important to study the
stability condition of the sampling zero dynamics of the
more accurate sampled-data model for nonlinear systems
with the relative degree two.

3. MAIN RESULTS

This section studies when a more accurate model for a
continuous-time system with the relative degree two has
the sampling zero dynamics inside or outside of the unit
circle for sufficiently small sampling periods.

Before proceeding, the following assumptions are needed
here.

Assumption 3:
∂a(ζ, η)

∂z2
= 0 (12)

Assumption 4:
∂c(ζ, η)

∂z2
= 0 (13)

The assumption 3 ensures that a new sampled-data system
is also an affine one. The assumption 4 implies that the
vector c(ζ, η) does not include a term of z2.

Under the use of a ZOH and the assumptions 3 and 4, it
is easy to obtain the relations

ẏ = ż1 = z2 (14)

ÿ = ż2 = b + au (15)

y(3) = b + au (16)
where

b = b(ζ, η)

≡ ∂b

∂z1
z2 +

∂b

∂z2
b +

n∑
i=3

∂b

∂zi
ci (17)

a = a(ζ, η)

≡ ∂b

∂z2
a +

∂a

∂z1
z2 +

n∑
i=3

∂a

∂zi
ci (18)

Here, substitute the relations (14)-(16) to the Taylor’s
expansion forms of y((k+1)T ) and ẏ((k+1)T ) and neglect
higher order terms, then for sufficiently small sampling
periods we obtain a more accurate model (Ishitobi and
Nishi (2008)) than that of Yuz and Goodwin as

yk+1 = yk + T ẏk +
T 2

2
bk +

T 3

6
bk

+
(

T 2

2
ak +

T 3

6
ak

)
uk (19)

ẏk+1 = ẏk + Tbk +
T 2

2
bk

+
(

Tak +
T 2

2
ak

)
uk (20)

ηk+1 = ηk + Tc(ζk, ηk) (21)

where

bk ≡ b(ζk, ηk), ak ≡ a(ζk, ηk) (22)

Further, under the assumption 4, the sampled-data system
(19)-(21) has the sampled counterpart of the continuous-
time zero dynamics given by

ηk+1 = ηk + Tc(0, ηk) (23)

since c(ζ, η) does not include a term of z2.

The main result of this paper is given by the following
theorem.

Theorem 1. Consider an affine nonlinear system (2) with
the relative degree two. Then, for sufficiently small sam-
pling periods the sampling zero dynamics of the sampled-
data model (19)-(21) are given approximately by

ẏk+1 + ẏk +
ak0

3ak0
T ẏk = 0 (24)

where ak0 and ak0 are the values of ak and ak, respectively,
with yk = 0 and η = ηS where ηS is the state vector
of the sampled counterpart of the continuous-time zero
dynamics. Further, ak and ak are defined by (9) and (22),
respectively.

Proof. On the basis of the result in (Yuz and Goodwin
(2005)), the sampling zero dynamics of the model (19)-(21)
are calculated below. First, when we set yk+1 = yk = 0,
then (19) leads to

T ẏk +
T 2

2
bk0 +

T 3

6
bk0

+
(

T 2

2
ak0 +

T 3

6
ak0

)
uk = 0 (25)

where bk0, ak0, bk0, ak0 denote the values of bk, ak, bk, ak

with yk = 0 and ηk = ηS where ηS is the state vector of
the sampled counterpart (23) of the continuous-time zero
dynamics (Yuz and Goodwin (2005)). Deleting uk in (20)
by (25) yields

ẏk+1 = ẏk + Tbk0 +
T 2

2
bk0

− 6
(3ak0 + Tak0)T 2

(
Tak0 +

T 2

2
ak0

)

×
(

T ẏk +
T 2

2
bk0 +

T 3

6
bk0

)

= ẏk +
T

2
(
2bk0 + Tbk0

)
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− 2ak0 + Tak0

2(3ak0 + Tak0)
(
6ẏk + 3Tbk0 + T 2bk0

)
(26)

Here, the coefficient of (26) is approximated for sufficiently
small sampling periods as

2ak0 + Tak0

3ak0 + Tak0
=

2ak0

(
1 +

Tak0

2ak0

)

3ak0

(
1 +

Tak0

3ak0

)

≈ 2
3

(
1 +

Tak0

2ak0

) (
1 − Tak0

3ak0

)

≈ 2
3

{
1 +

(
ak0

2ak0
− ak0

3ak0

)
T

}

=
2
3

(
1 +

ak0

6ak0
T

)
(27)

Hence, the relation (26) is rewritten as

ẏk+1 ≈ ẏk +
T

2
(
2bk0 + Tbk0

)
−1

3

(
1 +

ak0

6ak0
T

)
(6ẏk + 3Tbk0)

≈−ẏk +
{

bk0 − 1
3

(
ak0

ak0
ẏk + 3bk0

)}
T

=−ẏk − ak0

3ak0
T ẏk (28)

As a result, the sampling zero dynamics are given by (28)
for sufficiently small sampling periods. This completes the
proof.

It is easy to obtain the following corollary from the
theorem 1.

Corollary 2. For sufficiently small sampling periods, the
sampling zero dynamics of the sampled-data model (19)-
(21) are stable if

ak0

3ak0
< 0 (29)

and they are unstable if
ak0

3ak0
> 0 (30)

Remark 1. When the assumption 3 is not fulfilled, the term
(b + au)∂a/∂z2 is included in b of (17) and there may
appear the term u2 in (16).

Remark 2. From (21) and (24), it is found that the sampled
counterpart of the continuous-time zero dynamics and the
sampling zero dynamics cannot be determined separately
when the assumption 4 is not satisfied.

4. RELATIONSHIP WITH THE RESULT OF THE
LINEAR CASE

Consider the following nth order minimum phase transfer
function with the relative degree two

G(s) =
N(s)
D(s)

,

N(s) = bn−2s
n−2 + · · · + b0, bn−2 �= 0

D(s) = sn + an−1s
n−1 + · · · + a0 (31)

Then, the normal form corresponding to (31) is repre-
sented (Khalil (2002)) as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ζ̇ =
[

0 1
0 0

]
ζ

+
[

0
1

]
(b(ζ, η) + a(ζ, η)u)

η̇ = A0η + B0C
T
c ζ

y = CT
c ζ = z1, CT

c = [1 0]

(32)

ζ =
[

z1

z2

]
, η =

⎡
⎢⎣

z3

...
zn

⎤
⎥⎦ , z =

[
ζ
η

]
(33)

where A0 is an (n − 2) × (n − 2) stable matrix and B0 is
an (n − 2)th vector. Further, we have

a(ζ, η) = bn−2, b(ζ, η) = pT ζ − bn−2C
T
0 η (34)

where p = [p1, p2]T and C0 is an (n − 2)th vector. It
is straightforward to see that all the assumptions in the
previous section are satisfied.

Hence, it follows that

ÿ = a(ζ, η)u + b(ζ, η)

= bn−2u + pT ζ − bn−2C
T
0 η (35)

Here, the function 1/G(s) can be expressed as

D(s)
N(s)

=
s2

bn−2
+

(
an−1 − bn−3

bn−2

)
s

bn−2

+
1

bn−2

{
an−2 − bn−4

bn−2

−bn−3

bn−2

(
an−1 − bn−3

bn−2

)}
+

R(s)
N(s)

,

deg R(s) < deg N(s) (36)
Combining (35) and (36) yields

p2 = −
(

an−1 − bn−3

bn−2

)
(37)

Therefore, it is obtained that

a(ζ, η) =
∂b

∂z2
a +

∂a

∂z1
z2 +

n∑
i=3

∂a

∂zi
ci

=
∂b

∂z2
a

= p2bn−2

=−
(

an−1 − bn−3

bn−2

)
bn−2 (38)

From the corollary 2 shown in the previous section, the
stability condition of the sampling zero dynamics for
sufficiently small sampling periods is reduced to
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ak0

3ak0
= −1

3

(
an−1 − bn−3

bn−2

)
< 0 (39)

It is obvious that the condition above is equivalent to the
result for linear systems (Hagiwara et al. (1993)). As a
result, the corollary 2 is a natural extension of a well-
known result for the stability condition of linear systems
to the nonlinear case.

5. CONCLUSIONS

It is important to derive a good approximate sampled-
data model for nonlinear continuous-time systems because
the exact sampled-data model for nonlinear systems is
often unavailable to the controller designers. Recently,
Yuz and Goodwin have proposed an accurate approximate
model which includes extra zero dynamics, so-called the
sampling zero dynamics, corresponding to the relative
degree of the continuous-time nonlinear system. A more
accurate sampled-data model is, however, required when
the relative degree of a continuous-time nonlinear plant is
two. The reason is that the closed-loop system becomes
unstable when the more accurate sampled-data model
has unstable sampling zero dynamics and a controller
design method based on cancellation of the zero dynamics
is applied. For sufficiently small sampling periods, this
paper derives the zero dynamics of the more accurate
sampled-data model and shows a condition which assures
the stability of the sampling zero dynamics of the model.
Further, it is shown that this extends a well-known result
for the stability condition of linear systems to the nonlinear
case.
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Theory, LNCIS 328, A. Loŕıa et al. (Eds.), Springer-
Verlag London Limited, pp.91–137, 2006.
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