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Abstract: Control Lyapunov function (CLF) is a successful attempt to directly use of the Lyapunov 
function stability analysis technique of nonlinear systems in the synthesis problem. In this paper, on the 
basis of Freeman’s work (1996), the concept of CLF are re-analyze through using the method of set-valued 
analysis. And then, a new CLF based nonlinear controller design framework, called generalized pointwise 
min-norm (GPMN), is proposed. Simultaneously, three robust GPMN controllers are introduced with 
respect to respectively parameter uncertainties, external disturbance, and the combining cases. Actually, 
the framework provides us a new idea of nonlinear controller design since within which many other 
controller design indexes can be combined without re-considering the closed loop stability. Finally, a 
simple simulation is conducted to show one of the typical applications. 

 

1. INTRODUCTION 

Nonlinear controller design has been playing a more and 
more important role in control sciences. This is mainly due to 
the characteristics of complexity and absence of commonness 
of nonlinear systems, which make most nonlinear control 
strategies only applicable for certain kind of systems. 

As far as the stability analysis of nonlinear systems is 
concerned, Lyapunov function has undoubtedly become one 
of the most successful tools since its debut in the early of last 
century. However, the use of Lyapunov function in nonlinear 
controller design is often passive, because in most cases, 
control strategy is presented firstly, and the stability of the 
closed loop is subsequently proven by heuristically searching 
a Lyapunov function of it. 

Control Lyapunov function (CLF) is a new given concept in 
the 1980s in order to directly use of the Lyapunov function to 
the nonlinear system synthesis. A CLF of the nonlinear 
system is a positively definite function of states such that 
there always are some control inputs to make its derivative, 
along with the trajectory of the system, less than zero. 
Nonlinear controller design method based on CLF was firstly 
researched in the year of 1983 by Artstein (Artstein, 1983), 
where the equivalence between the continuous stabilization 
of a nonlinear system and the existence of a CLF was firstly 
proven. Although Artstein did not give any methods to obtain 
such a continuous stable controller, it still had been a 
milestone in the nonlinear controller design because several 
famous formulas of strategies appeared not long after that.  

In 1986, Sontag firstly gave a ‘universal’ construction 
method for Artstein’s theorem (Sontag, 1989). And then, 
Freeman introduced a so called pointwise min-norm control 

(PMN) based on a known CLF (Freeman, 1996). And 
recently, in 2004, Curtis (Curtis, 2004) proposed another 
strategy by combining the concept ‘satisficing’ with CLF to 
obtain a new controller design strategy.  

Unfortunately, all of the preceding controllers have a 
common drawback--lack of flexibility. That means, the 
controller’s parameters are not enough, and which make these 
methods difficult to be used in most of practical plants.  

In Freeman’s work, the nonlinear controller design is 
analyzed by set-valued analysis technique, within which the 
concept of CLF can be explained more clearly and naturally: 
in every ‘feasible’ state, a ‘permitted’ control action set can 
be found, and thus, the CLF itself defines a set-valued map 
from the states to the inputs. Thus, the controller design 
based on CLF is just to select a proper single-valued function 
from the set-valued map.   

In this paper, we will generalize Freeman’s work and obtain a 
new nonlinear controller design framework based on CLF – 
called generalized pointwise min-norm control (GPMN). And 
the continuity of the controller is proved by using the 
corresponding results in set-valued analysis. And then, the 
robust versions with respect to the parameters uncertainty and 
the H∞ version with respect to the external disturbances are 
presented. 

2. CLF AND SET VALUED MAPS 

Considering the following input affine system, 

( ) ( )

( ) m

x f x g x u

u U x R

= +

∈ ⊂
                               (1) 

where x ∈  Rn is the state vector; u is the control input vector; 
U(x) is the input constraint, which is possible different from 
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state to state; f(*) and g(*) are both smooth functions. A CLF 
of system (1) can be defined as follows, 

Definition 1 (Artstein, 1983): 
 A CLF of system (1) is a C1 and positively definite 
function V(x) with V(0)=0, which is defined on a 
neighbourhood W of 0 and satisfies the following inequality,  

( )
inf [ ( ) ( ) ( ) ( ) ] 0

x x
u U x

V x f x V x g x u
∈

+ <                        (2) 

Furthermore, V(x) is called a global CLF if W can be chosen 
Rn with V(x) ∞ as |x| ∞.                                                     █ 

Given c ∈  R+, we denote Ωc as follows, 

: { : ( ) }n

c
x R V x cΩ = ∈ ≤                             (3) 

: max{ : }
c

c
cm c R W

+
= ∈ Ω ⊆                           (4) 

Then, Ωcm is used to approximate the maximum stabilizable 
region of system (1). With a known CLF, Freeman’s PMN 
controller can be denoted as Eq. (5), 

( )

( ) arg min[ ( ) ( ) ( ) ( ) ( )]
PMN x x

u U x

u x V x f x V x g x u xσ
∈

= + ≤ −        (5) 

where σ(x) is a positively definite and continuous function 
such that σ(0) = 0. And the continuity of controller (5) can be 
obtained from the Lemma I (Freeman, 1996), 

Lemma I, 

 If the input constraint U(x) is lower semi-continuous set–
valued map (Aubin, 1990) with convex and closed values; 
Graph(U) is closed; simultaneously, V(x) is a CLF of system 
(1) on Ωcm. Then controller (5) is continuous in Ωcm\{0}. 
Furthermore, if V(x) satisfies the following small control 
property (scp), 

 For every ε > 0 there exists a δ > 0 such that 0 < ||x|| < δ 
implies, 

( )
inf { ( ) ( ) ( ) ( ) : } 0

x x
u U x

V x f x V x g x u u ε
∈

+ < <                (6) 

Then, controller (5) is continuous everywhere in Ωcm.          █ 
 
Before proving Lemma I, we first give Theorem II, 

Theorem II,  

 If U(x) is lsc with convex closed values; Graph(U) is 
closed; V(x) is a CLF of system (1). Thus, the set valued map 
KV(x), defined as, 

( ) { ( ) : ( ) ( ) ( ) ( ) ( )}
V x x

K x u U x V x f x V x g x u xσ= ∈ + ≤ −        (7) 
is lsc with nonempty closed convex values in Ωcm\{0}. And, 
Graph(KV) is closed.                                                               █ 
Proof of Theorem II can be found in Appendix, and with 
Theorem II, we can give the proof of Lemma I as follows, 

Proof of Lemma I: From Theorem II, KV(x) is lsc with 
nonempty closed convex values in Ωcm\{0}, and, Graph(KV(x)) 
is closed. Thus, from Lemma 9.3.1 (Aubin, 1990), 
x ||uPMN(x)|| is usc, which implies uPMN(x) is locally bounded. 
Because the input space is finite dimensional, the closeness 
of Graph(uPMN(x)) and the local boundedness of uPMN(x) 
imply the continuity of uPMN(x) (Theorem 2.3.2, Li, 2003). 
Next suppose V(x) satisfies the scp, then, from Arstrein’s 

theorem, there exists a continuous controller k(x) such that 
k(0) = 0. And from the definition of uPMN(x), 0 ≤ ||uPMN(x)|| ≤ 
||k(x)||, therefore uPMN(x) is continuous at x = 0.                     █ 
3. GENERALIZED POINTWISE MIN-NORM CONTROL 

In this section, we will give the generalized version of 
Freeman’s PMN controller by introducing a guide function. 
The main results can be denoted in the following theorem.  

Theorem III: 

If V(x) is a CLF of system (1) on Ωc, and the following 
conditions are satisfied,  
(1) U(x) is lsc with closed and convex values; 
(2) Graph(U) is closed; 
(3) ξ(x): Rn Rm is continuous with ξ(0)=0;  
(4) σ(x) is positively definite and continuous.  
Then the following controller (8), called GPMN, 

( )

( ) arg min{ ( ) }
V

u K x

u x u x
ξ

ξ
∈

= −                          (8) 

can stabilize system (1). And, it is continuous on Ωc except 
possibly at x = 0. Furthermore, if V(x) satisfies the scp, its 
continuity can also be ensured at zero state.                          █ 

Before proving the Theorem III, we will first give the 
following Theorem IV. 

Theorem IV: 

 If V(x) is a CLF of system (1) on Ωcm, V(x) is a CLF of 
the following system (9) on Ωcm,  

( ) ( ) ( ) ( )

( ) ( ) m

x f x g x x g x u

u U x x R

ξ

ξ

= + +

∈ − ⊂
                       (9) 

Furthermore, if ξ(x) is continuous, then 
( ) { ( ) ( ) : ( )[ ( ) ( ) ( )]

( ) ( ) ( )}
V x

x

K x u U x x V x f x g x x

V x g x u x

ξ ξ

σ

= ∈ − + +

≤ −
      (10) 

is lsc with nonempty closed convex values on Ωcm\{0}. And, 
Graph( VK ) is closed.  
Proof of Theorem IV: From the definition of CLF, V(x) is a 
CLF of system (1) on Ωcm means, 

( )
inf [ ( ) ( ) ( ) ( ) ] 0

x x
u U x

V x f x V x g x u
∈

+ <                      (11) 

Eq.(11) is equivalent to the following inequality, 

( ) ( )
inf [ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ] 0

x x x
u U x x

V x f x V x g x x V x g x u
ξ

ξ
∈ −

+ + <          (12) 

That means V(x) is a CLF of system (9).  
 
From Theorem A-1, we know that since U(x) is lsc with 
convex closed values, so does U(x) - ξ(x). And from Theorem 
II and continuity of ξ(x), the second part of Theorem IV can 
also be proved.                                                                        █ 

Proof of Theorem III: Let V(x) be a Lyapunov function 
candidate, and the derivative of V(x) is  

( ) ( ) ( )x xV x V f x V g x uξ= +  
From Eq. (7) and Eq. (8), we have 

( ) ( ) ( ) ( )x xV x V f x V g x u xξ σ= + ≤ −
 

Thus, the positively definite σ(x) ensures the derivative of V(x) 
is negative, i.e., controller (8) can stabilize system (1). 

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

14139



 
 

     

 

From the conditions of Theorem III and Theorem IV, 
( )VK x is lsc with nonempty closed convex values in Ωcm\{0}, 

and, Graph( VK ) is closed. Simultaneously, controller (9) is 
the minimal selection of ( )

V
K x . Thus, by Theorem I - 

Theorem III, the continuity of controller (9) can be proved. █ 

Remark: GPMN control is a direct generalization of 
Freeman’s PMN controller by introducing a guide function 
ξ(x). And this will bring great advantages and flexibilities to 
the CLF based nonlinear controller design. Up to known, at 
least two applications can be found: first, with GPMN 
structure, we can enforce the stability results of some 
heuristic controller design method, such as local linearization 
(He, Y.Q, 2007a), SDRE, MPC (He, Y.Q, 2007b); secondly, 
it can be used to improve the performance of some known 
controller design methods. We can combine some other 
controller design strategies with a known CLF which is 
obtained from some others controller design strategies. 

4. ROBUST GPMN CONTROLLER 

In this section, three different robust GPMN controllers will 
be given, including Parameters Uncertainty Robust GPMN; 
Disturbance Robust GPMN; and Combining Robust GPMN. 

4.1  Parameter Uncertainties Robust GPMN 

Considering the following uncertainty system with unknown 
parameters θ, 

( , ) ( , )

( )

( )

p

m

x f x g x u

x R

u U x R

θ θ

θ

= +

∈ Ξ ⊂

∈ ⊂

                          (13) 

where Ξ(x) is the parameter uncertainty set; U(x) is the input 
constraint; f(*,*) and g(*,*) are known smooth functions. 

Freeman has given the following definition of Robust CLF 
(RCLF) to system (13). Here we call it parameter uncertainty 
- robust control Lyapunov function (PU-RCLF). 

Definition II,  
A C1 and positively definite function V(x) is a PU-RCLF 

for system (13) if there exist two positive numbers c1 and c2 
(c1 > c2) such that, 

( ) ( )

inf sup [ ( , ) ( , ) ] 0
x x

u U x x

V f x V g x u
θ

θ θ
∈ ∈Θ

+ <                (14) 

for all x ∈Ωc1\Ωc2. Furthermore, V(x) is called a global PU-
RCLF if c1 can be chosen +∞ with V(x) ∞ as |x| ∞.         █ 

Freeman’s PMN controller can also deal with system (13). In 
this paper, we will not describe more about it, and directly 
give the PU-GPMN in the following theorem. 

Theorem V: 

If V(x) is a PU-RCLF of system (13) on Ωc1\Ωc2, and the 
following conditions are satisfied, 

(1) U(x) is lsc with closed and convex values;  
(2) Graph(U) is closed; 
(3) Ξ(x) is usc (upper semi-continuous) with nonempty 
compact values;  

(4) ξ(x): Rn Rm is a continuous function such that ξ(0)=0;  
(5) σ(x) is a positively definite continuous function.  
Then controller (15)-(16), called PU-RGPMN controller, can 
stabilize system (13), and is continuous in Ωc1\Ωc2.  

( )
( ) arg min{ ( ) }

PU
V

PU

u K x
u x u xξ ξ

∈
= −                     (15) 

( )

( )
{ ( ) : max[ ( , ) ( , ) ] ( )}

PU
V

x xx

K x
u U x V f x V g x u x

θ
θ θ σ

∈Θ

=

∈ + ≤ −  (16) 

Furthermore, if c2 equals to zero, and V(x) satisfies the 
following PU-scp,  

for every ε>0 there exists δ>0 such that 0<||x||<δ 
implies 

( )
inf{max[ ( , ) ( , ) ] : ( ), } 0x xx

V f x V g x u u U x u
θ

θ θ ε
∈Θ

+ ∈ < <  

the continuity can be ensured in every point of Ωc1.              █ 

4.2  H∞ Robust GPMN 

Another important robust control problem is to design 
disturbance attenuation controller for the following systems 
with external disturbances, 

( ) ( ) ( )

( )

( ) m

x f x g x u l x

y h x

u U x R

ω= + +

=

∈ ⊂

                      (17) 

where ω is external disturbance signal, y is output vector. f(*), 
g(*), l(*), and h(*) are all known smooth functions. One of 
the well-known methods to design a disturbance attenuation 
controller of system (17) is to use the concept of finite gain L 
stability  and H∞ control (Khalil, 2002).  

In order to construct robust GPMN controller for system (17), 
we define the following H∞-RCLF,  

Definition III,  

A C1 and positively definite function V(x) is an H∞-RCLF 
for the system (13) if there exist positive numbers c such that, 

2( )

1 1
inf { [ ( ) ( ) ] ( ) ( ) ( ) ( )} 0

22
T T T

x x x
u U x

V f x g x u V l x l x V h x h x
γ∈

+ + + <  (18) 

For all x∈Ωc. Furthermore, V(x) is called a global H∞ CLF if 
c can be chosen +∞ with V(x) ∞ as |x| ∞.                         █ 

And the corresponding H∞-RGPMN control is given in 
theorem VI, 

Theorem VI 

If V(x) is a H∞-RCLF of system (18) in Ωc, and the 
following conditions are satisfied,  
(1) U(x) is lsc with closed and convex values;  
(2) Graph(U) is closed; 
(3) ξ(x): IRn IRm is continuous with ξ(0)=0;  
(4) σ(x) is positive definite and continuous.  
Then controller (19)-(20), called H∞-RGPMN controller, 
make system (18) finite gain L stable with the gain that is less 
than or equal to γ. And, it is continuous in Ωc.  

( )
( ) arg min{ ( ) }

H
V

H

u K x
u x u xξ ξ

∞

∞

∈
= −                   (19) 
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2

( ) { ( ) : [ ( ) ( ) ]
1 1( ) ( ) ( ) ( ) ( )}

22

R
V x

T T T
x x

K x u U x V f x g x u

V l x l x V h x h x xσ
γ

= ∈ + +

+ ≤ −
      (20) 

Furthermore, if V(x) satisfies the following H∞-scp,  
 for every ε > 0 there exists a δ > 0 such that 0 < ||x|| < δ 
implies, 

2( )

1inf { [ ( ) ( ) ] ( ) ( )
2

1 ( ) ( ) : } 0
2

T T
x x xu U x

T

V f x g x u V l x l x V

h x h x u

γ

ε

∈
+ + +

< <
 (21) 

its continuity can be ensured in Ωc.                                        █ 

Proof of Theorem VI: Firstly, the finite gain L stability of the 
closed loop with uξH∞(x) is obviously by taking V(x) as a 
Lyapunov function. 

Just like Theorem A-1, KV
H∞(x) can be proved to be lsc with 

convex closed values. Also, its graph can be proved to be 
closed. Thus, the same process in the proof of Theorem III 
can be used to prove the continuity results of the theorem.   █ 

4.3  Combining Robust GPMN 

For the combining case with both parameter uncertainties and 
external disturbances, the uncertainty system can be denoted 
as follows, 

( , ) ( , ) ( , )

( , )

( )

( )

p

m

x f x g x u l x

y h x u

x R

u U x R

θ θ θ ω

θ

θ

= + +

=

∈ Ξ ⊂

∈ ⊂

               (22) 

where, ω is external disturbance signal, y is output vector; 
Θ(x) is the parameter uncertainty set; U(x) is the input 
constraint; f(*,*), g(*,*), l(*,*) and h(*,*) are all known 
smooth functions. 

We give the following definition of Combined RCLF (C-
RCLF) and the corresponding C-RGPMN controller in 
Theorem VI. 

Definition IV 

A C1 and positively definite function V(x) is an C-RCLF 
for system (22) if there exist two positive numbers c1 and c2 
(c1 > c2) such that, 

( ) ( )

2

inf sup { [ ( , ) ( , ) ]

1 1
( , ) ( , ) ( , ) ( , )} 0

22

x
u U x x

T T T

x x

V f x g x u

V l x l x V h x h x

θ

θ θ

θ θ θ θ
γ

∈ ∈Θ

+ +

+ <
       (23) 

is satisfied for all x ∈Ωc1\Ωc2. Furthermore, V(x) is called 
global RCLF if c1 can be chosen ∞ with V(x) ∞ as |x| ∞. █ 
Theorem VII 

If V(x) is a C-RCLF of system (22) in Ωc1\Ωc2, and the 
following conditions are satisfied,  
(1) U(x) is lsc with closed convex values;  
(2) Graph(U) is closed; 
(3) Ξ(x) is usc with nonempty conpact values;  
(4) ξ(x): IRn IRm is a continuous function with ξ(0)=0;  

σ(x) is a positive definite and continuous function.  

Then controller (24)-(25), called C-RGPMN controller, can 
stabilize system (22). And, it is continuous in Ωc1\Ωc2.  

( )

( ) arg min{ ( ) }
C

V

C

u K x

u x u x
ξ

ξ
∈

= −                         (24) 

( )

2

( ) { ( ) : max[ ( , ) ( , )

( , ) ( , ) 1 / 2 ( , ) ( , )] ( )}1/(2 )

C

V x x
x

T T T

x x

K x u U x V f x V g x u

V l x l x V h x h x x

θ
θ θ

θ θ θ θ σγ
∈Θ

= ∈ + +

+ ≤ −
     

(25) 
Furthermore, if V(x) satisfies the following C-scp,  

for every ε>0 there exists δ>0 such that 0<||x||<δ 
implies 

( )

2inf{max[ ( , ) ( , ) 1 /( ) ( , ) ( , )

( , ) ( , )] : ( ), } 0

2

1/ 2

T T

x x x x
x

T

V f x V g x u V l x l x V

h x h x u U x u

θ
θ θ θ θ

θ θ ε

γ
∈Θ

+ + +

∈ < <
 

and c1 is zero, its continuity can be ensured in Ωc2.               █ 

The proof of Theorem VII is similar to the proof of Theorem 
V and Theorem VI, and we will not repeat it. 

5.  SIMULATION 

As known, in most of real applications, a widely used 
nonlinear controller design strategy is to design a linear 
controller based on a local linearization model. One of the 
advantages is that it will greatly reduce the complexity of 
controller design. However, the small and uncontrollable 
stability region is one of the bottlenecks of its application. In 
this section, we will give an example to show that with the 
idea of GPMN framework, this problem can be partly solved. 
Considering the following system equations, 

1 2

2 1 2
9.8 sin 10

[0, 0.5], [ 10,10]

x x

x x kx u

k u

=

= − − +

∈ ∈ −

                        (26) 

Select a PU-RCLF of system (27) as: 
1.5 0.5

( )
0.5 1

TV x x x=
⎡ ⎤
⎢ ⎥⎣ ⎦

                         (27) 

and σ(x) = 0.1x1
2+0.1x2

2.          
By simple computation, Ωc (c=15) is a stabilizability region 
of system (26). On the other hand, the local linearization 
model near origin can be denoted as: 

1 2

2 1 2
9.8 10

x x

x x kx u

=

= − − +
                        (28) 

Taking k = 0.25 in (26), we can design a linear H∞ controller, 
1 2

-0.1332 -0.1435u x x=                       (29) 
 Then, the PU-GPMN controller can be denoted as, 

1 2
[ 10 ,10 ]

1 2 2 1 2 1
[ 0 ,0.5 ]

2 2

2 1 2

( ) min 0.1332 0.1435

. . max [(1.5 0.5 ) (0.5 )(9.8 sin

10 ) 0.05 0.05 ] 0

u

k

m x u x x

s t x x x x x x

kx u x x

∈ −

∈

= + +

+ − + +

− + + ≤

          (30) 

Fig.1 denotes its simulation. Where initial state is (2,-4), and 
dash-dot line is the case when k=0.5; solid line is the case of 
k=0. From which, we can see that the PU-GPMN controller 
keeps the robustness of H∞ controller near zero state and 
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ensures the closed loop stability in a comparatively large 
region Ω15. 

0  1 2 3 4 5 6
-2

0

2

x1

0  1 2 3 4 5 6
-5

0

5

x2

0  1 2 3 4 5 6
-1

0

1

time(s)

u

k=0.5
k=0

 
Fig.1. Time response 

6. CONCLUSIONS 

The purpose of this paper is to summarize and extend some 
of author’s previous works about the nonlinear control based 
on a known CLF. It is shown that, by introducing a guide 
function, the Freeman’s PMN controller can be generalized to 
a more flexible form. Also, it can be seen that two typical 
uncertainties, including the parameter uncertainties and 
external disturbances, can both be dealt with in the new 
framework. Finally, it is pointed out that two applications can 
be referred to from the new framework: First, it can be used 
to enforce the stability results of some heuristic controller 
design method; secondly, it can be used to improve the 
performance of some known controller design method. And 
the simulation results verify the feasibility of the new 
framework. 
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Appendix 

Proof of Theorem II: That KV(x) is nonempty closed and 
convex valued can be directly proved by the definition of set 
valued map (Aubin, 1990).  

In order to prove the lower semi-continuity of KV(x), defining 
the following set valued maps, 

0 ( ) { | [ ( ) ( ) ] ( )}m

V x
L x u R V f x g x u xσ= ∈ + < −               (A-1) 

0 0( ) ( ) ( )
V V

K x U x L x= ∩                                             (A-2) 

Suppose Ж is an open set in Rm, thus, x0∈ (KV
0)-1(Ж) implies 

U(x0)∩LV
0( x0)∩Ж ≠ 0. For every y0∈KV

0(x0)∩Ж, from the 
openness of LV

0(x0)∩Ж, there always exists a positive number 
η, such that B(y0, 2η) ⊂  LV

0( x0)∩Ж. Simultaneously, for 
every x, if Vxg(x) ≠ 0, Vxf(x)+Vxg(x)u=-σ(x) is an super-plane 
in the m dimensional Euclidean space. And, we can compute 
the Euclidean distance between point y0 and the super-plane, 

0

0
,

[ ( ) ( ) ] ( )
( ) ( )

x
x y T T

x x

V f x g x y x
d

V g x g x V
σ+ +

=             (A-3) 

First, if Vx0g(x0) ≠ 0, B(y0,2η) ⊂  LV
0(x0)∩Ж implies dx0,y0 > 2η. 

Meanwhile, from the continuity of Vx(x), f(x), g(x), and σ(x), 
there exists a neighbourhood Д1 of x0 such that for every x’ 
∈Д1, dx’,y0>η, i.e., B(y0,η) ⊂ LV

0( x’)∩Ж. Second, if Vx0g(x0) = 
0, and x≠0, then LV

0(x0)=IRm, and Vxf(x)+σ(x)<0 implies dx,y0 
is positive infinite. Thus, it is obvious that a neighbourhood 
Д1 of x0 can be found such that B(y0,η) ⊂ LV

0(x’)∩Ж.  

U(x) is lsc means we can find a neighbourhood Д2 of x0 such 
that U(x)∩B(y0, η)≠Φ. Let Д := Д1∩Д2, thus, for every x’∈Д, 
we have KV

0(x’)∩Ж ≠φ , i.e., x0∈Д⊂ (KV
0)-1(Ж).  That is, 

(KV
0)-1 (Ж) is an open set. And from theorem 1.3.6 of (Li, 

2003), KV
0(x) is lsc on Ωcm,W\{0}. KV(x) is the closure of 

KV
0(x), from proposition 1.3.10 of (Li, 2003), KV(x) is lsc too.  

From the continuity of Vx(x), f(x), and g(x), the function 
Vx(x)[ f(x)+g(x)u] is continuous with respect to x and u. Thus, 
if Vx(x)[f(x1)+g(x1)u]>σ(x1), there exist two open 
neighborhoods Д3 and Д4 of x1 and u1, such that for every 
x ∈Д3 and u ∈Д4, D(x1,u1)>σ(x1), that means Graph(LV) is 
closed. Thus, that Graph(U) is closed implies Graph(KV) is 
closed.                                                                                     █ 

Theorem A-1, 

Let T be a set valued map from a metric space X to a Banach 
space Y that is strictly convex and reflexive. If ζ(x): X Y is a 
single continuous function. Then the newly defined set 
valued map, R: X Y (R(x) = T(x) - ζ(x)) such that 

(1) If T is a closed and convex valued, so does R; 
(2) If T is lsc, so does R; 
(3) If Graph(T) is closed, so does graph(R).                █ 

 
Proof of Theorem A-1:(1) can be directly obtained by the 
definition of set valued map in (aubin, 1990).  
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If T is lsc, i.e., for every sequence {xi}∈X converging to x 
and every y∈R(x) there exists a sequence {yi}∈Y converging 
to y + ζ (x) and N≥1 such that yi∈T(xi) for all i ≥ N. On the 
one hand, from the definition of R(x), yi - ζ (xi) ∈  T(xi) – ζ (xi) 
= R(xi), and from the continuity of ζ ( ), ζ (xi) converges to ζ 
(x), thus, we conclude that the sequence { yi = yi-ζ (xi)} ∈Y 
converges to y, and when i≥N, yi∈R(xi). Thus, we completed 
the proof of (2). 

Now we will prove (3). For every (t, l) ∈X×Y-Graph(R), we 
have (t, l+ζ(t)) ∈X×Y-Graph(T), from the closing of graph T, 
X×Y-Graph(T) is open, thus there exists a positive number ε 
such that B((t, l+ζ (t)), ε) ⊂  X×Y-Graph(T). From the 
definition of R, B((t, l), ε) ⊂  X×Y-Graph(R), thus, X×Y-
Graph(R) is open in the product space X×Y, i.e., Graph(R) is 
closed.                                                                                     █ 

Theorem A-2: 

If the following conditions are satisfied, 
i) Θ(x,u,ω) and σ(x) are continuous vector-value function; 
ii) For each x and ω, the mapping u Θ(x,u,ω) is affine; 
iii) W(x) is a continuous with nonempty compact values; 
iv) U(x) is lsc, closed valued and convex valued set valued 
map, and Graph(U) is closed; 
v) K(x)∩U(x) ≠ Φ. 
Then the following results can be obtained, 
i) K(x)∩U(x) is lsc on Ωc2\Ωc1; 
ii) K(x)∩U(x) is closed valued and convex valued; 
iii) Graph(K(x)∩U(x)) is closed. 
where K(x) is defined as follows, 

               ( )
( , ) max ( , , )

( ) { : ( , ) ( )}

W x

m

D x u x u

K x u IR D x u x

ω
ω

σ

∈

Θ

= ∈ ≤ −
                    █ 

Proof of Theorem A-2:We first define the following new set 
valued map, 

0 ( ) { : ( , ) ( )}mK x u IR D x u xσ= ∈ ≤ −  
from conditions i) and iii), Theorem 1.4.16 (Aubin, 1990) 
ensures the upper semi-continuity of D(x,u). Thus, for every 
x0 and u0 such that D(x0, u0) <-σ(x0), we have, 

0 0

0 0 0
,

lim sup ( , ) ( ) ( , ) ( ) 0
x x u u

D x u x D x u xσ σ
→ →

+ ≤ + <  

that means, there exists open neighbourhoods of x0 and u0 Ж1 
and Ж2 such that for every x∈Ж1 and u∈Ж2 , the following 
inequality is satisfied, 

( , ) ( ) 0D x u xσ+ <  
That means, Graph(K0(x)) is open.  

For every point x0∈ IRn and every open set N ⊂ IRm such that 
U(x0)∩K0(x0)∩N≠Φ, the lower semi-continuity of U(x) 
implies that there always exists an open neighbourhood Ж3 of 
x0 such that U(ξ)∩N≠Φ for all ξ∈Ж3. On the other hand, 
since Graph(K0(x)) is open, from Proposition 1.10.1 and Prop 
1.10.3 (Aubin, 1984), K0(x) is lsc, thus there exists an open 
neighbourhood Ж4 of x0 such that K0(ξ)∩N≠Φ, for all ξ∈Ж4 . 
Select Ж5 =Ж3∩Ж4, we have, U(ξ)∩K0(ξ)∩N≠Φ for all 
ξ∈Ж5, i.e., K0(x)∩U(x) is lsc.It is not difficult to prove that 

0 ( ) ( )K x U x∩ =K(x)∩U(x), and from Prop1.3.10 (Li, 2003), 
we can conclude that  K(x)∩U(x) is also lsc set valued map. 
Thus, we complete the proof of i). 

Secondly, we will prove the convexness of K(x)∩U(x). First, 
from condition ii), for any 0≤k≤1, we have 

1 2

1 2
( )

1 2
( ) ( )

1 2

( , (1 ) )

max[ ( , , ) (1 ) ( , , )]

max ( , , ) (1 ) max ( , , )

( , ) (1 ) ( , )

W x

W x W x

D x ku k u

k x u k x u

k x u k x u

kD x u k D x u

ω

ω ω

ω ω

ω ω

∈

∈ ∈

+ −

= Θ + − Θ

≤ Θ + − Θ

= + −

 

i.e., D(x,u) is convex. Further, if u1∈K(x) and u2∈K(x), for 
any 0≤k≤1, we have 

1 2

1 2

1 2

( , (1 ) ) ( )

( , ) (1 ) ( , ) ( )

( , ) ( ) (1 ) ( , ) (1 ) ( )

0

D x ku k u x

kD x u k D x u x

kD x u k x k D x u k x

σ

σ

σ σ

+ − +

≤ + − +

≤ + + − + −

≤

 

i.e., K(x) is convex. Thus, the convexness of K(x)∩U(x) can 
be easily obtained by the convexness of U(x). And the 
closeness of K(x)∩U(x) is clear from the closeness of K(x) 
and U(x). Thus, we have proved ii). If W(x) is continuous, 
from Theorem 1.4.16 (Aubin, 1990), D(x,u) is continuous, 
thus Graph(K(x)) is closed, and then, Graph(K(x)∩U(x))= 
Graph(K(x))∩Graph(U(x)) is closed too. Up to now, we have 
completed the proof of i)-iii) of the theorem.                         █ 

Theorem A-3 

If all the conditions of Theorem A-2 are satisfied. 
Furthermore, c1 = 0, and the following property is satisfied,  
 For every ε>0 there exists δ>0 such that 0<||x||<δ 
implies 

inf{ ( , ) : ( ), } 0D x u u U x u ε∈ < <  

Then, K(x)∩ρ(x)D(x) is lsc with closed and convex values 
on Ωc2, where : [0,1]IRρ − →  is monotonically increasing 

function such that ρ(t) = 0 if and only if t = 0.                     █ 

Proof of Theorem A-3: First, we show that ρ(||x||)U(x) is lsc. 
For every sequence {xi} converging to x0 (not zero), and 
every y∈ρ(||x0||)U(x0), we have y/ρ(||x0||)∈U(x0). And from 
the lower semi-continuity of U(x), there always exists a 
sequence {yi} converging to y/ρ(||x0||) and N≥1 such that 
yi ∈ U(xi) for all i≥N. And from the continuity of ρ(.), 
sequence {ρ(||xi||)yi } converges to y； ρ(||xi||)yi∈ρ(||xi||)U(xi) 
for all i≥N, i.e., ρ(||x||)U(x) is lsc at x0. That means ρ(||x||)U(x) 
is lsc. If x0 = 0, for every sequence {xi} converging to 0, we 
have 0∈U(x0), from the lower semi-continuity of U(x), there 
always exists a sequence {yi} converging to 0 and N≥1 such 
that yi ∈ U(xi) for all i≥N. And from the continuity of ρ(.), 
sequence {ρ(||xi||)yi } converges to 0, and ρ(||xi||)yi∈0 for all 
i≥N, i.e., ρ(||x||)U(x) is lsc at x=0. Thus, ρ(||x||)U(x) is lsc. The 
convexness and closeness of ρ(||x||)U(x) can be easily proved 
from the definition of them. 

Thus, we have proved that ρ(||x||)U(x) is closed valued, 
convex valued and lsc on Ωc2, from theorem A-2, K(x)∩D(x) 
is lsc on Ωc2/{0}. If x=0, we can suppose an open 
neighbourhood of zero state Ж, thus, by the given property, 
there exists an open neighbourhood Ж’ of zero in IRn such 
that for every x’ ∈Ж’, we have K(x’)∩ρ(||x||)U(x) ∩Ж ≠ Φ, 
i.e., K(x’)∩ρ(||x||)U(x) is lsc at x=0.                                        █ 
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