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University, 26470 Eskişehir, Turkey. aiftar@anadolu.edu.tr

Abstract: Decentralized robust controller design problem for large-scale interconnected systems
which involve uncertainties in the system matrices and uncertain time-delays is considered. An
error bound, which accounts for the neglected interactions between the subsystem models and
uncertainties in the interactions, in the subsystem models, and in the time delays is first derived
using overlapping decompositions and expansions. A decentralized controller design approach,
which uses this bound, is then proposed. The advantage of the proposed approach is that,
all uncertainties and neglected dynamics are summarized in one frequency-dependent scalar
function and satisfying a simple condition guarantees that the overall closed-loop system under
decentralized controllers, which are designed considering local models, is robustly stable. The
application of the proposed approach is demonstrated on a flow control problem in a data-
communication network.

1. INTRODUCTION

Many physical systems, especially large-scale systems,
involve time-delays. The main difficulty with the time-
delay systems is that they are infinite-dimensional. A
review of various controller design approaches for systems
which involve delays may be found in Niculescu (2001).
The operator theory approach for the control of infinite-
dimensional systems is presented in Curtain and Zwart
(1995) and Foias et al. (1996). Toker and Özbay (1995)
used this approach to formulate H∞-optimal controller
design for infinite-dimensional single-input single-output
systems. Later, Meinsma and Zwart (2000) used J-spectral
factorizations to solve the same problem for systems which
involve a single delay. Recently, using decomposition into
adobe problems, Meinsma and Mirkin (2005) formulated a
solution to the H∞-optimal controller design problem for
systems which involve multiple delays.

A good example of a large-scale time-delay system is a
data-communication network. A data-communication net-
work requires flow control, among other resource manage-
ment methods, in order to provide good quality of service
to its users. The time delays in the network makes the
problem of designing a flow controller challenging. An
H∞-based controller design approach for this problem was
proposed in Özbay et al. (1998) by using the design tech-

niques in Toker and Özbay (1995). The implementation of

this controller was later illustrated in Özbay et al. (1999).
The case of uncertain time-varying multiple time delays
was later considered in Quet et al. (2002), where a flow
controller which is robust to variations in such delays was
designed. The approach of Meinsma and Mirkin (2005)
was first considered for the robust flow controller design
problem in Ataşlar (2004). Then, in Ünal et al. (2006), this
approach was used to obtain an H∞-optimal solution to
the flow controller design problem.

In this work, we consider robust decentralized controller
design for large-scale interconnected time-delay systems.
We first use overlapping decompositions and expansions,
first introduced by Ikeda and Šiljak (1980), to obtain local
models. The approach of overlapping decompositions and
expansions has been used successfuly to design decentral-
ized controllers for large-scale systems which have sub-
systems that are interconnected through certain dynamics
(the overlapping part). Large flexible structures, Özgüner
et al. (1988), interconnected power systems, Šiljak (1978),
socio-economic systems, Aoki (1976), freeway traffic reg-
ulation systems, Isaksen and Payne (1973), intelligent
vehicle-highway systems, Stanković et al. (2000), data-

communication networks, Ataşlar and İftar (1999), and

manufacturing systems, Aybar and İftar (2002), are typ-
ical examples of such systems. Although in most of the
references above the time-delays in those systems have
been ignored, such large-scale systems usually involve time
delays, which may be uncertain. Overlapping decomposi-
tions have recently been used for time-delay systems in
Bakule et al. (2005), where guaranteed cost control has
been studied.

Robustness of decentralized controllers designed using lo-
cal models for delay-free systems was studied by İftar and
Özgüner (1987b), where overlapping decompositions was
used to derive error functions to account for neglected
interactions between local models. A similar approach
was undertaken by İftar and Özgüner (1987a) for inter-
connected systems. Overlapping decompositions were also
used to assess the robustness and suboptimality of decen-
tralized reduced order controllers by İftar and Özgüner
(1984) and Özgüner and İftar (1985). Robustness of de-
centralized control has also been analyzed using the quasi-
block diagonal dominance of transfer functions under over-
lapping decompositions by Ohta et al. (1986). A robustness
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bound for delay-free interconnected systems with uncer-
tain dynamics has been derived by İftar (2004). Using this
bound, a decentralized controller design approach, based
on local models has also been proposed in İftar (2004).

In the present paper, we extend the approach of İftar
(2004) to large-scale interconnected time-delay systems.
After obtaining local models by the use of ovelapping
decompositions and expansions, a robustness bound which
accounts for

(i) the neglected interactions (which may involve time-
delays) between the subsystem models,

(ii) uncertainties in the interactions,
(iii) uncertainties in the subsystem models, and
(iv) uncertainties in the time-delays

is derived in Section 2. Using this bound, a decentralized
controller design approach is proposed in Section 3, which
guarantees the stability of the overall system. In this ap-
proach, each local controller is designed independently by
considering only the corresponding local nominal model
and the robustness bound found in Section 2. An applica-
tion example is presented in Section 4.

Throughout the paper, R denotes the set of real numbers,
for a positive integer n, Rn denotes the n-dimensional real
vector space, t is the time variable, ẋ(t) is the derivative
of x(t) with respect to t, I and 0 respectively denote the
identity and the zero matrix of appropriate dimensions,
and σ̄(·) and σ(·) respectively denote the maximum and
minimum singular values of the indicated matrices.

2. ROBUSTNESS BOUND FOR DECENTRALIZED
CONTROLLER DESIGN

In this section we consider large-scale interconnected time-
delay systems. Using overlapping decompositions and ex-
pansions, we develop a robustness bound for decentralized
controller design for such systems. For notational simplic-
ity, we consider a linear interconnected system with only
two subsystems coupled through some dynamic intercon-
nections. This system can be represented as:

ẋ(t) = A∆x(t) + Ad
∆x(t − τx) + BΓu(t) + Bd

Γu(t − τu) (1)

y(t) = Cx(t) (2)

where, A∆ := A+∆, Ad
∆

:= Ad +∆d, BΓ := B +Γ, Bd
Γ

:=
Bd + Γd, where A, Ad, B, and Bd are known matrices
and ∆, ∆d, Γ, and Γd are unknown but norm-bounded
matrices, representing modeling uncertainties. The output
matrix C is also assumed to be known. Furthermore,
τx := hx + θx and τu := hu + θu are time delays, where hx

and hu are known nominal delays and θx and θu are the
uncetain parts, which satisfy

|θx| ≤ θ̄x and |θu| ≤ θ̄u (3)

for some known non-negative bounds θ̄x and θ̄u.

Remark 1: Since for most systems uncertainties and
delays can be represented either at the input or at the
output, we took the output equation (2) as free of any
uncertainties and delays. A similar approach may also be
developed when uncertainties and delays are present at the
output.

Remark 2: For notational simplicity, we assumed only
one dynamic and one input delay. The present approach
can easily be extended to the case of multiple delays, in
which case Ad

∆
x(t − τx) and Bd

Γ
u(t − τu) terms in the

right hand side of (1) should respectively be replaced by
∑nx

i=1
Ad

∆i
x(t − τ i

x) and
∑nu

i=1
Bd

Γi
u(t − τ i

u).

The state, x ∈ Rn, the input, u ∈ Rp, and the output,

y ∈ Rq, are decomposed as x =

[

x1

xc

x2

]

, u =

[

u1

u2

]

, and

y =

[

y1

y2

]

, where xi ∈ Rni , ui ∈ Rpi , and yi ∈ Rqi are,

respectively, the state, the input, and the output of the
ith subsystem (i = 1, 2) and xc ∈ Rnc is the state for
the dynamic interconnections. We assume that the input
of the ith subsystem directly effects only the state of the
ith subsystem and that the output of the ith subsystem
is directly effected by only the state of the ith subsystem
(i = 1, 2). Hence, the input and the output matrices have
the forms

N =

[

N1 0
0 0
0 N2

]

C =

[

C1 0 0
0 0 C2

]

where N stands for B, Bd, Γ, and Γd. The partitionings
are compatible with the partitionings of x, u, and y. We
also partition A, Ad, ∆, and ∆d accordingly:

M =

[

M1 M1c M12

Mc1 Mc Mc2

M21 M2c M2

]

where M stands for A, Ad, ∆, and ∆d.

Now, let us use the transformation

x̂ = Tx =











x1

xc

· · ·
xc

x2











=:

[

x̂1

· · ·
x̂2

]

(4)

to expand (Ikeda and Šiljak (1980)) the system (1)–(2) to
obtain

˙̂x(t) = Â∆x̂(t) + Âd
∆x̂(t − τx) + B̂Γu(t) + B̂d

Γu(t − τu) (5)

y(t) = Ĉx̂(t) (6)

where Â∆ := Â + ∆̂, Âd
∆

:= Âd + ∆̂d, B̂Γ := B̂ + Γ̂, and

B̂d
Γ

:= B̂d + Γ̂d, where

M̂ :=

[

M̂1 M̂12

M̂21 M̂2

]

M̂1 :=

[

M1 M1c

Mc1 Mc

]

M̂12 :=

[

0 M12

0 Mc2

]

M̂21 :=

[

Mc1 0
M21 0

]

M̂2 :=

[

Mc Mc2

M2c M2

]

N̂ :=

[

N̂1 0

0 N̂2

]

N̂1 :=

[

N1

0

]

N̂2 :=

[

0
N2

]

where, as above, M stands for A, Ad, ∆, and ∆d and N
stands for B, Bd, Γ, and Γd. Furthermore,

Ĉ :=

[

Ĉ1 0

0 Ĉ2

]

Ĉ1 := [ C1 0 ]
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Ĉ2 := [ 0 C2 ]

It can be shown that the expanded system (5)–(6) includes
(Ikeda et al. (1984), Bakule et al. (2000)) the original
system (1)–(2) and, hence, the two systems have the same
input-output map:

Ĝ(s) := Ĉ
(

sI − Â∆ − e−sτxÂd
∆

)

−1 (

B̂Γ + e−sτuB̂d
Γ

)

= G(s) := C
(

sI − A∆ − e−sτxAd
∆

)−1 (

BΓ + e−sτuBd
Γ

)

(7)

At this point, let us introduce the assumed bounds on the
norms of the uncertain matrices:

σ̄(∆̂1) ≤ δ1 σ̄(∆̂2) ≤ δ2 (8)

σ̄(∆̂12) ≤ δ12 σ̄(∆̂21) ≤ δ21 (9)

σ̄(∆̂d
1) ≤ δd

1 σ̄(∆̂d
2) ≤ δd

2 (10)

σ̄(∆̂d
12) ≤ δd

12 σ̄(∆̂d
21) ≤ δd

21 (11)

σ̄(Γ1) = σ̄(Γ̂1) ≤ γ1 σ̄(Γ2) = σ̄(Γ̂2) ≤ γ2 (12)

σ̄(Γd
1) = σ̄(Γ̂d

1) ≤ γd
1 σ̄(Γd

2) = σ̄(Γ̂d
2) ≤ γd

2 (13)

where δ’s and γ’s are known non-negative numbers.

We assume that decentralized controllers for each subsys-
tem i (i = 1, 2) is to be designed based on the local nominal
model:

˙̂xi(t) = Âix̂i(t) + Âd
i x̂i(t − hx) + B̂iui(t)

+ B̂d
i ui(t − hu) (14)

yi(t) = Ĉix̂i(t) (15)

Then the overall design model has the transfer function
matrix (TFM):

Gd(s) =

[

G1(s) 0
0 G2(s)

]

(16)

where

Gi(s) := Ĉi

(

sI − Âi − e−shxÂd
i

)

−1 (

B̂i + e−shuB̂d
i

)

is the TFM of the ith local nominal model (i = 1, 2).
We now introduce the multiplicative error matrix, E(s),
between the true TFM, G(s), and the design TFM, Gd(s),
which satisfies

G(s) = Gd(s) (I + E(s)) . (17)

The following result gives an upper bound on the norm of
E(jω).

Lemma 1: Assuming ed(ω) > 0,

σ̄(E(jω)) ≤ en(ω)

ed(ω)
=: e(ω) (18)

where

en(ω) := max
{

e11

n (ω), e22

n (ω)
}

+ max
{

e12

n (ω), e21

n (ω)
}

and

ed(ω) := σ (H(jω)) −
[

max
{

e11

d (ω), e22

d (ω)
}

+ max
{

e12

d (ω), e21

d (ω)
}]

where H(s) :=

[

H11(s) H12(s)
H21(s) H22(s)

]

,

eii
n (ω) := γi + ρ̄u(ω)σ̄(B̂d

i ) + γd
i + eii

d (ω)

eij
n (ω) :=

(

σ̄(Âij) + δij + σ̄(Âd
ij) + δd

ij

)

gj(ω)

eii
d (ω) :=

(

δi + ρ̄x(ω)σ̄(Âd
i ) + δd

i

)

gi(ω)

eij
d (ω) :=

(

δij + ρ̄x(ω)σ̄(Âd
ij) + δd

ij

)

gj(ω)

Hii(s) := B̂i + e−shuB̂d
i

and

Hij(s) := −
(

Âij + e−shxÂd
ij

)(

sI − Âj − e−shxÂd
j

)

−1

×
(

B̂j + e−shuB̂d
j

)

where

gi(ω) := σ̄

[

(

jωI − Âi − e−jωhxÂd
i

)

−1 (

B̂i + e−jωhuB̂d
i

)

]

(i, j = 1, 2, i 6= j) and

ρ̄v(ω) :=



















2 sin

( |ω|θ̄v

2

)

, |ω| ≤ π

θ̄v

2 , |ω| >
π

θ̄v

, (19)

where v stands for x or u.

Proof: Using (7) and (16), E(s) in (17) can be chosen to
satisfy

(

sI − Â∆ − e−sτxÂd
∆

)

−1 (

B̂Γ + e−sτuB̂d
Γ

)

=
(

sI − Ã − e−shxÃd
)

−1 (

B̂ + e−shuB̂d
)

(I + E(s)) (20)

where Ã :=

[

Â1 0

0 Â2

]

and Ãd :=

[

Âd
1 0

0 Âd
2

]

. Premulti-

ply both sides of (20) by
(

sI − Â∆ − e−sτxÂd
∆

)

and re-

arrange terms to obtain Q(s) = R(s)E(s), where Q(s) :=
[

Q11(s) Q12(s)
Q21(s) Q22(s)

]

and R(s) :=

[

R11(s) R12(s)
R21(s) R22(s)

]

, where

Qii(s) = Γ̂i + ρu(s)B̂d
i + e−sτu Γ̂d

i

+
(

∆̂i + ρx(s)Âd
i + e−sτx∆̂d

i

)(

sI − Âi − e−shxÂd
i

)

−1

×
(

B̂i + e−shuB̂d
i

)

Qij(s) =
(

Âij + ∆̂ij + e−sτx(Âd
ij + ∆̂d

ij)
)

×
(

sI − Âj − e−shxÂd
j

)

−1 (

B̂j + e−shuB̂d
j

)

Rii(s) = B̂i + e−shuB̂d
i −

(

∆̂i + ρx(s)Âd
i + e−sτx∆̂d

i

)

×
(

sI − Âi − e−shxÂd
i

)

−1 (

B̂i + e−shuB̂d
i

)

Rij(s) = −
(

Âij + ∆̂ij + e−sτx(Âd
ij + ∆̂d

ij)
)

×
(

sI − Âj − e−shxÂd
j

)

−1 (

B̂j + e−shuB̂d
j

)

(i, j = 1, 2, i 6= j) where ρv(s) := e−sτv − e−shv (where v
stands for x or u). Note that, |ρv(jω)| ≤ ρ̄v(ω), ∀ω. The
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result now follows by noting that σ̄(Q(jω)) ≤ en(ω) and
σ(R(jω)) ≥ ed(ω). 2

The bound e(ω) given in (18) can be used as a robustness
bound in decentralized controller design for the system
(1)–(2), as will be explained in the next section.

Remark 3: The bound (18) is not defined if ed(ω) ≤ 0,
i.e., if σ(H(jω)) ≤

[

max
{

e11

d (ω), e22

d (ω)
}

+ max
{

e12

d (ω), e21

d (ω)
}]

. However, note that the matrix
H involves the nominal input matrices on the diago-
nal blocks (which typically have large norm) and in-
teraction terms (which typically have smaller norm) on

the off-diagonal blocks. Furthermore, the terms eij
d in-

volve bounds on the uncertainties (which are typically
small - although the bound ρ̄x(ω) may become large
(upto 2) for large |ω| (as compared to 1/θ̄x), the inter-
action term gi(ω) (which multiplies ρ̄x(ω)) is typically
small for large |ω|). Therefore, typically, σ(H(jω)) >
[

max
{

e11

d (ω), e22

d (ω)
}

+ max
{

e12

d (ω), e21

d (ω)
}]

, and hence
ed(ω) > 0.

3. ROBUST DECENTRALIZED CONTROLLER
DESIGN

Suppose that decentralized controllers

Ui(s) = −Ki(s)Yi(s) , i = 1, 2 (21)

are to be designed for the system (1)–(2). Here, Ui(s) and
Yi(s) respectively denote the Laplace transforms of ui(t)
and of yi(t) (i = 1, 2) and Ki(s) is the TFM of the ith

decentralized controller.

Here, we propose to design Ki(s) to stabilize and achieve
good performance for the local nominal model (14)–(15)
and also to satify the following constraint

σ̄ (Ti(jω)) <
1

e(ω)
, ∀ω ∈ R (22)

where Ti(s) := Gi(s)Ki(s) [I + Gi(s)Ki(s)]
−1

is the com-
plementary sensitivity function for the ith local nominal
closed-loop system and e(ω) is given by (18). Then we
have the following result.

Theorem 1: Suppose that, for each i ∈ {1, 2}, the
control (21) stabilizes the system (14)–(15) and that (22)
is satisfied. Then the true overall closed-loop system,
obtained by applying the decentralized controllers (21)
to the original system (1)–(2), is stable as long as the
uncertainties are bounded as given in (3), (8)–(13).

Proof: The complementary sensitivity function for the
overall design model is given by

T (s) = Gd(s)K(s) [I + Gd(s)K(s)]
−1

=

[

T1(s) 0
0 T2(s)

]

(23)

where Gd(s) is given by (16) and K(s) =

[

K1(s) 0
0 K2(s)

]

.

Stability of the local nominal closed-loop systems, (14)–
(15) under controls (21) implies stability of the overall
nominal closed-loop system in the expanded space, since
the two subsystems are decoupled in the expanded space.

Then, due to relation (17), the true overall closed-loop
system, (1)–(2) under controls (21), is stable as long as

σ̄ (T (jω)) <
1

σ̄ (E(jω))
, ∀ω ∈ R (24)

(e.g., see Zhou et al. (1996)). However, due to the block
diagonal structure of T (s), σ̄ (T (jω)) = max {σ̄ (T1(jω)) ,
σ̄ (T2(jω))}. Hence, using (18), (24) is satisfied when the
constraint (22) is satisfied for each i ∈ {1, 2}. 2

4. APPLICATION

In this section we apply the above proposed controller
design approach to a flow control problem in a data-
communication network with two bottleneck nodes. A
queue is formed at each bottleneck node, whose dynamics
is given by

q̇1(t) = r1(t − τr1) − z(t − τz) − c1(t) (25)

and

q̇2(t) = r2(t − τr2) + z(t − τz) − c2(t) (26)

where qi(t) is the deviation of the queue length at the ith

bottleneck node (i = 1, 2) from its desired level at time
t, ri(t) is the flow rate command issued at time t for the
source feeding the ith bottleneck node (here, for simplicity,
we assume a single source for each bottleneck, we also
assume that the sources send data at the commanded rate
after a certain delay, the controller which issues the rate
command ri is implemented at the ith bottleneck node),
ci(t) is the outgoing flow rate from the ith bottleneck node
(i.e., the capacity of the outgoing link) at time t, and z(t)
represents the net rate of the flow from the first bottleneck
node to the second bottleneck node, which is managed by
a queue balancer according to the following rule:

ż(t) = κ[q1(t − τq1) − q2(t − τq2)] (27)

where κ is the balancing constant. We assume κ = 0.1+δκ,
where δκ is the uncertain part which satisfies |δκ| ≤ 0.01.
Here, τri is the round trip delay for the ith bottleneck
node (the delay needed for the rate command to reach the
source of the ith bottleneck node plus the delay needed
for the data to reach the ith bottleneck node), τqi is
the delay needed for the queue information at the ith

bottleneck node to reach the queue balancer, and τz is
the delay needed for the rate information produced by
the queue balancer to reach the first (second) bottleneck
node plus the delay nedded for the data sent out from
the first (second) bottleneck node to reach the second
(first) bottleneck node. Although all of these delays can be
treated independently (see Remark 2), in order to use the
same notation as above, we assume that τr1 = τr2 =: τu

and τq1 = τq2 = τz =: τx. Furthermore, we assume that the
nominal part of each delay is unity, i.e., hx = hu = 1, and
the bound on the uncertain part is 0.1, i.e., θ̄x = θ̄u = 0.1.

Let us define

x =

[

q1

z
q2

]

u =

[

r1

r2

]

y =

[

q1

q2

]

Then the overall system can be represented as in (1)–(2),
where A = ∆ = 0, B = Γ = Γd = 0,
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Ad =

[

0 −1 0
0.1 0 −0.1
0 1 0

]

∆d =

[

0 0 0
δκ 0 −δκ

0 0 0

]

Bd =

[

1 0
0 0
0 1

]

C =

[

1 0 0
0 0 1

]

The uncertainty bounds in (8)–(13) are then obtained as
δ1 = δ2 = δ12 = δ21 = γ1 = γ2 = γd

1 = γd
2 = 0,

δd
1 = δd

2 = δd
12 = δd

21 = 0.01. The error bound defined
in Lemma 1 is then obtained as

e(ω) =
ρ̄(ω)

√

d(ω) + (ρ̄(ω) + 0.12)
√

ω2 + 0.01
√

ω2 + d(ω) − (1.1ρ̄(ω) + 0.02)
√

ω2 + 0.01

where d(ω) := ω4 − 0.2ω2 cos(2ω)+ 0.01 and ρ̄(ω) is given
by the right hand side of (19) with θ̄v = 0.1.

Following the steps in Section 2, the local nominal models,
on which the controller design is to be based, are obtained
as

˙̂x1(t) =

[

0 −1
0.1 0

]

x̂1(t − 1) +

[

1
0

]

(r1(t − 1) − c1(t))

y1(t) = [ 1 0 ] x̂1(t)

and

˙̂x2(t) =

[

0 −0.1
1 0

]

x̂2(t − 1) +

[

0
1

]

(r2(t − 1) − c2(t))

y2(t) = [ 0 1 ] x̂2(t)

The TFMs (from ri to yi) for these systems are then
obtained as

G1(s) = G2(s) =
se−s

s2 + 0.1e−2s

We note that the local systems are unstable (s2+0.1e−2s =
0 for s = 0.095 ± j0.281). Both of these systems can be
stabilized, however, by a static feedback:

ri(t) = −kqi(t) , i = 1, 2 (28)

by choosing k in the range 0.20 < k < 1.64. Within
this range, however, condition (22) is satisfied only for
k < 1.2. σ̄(T1(jω)) = σ̄(T2(jω)) is plotted for k = 0.2,
k = 0.7, and k = 1.2, together with 1/e(ω) in Fig. 1. By
Theorem 1, applying the local controls (28) to the system
described by (25)–(27), where 0.20 < k < 1.20, robustly
stabilizes the overall system for all uncertainties satisfying
the above introduced bounds. By examining Figure 1, a
smooth response (for the local nominal models, if not for
the actual system) is also obtained by choosing k = 0.7.

5. CONCLUSIONS

Robust decentralized controller design for large-scale inter-
connected time-delay systems has been considered. Using
overlapping decompositions and expansions, a robustness
bound, to account for (i) the neglected interactions be-
tween the subsystem models, (ii) uncertainties in the in-
teractions, (iii) uncertainties in the subsystem models, and
(iv) uncertainties in the time delays, has been derived.
A decentralized controller design approach, which uses
this bound, has then been propsed. The advantage of the
proposed approach is that, all uncertaities and neglected
dynamics are summarized in one frequency-dependent
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Fig. 1. Plot of 1/e(ω) (in blue - plot with highest low
frequency gain) and plots of σ̄(T1(jω)) = σ̄(T2(jω))
for k = 0.2 (in green - plot with lowest low frequency
gain), k = 0.7 (in red - plot with second lowest low
frequency gain), and k = 1.2 (in cyan - plot with third
lowest low frequency gain) vs. ω.

scalar function (e(ω)) and satisfying a simple condition
(22) guarantees that the overall closed-loop system under
decentralized controllers, which are designed considering
local models, is robustly stable.

Although we have considered only one input and one
output delay, extension to the case of multiple delays is
straight forward. Similarly, although we have considered
interconnected systems with only two subsystems, the
results can directly be extended to interconnected systems
with more subsystems. Furthermore, a similar approach
can be undertaken for different types of interconnections,
such as systems interconnected through inputs and/or

outputs (e.g., see İftar and Özgüner (1987b)). It is also
possible to consider overlapping decompositions on input
and output spaces besides the state space İftar (1993).
Extensions to time-varying systems and to systems with
time-varying delays are subjects for future research.
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design approches for decentralized systems. In Proceed-
ings of the AIAA Guidance, Navigation, and Control
Conference, pages 337–344, Minneapolis, MN, 1988.
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