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Abstract: The strong stabilization problem (i.e., stabilization by a stable feedback controller)
is studied for unstable MIMO plants with arbitrary number of finitely many poles but no
more than two blocking zeros in the extended right half plane. Simple strongly stabilizing
controllers, of order not exceeding that of the plant, are obtained for such plants satisfying the
parity interlacing property. Connections with earlier design methods are illustrated: for this
particular class of plants, it is shown that a sufficient condition appearing in earlier publications
is equivalent to the parity interlacing property and hence it is also necessary for the existence
of strongly stabilizing controllers. The results are illustrated with numerical examples.
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1. INTRODUCTION

In this paper we discuss the strong stabilization prob-
lem, i.e., feedback stabilization using a stable controller,
for a class of linear time-invariant (LTI), multi-input
multi-output (MIMO) systems. It is well known that
a given plant is strongly stabilizable if and only if it
satisfies the parity interlacing property (p.i.p), that is,
the number of poles between every pair of real blocking
zeros in the extended right half plane is even, Youla
et al. (1974); Vidyasagar (1985). In the single-input
multi-output (SISO) case, an interpolation-based proce-
dure is available to derive strongly stabilizing controllers
for a given plant, see Doyle et al. (1992); Vidyasagar
(1985). Moreover, for such plants, a parameterization of
all strongly stabilizing controllers can be obtained using
interpolation with infinite dimensional transfer functions,
Vidyasagar (1985). On the other hand, extensions of these
interpolation techniques to MIMO plants are not currently
available. Nevertheless, a vast literature exists on strong
stabilization of MIMO plants, see e.g. Campos-Delgado
and Zhou (2003); Choi and Chung (2001); Chou et al.
(2007); Gumussoy and Ozbay (2005); Halevi (1994); Lee
and Soh (2002); Petersen (2006), and their references. In
these papers, strongly stabilizing controllers are obtained
under certain sufficient conditions. In addition to strong
stabilization, most of these papers also consider an H∞ or
H2 like performance conditions.

In this work, rather than investigating new sufficient condi-
tions for the construction of strongly stabilizing controllers
for general MIMO plants, we derive a simple design pro-
cedure for a restricted class of plants satisfying the PIP
(i.e., the design procedure works for all strongly stabilizable
plants in this class). The plants we consider satisfy the PIP
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and have at most two real blocking zeros in the extended
right half plane. In this approach, there is no restriction on
the number and location of the poles, and on the number
of left half plane zeros. Furthermore, the controller order
does not exceed that of the plant. We also show that the
sufficient condition of Zeren and Ozbay (2000) for general
MIMO plants is also necessary for the class of plants
considered here.

In Section 2 we define the class of MIMO plants considered
for strong stabilization. The design procedure is given in
Section 3. Connections with the approach of Zeren and
Ozbay (2000) are illustrated in Section 4 with an example.
Concluding remarks are made in Section 5.

The notation used in the paper is fairly standard, in
particular R+e = {z ∈ R | z ≥ 0} ∪ {∞} represents the
(extended) non-negative real axis, and define C+e := C+∪
{∞}. The set of real rational functions that are bounded
and analytic in C+ is denoted by RH∞. We also say that
a matrix valued function is in RH∞ if all its entries are
in RH∞. The norm symbol, ‖ · ‖, used in the paper is the
usual operator norm defined in RH∞.

2. PROBLEM DEFINITION

Consider the standard feedback control system shown in
Figure 1, where P is the plant to be controlled and C is
the controller to be designed. It is assumed that all entries
of the matrices P and C are proper rational functions,
and that P and C have no unstable hidden-modes. Let
P = D−1

p Np be a left-coprime-factorization (LCF) of the

plant and let C = NcD
−1
c be a right-coprime-factorization

(RCF) of the controller, where Dp , Np , Nc , Dc are
appropriate size matrices with all entries in RH∞ , and
D−1

p , D−1
c are proper. A controller C = NcD

−1
c stabilizes

the feedback system if and only if the matrix

U = DpDc + NpNc (1)
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Fig. 1. Feedback Control System

is unimodular, i.e., all entries of U and U−1 are in RH∞.
Moreover, the stabilizing controller is itself stable if and
only if this condition is satisfied with a unimodular Dc ;
in this case we say that C strongly stabilizes P . Let
z1, . . . , zℓ ∈ R+e be the non-negative real-axis blocking-
zeros of P in the extended right-half-plane C+e, i.e.,
Np(zk) = 0 for k = 1, . . . , ℓ. Then P satisfies the PIP
if and only if det[Dp(zk)] is sign invariant for k = 1, . . . , ℓ
(see e.g. Vidyasagar (1985)).

The plants under consideration for strongly stabilizing
controller synthesis here are full row-rank and have no
restrictions on the location or number of their poles. The
left-half-plane zeros are also unrestricted. These plants
may have at most two non-negative real-axis blocking-
zeros (including infinity) and no other transmission-zeros
in C+e . More specifically, the numerator Np in any LCF
P = D−1

p Np can be factored as Np = NpzNpr , where
Npz contains the blocking-zeros in C+e , and Npr is right
invertible by a transfer matrix N †

pr, whose entries are in
RH∞ (since P has no other-transmission zeros in C+e);
then Npz can be expressed as

Npz =

ℓ∞
∏

i=1

1

(s + ai)

ℓ−ℓ∞
∏

k=1

(s − zk)

(s + bk)
I , (2)

where ai > 0, bk > 0 are positive real for 1 ≤ i ≤ ℓ∞,
1 ≤ k ≤ ℓ− ℓ∞. The controller C = N †

prNczD
−1
c stabilizes

P = D−1
p NpzNpr if and only if

U = DpDc + NpzNcz (3)

is unimodular, and C strongly stabilizes P if in addition Dc

is unimodular in (3). The goal then is to find appropriate
Ncz, Dc whose entries in RH∞, with Dc being unimodular,
such that U is unimodular. Although design for the general
MIMO case is done under certain sufficient conditions as
in Barabanov (1996); Campos-Delgado and Zhou (2003);
Chou et al. (2003, 2007); Petersen (2006) and Zeren and
Ozbay (1999), the design procedure developed here works
for every plant satisfying the PIP in the class considered
here, with 0 ≤ ℓ∞ ≤ ℓ ≤ 2.

3. STRONGLY STABILIZING CONTROLLER
DESIGN

Let the plant be P = D−1
p NpzNpr , with Npz as in (2).

We assume that Dp(s) is non-unimodular; otherwise P
is stable and hence the trivial controller C = 0 strongly
stabilizes it. Another point to note is that the order of
the controllers to be derived in this section depend on
the particular coprime factorization which is non-unique.
Therefore, in order to obtain the lowest order controller
one should try to find the lowest order Dp and Npr.

Case ℓ = 0: First consider the trivial case, where ℓ = 0, i.e.,
Npz = I and hence, P = D−1

p Npr has no blocking-zeros
in C+e. Then for any arbitrary unimodular matrix Uc, the
stable controller C = N †

pr(Uc − Dp) strongly stabilizes P
since (1) is satisfied with Dc = I, Nc = C, which leads to
U = Uc.

Case ℓ∞ = ℓ = 1: In this case (2) becomes

Npz =
1

s + a
I , a > 0 , (4)

and hence, P = 1
s+a

D−1
p Npr has a blocking-zero at infinity.

In the SISO case, these plants have relative-degree one
and are called minimum-phase. The PIP is automatically
satisfied since there are no finite non-negative zeros. Then
the stable controller

C = (s + a)N †
pr(s) (Dp(∞) − Dp(s) ) (5)

strongly stabilizes P since (1) is satisfied with unimodular
Dc = Dp(∞)−1, Nc = CDp(∞)−1, which leads to U = I.
Note that Dp(∞)−Dp(s) is strictly proper, hence the term
(s + a)(Dp(∞) − Dp(s)) is proper.

Case ℓ∞ = 0 < ℓ = 1: In this case (2) becomes

Npz =
s − z

s + b
I , z ≥ 0 , b > 0 , (6)

and hence, P (s) = (s−z)
(s+b) D

−1
p Npr has one finite blocking-

zero at z ≥ 0. In the SISO case, these plants have relative-
degree zero. The PIP is automatically satisfied because
there is only one zero in C+e. Then the stable controller

C =
(s + b)

(s − z)
N †

pr(s) (Dp(z) − Dp(s) ) (7)

strongly stabilizes P since (1) is satisfied with unimodular
Dc = Dp(z)−1, Nc = CDp(z)−1, which leads to U = I.

Case ℓ∞ = ℓ = 2: In this case (2) becomes

Npz =
1

(s + a1)(s + a2)
I , a1 > 0 , a2 > 0 , (8)

and hence, P = 1
(s+a1)(s+a2)D

−1
p Npr has two blocking-

zeros at infinity. In the SISO case, these plants have
relative-degree two and are called minimum-phase. The
PIP is automatically satisfied since there are no finite non-
negative zeros. Define

D∞(s) := (Dp(s)Dp(∞)−1 − I)

which is strictly proper and stable. Choose any positive
real β > 0 satisfying

β > ‖ s D∞(s) ‖ . (9)

Let the controller be

C = β
(s + a1)(s + a2)

(s + β)
N †

pr(s) (Dp(∞) − Dp(s)). (10)

Since Dp(∞) − Dp(s) is strictly-proper, the term
(s+a1)(s+a2)

(s+β) (Dp(∞) − Dp(s)) is proper; then all entries of

C are in RH∞. With Dc = I, Nc = C, (1) becomes

U = Dp(s) +
β

(s + β)
(Dp(∞) − Dp(s))

= (I +
1

s + β
sD∞(s))Dp(∞).

For β satisfying (9), by the small-gain theorem,
‖ 1

s+β
sD∞(s)‖ < 1, which implies U is unimodular. There-

fore, the stable controller in (10) strongly stabilizes P .
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Case ℓ∞ = 1 < ℓ = 2: In this case (2) becomes

Npz =
(s − z)

(s + a)(s + b)
I , z ≥ 0 , a > 0 , b > 0 , (11)

and hence, P = (s−z)
(s+a)(s+b)D

−1
p Npr has a finite blocking-

zero at z ≥ 0 and one at infinity. In the SISO case,
these plants have relative-degree one. Define W :=
Dp(z)−1Dp(∞), which is obviously nonsingular. For these
plants, the PIP is satisfied if and only if det W > 0
since detDp is sign invariant at the blocking-zeros of P .
The strongly stabilizing controller design proposed here
assumes a more conservative condition on W : Let all
eigenvalues of W = Dp(z)−1Dp(∞) have positive real
parts (which is equivalent to PIP for single-output plants
since W > 0). Choose any real β > 0 satisfying (9) as in
the case of 2-zeros at infinity above. With Npz as in (11),
let the controller be

C = βN−1
pz N †

pr(s)(I −Dp(s)Dp(z)−1)Dp(∞)(sI +βW )−1,
(12)

where (s+b)
(s−z) (I −Dp(s)Dp(z)−1 ) is stable. By assumption,

−W has eigenvalues in the open left-half-plane and β > 0
implies (s + a)(sI + βW )−1 is also stable; then all entries
of C are in RH∞. With Dc = I, Nc = C, (1) becomes

U = Dp(s) + β(I − Dp(s)Dp(z)−1)Dp(∞)(sI + βW )−1

= (sDp(s) + βDp(∞))(sI + βW )−1

= (I +
1

s + β
sD∞(s)) Dp(∞)(s + β)(sI + βW )−1

By (9) the term (I + 1
s+β

sD∞(s)) is unimodular. Since

Dp(∞) is nonsingular, and (s+β)(sI +βW )−1 is unimod-
ular, the controller (12) is strongly stabilizing P .

The strongly stabilizing controller in (12) is designed under
the condition that W = Dp(z)−1Dp(∞) has eigenvalues in
the open C+; while this is a sufficient condition for PIP
for MIMO plants, it is equivalent to PIP for single-output
systems.

Case ℓ∞ = 0 < ℓ = 2: We only consider the case where
(at least) one of the two finite blocking-zeros is at zero. In
this case (2) becomes

Npz =
s (s − z)

(s + b1)(s + b2)
I , z ≥ 0 , b1 > 0 , b2 > 0 , (13)

and hence, P = s(s−z)
(s+b1)(s+b2)

D−1
p Npr has a finite blocking-

zero at s = 0 and another at z ≥ 0. In the SISO
case, these plants have relative-degree zero. Define V :=
Dp(0)−1Dp(z), which is obviously nonsingular. For these
plants, the PIP is satisfied if and only if detV > 0 since
detDp is sign invariant at the blocking-zeros of P . Similar
to the previous case, the strongly stabilizing controller
design proposed here assumes a more conservative con-
dition on V : Let all eigenvalues of V = Dp(0)−1Dp(z)
have positive real parts (which is equivalent to PIP for
single-output plants since V > 0). Let us define the stable
transfer matrix

D0(s) :=
Dp(s)Dp(0)−1 − I

s
and choose any positive real ρ > 0 satisfying

ρ ‖D0(s) ‖ < 1 . (14)

Let the controller be

C =
(s + b1)(s + b2)

(s − z)
N †

pr(s) [ Dp(z) − Dp(s) ] (sI + ρV )−1,

(15)

where (s+b1)
(s−z) [ Dp(z1) − Dp(s) ] is stable. By assumption,

−V has eigenvalues in the open left-half-plane and ρ > 0
implies (s + b2)(sI + ρV )−1 is also stable; then all entries
of C are in RH∞. With Dc = I, Nc = C, (1) becomes

U = Dp(s) + s(Dp(z) − Dp(s)) (sI + ρV )−1

= ( Dp(s)ρV + sDp(z) ) (sI + ρV )−1

= ((s + ρ − ρ)I + ρDp(s)Dp(0)−1) Dp(z)(sI + ρV )−1

= (I +
s

s + ρ
ρ D0(s)) (s + ρ)Dp(z)(sI + ρV )−1

By (14) the term (I + s
s+ρ

ρ D0(s)) is unimodular. Since

Dp(z) is nonsingular and (s + ρ)(sI + ρV )−1 unimodular
the controller (15) is strongly stabilizing P .

4. CONNECTIONS WITH THE CONDITION OF
ZEREN AND ÖZBAY

In this section we show that a sufficient condition used to
design strongly stabilizing controllers in Zeren and Ozbay
(2000) is also necessary for the single-output version of the
plants considered here.

By (1), the plant P = D−1
p NpzNpr is strongly stabilizable

if and only if there exists stable C = N †
prQ, Q ∈ RH∞,

such that U := Dp + NpzQ is unimodular. Define Rp :=
Dp − I, then U = I + Rp + NpzQ . Using the small-gain
theorem, a strongly stabilizing controller can be found if
there exists Q ∈ RH∞ such that ‖Rp + NpzQ‖ < 1. Since
Npz(z) = 0 at all blocking-zeros z ∈ C+e , of P , a feasible
Q ∈ RH∞ can be found only if ‖Rp(z)‖ < 1.

Now consider the plants described in Section 3 and let P
have a single-output. Therefore Dp ∈ RH∞ and Npz ∈
RH∞ are scalars anr Npr has a single row. The only C+e

zeros of the plant are in R+e, i.e., none are complex. By
(2), a coprime factorization is P = D−1

p Np = D−1
p NpzNpr,

where Npz contains the C+e zeros and Npr has a single-
column right-inverse in RH∞. Without loss of generality,
the denominator Dp ∈ RH∞ of P = D−1

p Np can be

expressed as follows: Let Pr = {pi}
k1

i=1 ⊂ R+, pi ≥
0 denote the non-negative real poles and Pi = {ei ±

jfi}
k2

i=1 ⊂ C+ \ R+, ei ≥ 0 denote the complex poles of
P in C+. Then decompose Dp(s) as

Dp(s) = Dpr(s)Dpc(s) (16)

where

Dpr(s) =

k1
∏

i=1

(s − pi)

(s + pi + ci)

Dpc(s) =

k2
∏

i=1

( (s − ei)
2 + f2

i )

( (s + ei)2 + f2
i + dis )

for some ci, di > 0 . Since Dp(∞) = 1, Rp = Dp − I is
strictly-proper.

Suppose that the plant is strongly stabilizable, equiva-
lently the PIP holds (since Dp(∞) > 0, PIP implies
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Dp(z) > 0). Suppose that the only C+e zeros of P are in
R+e, i.e., P has no complex zeros in C+e. Let zmax ≤ ∞ ∈
R+e denote the largest zero of P . Suppose that pi ≤ zmax

for all pi ∈ Pr , which always holds if P is strictly-proper.
We now show that under these assumptions, |R(z)| < 1
at all R+e zeros of P : Let 0 ≤ z ≤ zmax be any of the
R+e zeros of the plant, i.e., Npz(z) = 0. It is obvious that

Dpc(z) =
∏k2

i=1
( (z−ei)

2+f2

i )

( (z+ei)2+f2

i
+diz )

satisfies 0 < Dpc(z) ≤ 1.

For Dpr(z), there are two possibilities: Either this zero
z > pi for all pi ∈ Pr , or z < pi for an even number of
the poles pi ∈ Pr since the PIP implies an even number
of positive real poles of P in the interval [z, zmax] (as well
as between any two consecutive positive real zeros). In

both cases, it is obvious that Dpr(z) =
∏k1

i=1
(z−pi)

(z+pi+ci)
also

satisfies 0 < Dpr(z) ≤ 1. Therefore, 0 < Dpr(z)Dpc(z) ≤ 1
implies |Rp(z)| = |1 − Dp(z)| < 1 at all R+e zeros of P .

In the single-output case, the strongly stabilizing controller
can be written as C = Q = N †

prQp for some Qp ∈ RH∞.
Then using the sufficient condition of Zeren and Ozbay
(2000), there exists a strongly stabilizing controller if

inf
Qp∈RH∞

‖Rp + NpzQp‖∞ < 1. (17)

For the single-output plant classes (4) and (8), condition
(17) is satisfied if and only if |Rp(∞)| < 1: For Npz = 1

s+a
,

the optimal solution is

Qp = (s + a)(Rp(∞) − Rp(s)) = (s + a)(Dp(∞) − Dp(s));

i.e., Q = N †
prQp is the same as controller C = N †

prNcz

in (5). For Npz = 1
(s+a1)(s+a2) , since Dp(∞) = 1 and β

satisfies (9), the optimal solution is

Qp =
βN−1

pz

s + β
(Rp(∞) − Rp(s)) =

βN−1
pz

s + β
(Dp(∞) − Dp(s));

i.e., Q = N †
prQp is the same as controller C = N †

prNcz in
(10). For the cases (6) and (11) condition (17) is satisfied
if and only if |Rp(z)| < 1. Necessity is obvious, for the
sufficiency see e.g. Section 2.11 of the book by Foias
et al (1996). For the case (6), Npz(s) = s−z

s+b
, the optimal

solution is

Qp = N−1
pz (Rp(z) − Rp(s)) = N−1

pz (Dp(z) − Dp(s)),

i.e., Q = N †
prQp is the same as controller C = N †

prNcz

in (7). In the case (13) the problem (17) is solvable if and
only if |Rp(z)| < 1 and |Rp(0)| < 1. For systems with more
than one zero in open C+ solvability condition for (17) is
more complicated than just checking |Rp(zi)| < 1; but if
one zero is in R+ and the other one is on the boundary of
C+e, like in (13), then this statement is correct, see Section
2.11.3 of the book by Foias et al (1996).

We showed above that for (4), (8), (6) and (11) strong
stabilizability implies |Rp(z)| < 1, which in turn implies
condition (17). Therefore condition (17) is necessary and
sufficient for these plants; i.e. there exist strongly sta-
bilizing controllers (equivalently the PIP is satisfied) if
and only if there is exists a stable Qp such that ‖Rp +
NpzQp‖ < 1. Note that, here we do not require that the
plant has no poles on the jω-axis, which is an assumption
in Zeren and Ozbay (2000).

Example. Consider the plant (18), which is taken from
Zeren and Ozbay (2000),

P =

[

(s + 1)(s − 2)

(s2 + 4s + 5)(s − α)

(s + 2)(s − 2)

(s2 + 4s + 5)(s − α)

]

(18)

with α ≥ 0. We see that this plant admits a factorization
in the form P = D−1

p NpzNpr, where

Dp(s) =
s − α

s + 1

Npz(s) =
s − 2

(s + a)(s + b)

Npr(s) =
(s + a)(s + b)

s2 + 4s + 5

[

1
s + 2

s + 1

]

.

This fits into the form (11). Clearly Npz(2) = 0 and
Npz(∞) = 0, so PIP is satisfied if and only if α < 2. The
controller proposed in Section 3 for this type of systems is
in the form (12), where we can take

N †
pr(s) =

s2 + 4s + 5

(s + a)(s + b)





1 − c

c
(s + 1)

(s + 2)





with any c ∈ R. We have W = Dp(2)−1Dp(∞) = 3/(2−α),
and W > 0 if and only if α < 2 (equivalent to PIP). Now
we need to choose β > 0 such that β > ‖s D∞(s)‖. For
this example, ‖s D∞(s)‖ = (α + 1). Applying the formula
(12) we obtain

C =
−β(1 + α)(s2 + 4s + 5)

(2 − α)(s + 1)(s + 3β
2−α

)





1 − c

c
(s + 1)

(s + 2)



 , (19)

with any c ∈ R and any β > (α + 1). In this case we have

U =

(

s − α

s + 1

)

−
β(1 + α)

(2 − α)

(s − 2)

(s + 1)(s + 3β
(2−α) )

=
s2 + (β − α)s + β

(s + 1)(s + 3β
(2−α) )

.

Since β > α and α < 2, U is unimodular. Note that our
condition β > ‖s D∞(s)‖ gave β > (α + 1). But in fact
β > α is sufficient. This gap is due to the use of the small
gain theorem in our design of Section 3 in guaranteeing
that U is unimodular.

For the same system, we can obtain an alternative con-
troller using the method of Zeren and Ozbay (2000). In
that approach first note that

Rp(s) = Dp(s) − 1 = −
(α + 1)

s + 1

and |Rp(2)| = α+1
3 < 1 if and only if α < 2 (equivalent to

PIP). Solution of the problem (17) gives

Qp(s) = −
(α + 1)(s + b)(s + a)

3(s + 1)(1 + εs)

for some sufficiently small ε > 0. In order to understand
how small ε should be let us now examine U for the
controller C = N †

prQp,

U(s) =
s − α

s + 1
−

(α + 1)(s − 2)

3(s + 1)(1 + εs)

=
εs2 + (2−α

3 − εα)s + 2(α+1)
3 − εα

(s + 1)(1 + εs)
.
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This means that ε satisfying 0 < ε < 2−α
3α

gives a strongly
stabilizing controller

C(s) = −
(α + 1)(s2 + 4s + 5)

3(s + 1)(1 + εs)





1 − c

c
(s + 1)

(s + 2)



 . (20)

Note that the two controllers (19) and (20) are identical if
we set ε = 2−α

3β
.

5. CONCLUSIONS

In this paper we considered a class of MIMO plants with at
most two blocking zeros in Re (no other blocking zeros in
C+e), and no restrictions were imposed on the number and
locations of the poles. When they satisfy the PIP, these
plants are shown to admit strongly stabilizing controllers
and we have constructed such controllers explicitly. The
order of the strongly stabilizing controllers developed here
is equal to the order of the plant.

We have also shown that for the single-output version of
the class of plants considered here the sufficient condition
of Zeren and Ozbay (2000), given for the construction of
strongly stabilizing controllers, is equivalent to PIP.

Strongly stabilizing controller design for MIMO plants
with higher number of C+ blocking zeros is more difficult.
For such plants one may have to check the existing
sufficient conditions and design methods proposed earlier,
see e.g. Campos-Delgado and Zhou (2003); Choi and
Chung (2001); Chou et al. (2003, 2007); Gumussoy and
Ozbay (2005); Lee and Soh (2002); Petersen (2006); Zeren
and Ozbay (1999, 2000), and their references. For example,
when we have two complex conjugate zeros placed in
such a way that the PIP is about to be violated (as the
imaginary part goes to zero) many of the existing finite
dimensional (order of the controller is a few multiples of
the plant order) controller design techniques fail. Because
in this case the minimum order of the strongly stabilizing
controllers can be very large (grows as the imaginary part
gets smaller), see Smith and Sondergeld (1986). This is the
main reason why we have not considered the two finite zero
case. Our goal was to derive simple strongly stabilizing
controllers for a class of plants using the PIP only. No
additional conditions are imposed for this class of plants.
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