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Abstract:  The paper offers an approach to soft sensors design for chemical and oil refining 
processes. The approach proposed is based on virtual models and associative search 
techniques. Takagi-Sugeno fuzzy model is applied in combination with production 
knowledgebase to compensate for the lack of lab data. 
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1. INTRODUCTION 
 
Soft sensors (Albertos and Goodwin, 2002) are 

becoming increasingly popular in oil refining, 
chemical, petrochemical, and other process industries 
where product qualities cannot be measured directly. 
A soft sensor (SS) is a mathematical relationship 
between a certain product quality measured 
periodically by plant laboratory or by stream analyzer 
and one or more process variables, such as 
temperatures, pressures, flow rates, etc., measured 
directly at the process. 

Plant laboratories and analytical services are 
typically not able to provide the operations with 
timely and consistent information on product 
qualities, because sampling, sample transportation, 
and analysis are usually long-term and laborious, and 
can be hardly executed more than once or twice per 
shift. This often results in either off-spec product 
manufacture or large giveaways and, hence, lost 
benefits in either case. 

Automatic stream analyzers were believed to 
overcome the challenge, but their high ownership 
costs hamper their extensive dissemination. At the 
same time, SS demonstrate comparable accuracy in 
many applications, higher reliability, and by orders of 
magnitude lower costs, thus providing an attractive 

alternative to stream analyzers. At present, SS are 
being developed using ANN techniques, hybrid 
neuron technologies (genetic algorithms), adaptive 
algorithms used for real-time model adjustment, and 
other techniques. 

The paper discusses an approach to SS 
development based on fuzzy virtual models 
(Chadeev, 2004) and adaptive associative search 
algorithms (Bakhtadze et al., 2007). These 
algorithms ensure quick adjustment to specific 
process even in case of significant nonlinearities. 
Moreover, the fuzzification of certain model 
parameters using process operator’s expertise enables 
the compensation for the lack of lab data necessary 
for building a valid process model. 

The developed SS software interacts both with 
process and workshop databases and with LIMS. The 
software is compatible with DCS from various 
vendors such as ABB, Foxboro, Honeywell, 
Yokogava, etc., with SACADA, such as GE Fanuc, 
AdAstra, Wonderware, etc., with realtime databases 
such as OSISoft PI System, and other industrial 
information systems. 
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2. NONLINEAR PREDICTION 
ALGORITHM BASED ON VIRTUAL 

MODELS DEVELOPMENT 
 

An identification algorithm for complex 
nonlinear dynamic objects such as continuous and 
batch processes was presented in (Chadeev, 2004). 
The identification algorithm with continuous real-
time self-tuning is based on virtual models design. 
The algorithm enables product quality adjustment in 
advising mode by statistical treatment of process and 
lab data. 

At every time step, a new virtual model is 
created. To build a model for a specific time step, a 
temporary “ad hoc” database of historic and current 
process data is generated. After calculating the output 
forecast based on object’s current state, the database 
is deleted without saving. 

The linear dynamical prediction model looks as 
follows: 
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where yt is the object’s output forecast at the t-th step, 
xt is the input vector, r is the output memory depth, s 
is the input memory depth, P is the input vector 
length. 

The original dynamic algorithm consists in the 
design of an approximating hypersurface of input 
vector space and the related one-dimensional outputs 
at every time step (see Figure 1). To build a virtual 
model for a specific time step, the points close in a 
manner to the current input vector are selected. The 
output value at the next step is further calculated 
using least squares method (LSM). 

 

 
 

Fig. 1. Approximating hypersurface design 
 
 

3. ASSOCIATIVE SEARCH TECHNIQUE 
FOR VIRTUAL MODELS DESIGN 

 
High-speed approximating hypersurface design 

algorithms enabling the usage of fuzzy models for 
various process applications were offered in 
(Bakhtadze et al., 2007).  

The following quantity 
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was introduced as distance (metric in ) between 
points of P-dimensional input space, where, 
generally, s < t, and x
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tp are the components of the 
input vector at the current time step t. 

Assume that for the current input vector xt: 
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To build an approximating hypersurface for xt, 
we select such vectors xt-j, j = 1,…,s from the input 
data archive that for a given Dt the following 
condition will hold: 
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The preliminary value of Dj is determined on the 
basis of process knowledge, e.g., product quality 
specifications. If the selected domain does not 
contain enough inputs for applying LSM, i.e., the 
corresponding SLAE has no solution, then the chosen 
points selection criterion can be slackened by 
increasing the threshold Dt. 

To increase the speed of the virtual models-
based algorithm, an approach is applied based on 
employing a model of process operator’s associative 
thinking for predicting. 

For modeling the associative search (Bakhtadze 
et al., 2007) procedure imitating intuitive prediction 
of process status by operator, we assume that the sets 
of process variable values, which are the components 
of an input vector, as well as the system outputs at 
previous time steps altogether create a set of 
symptoms, making an image of the plant’s output at 
the next step. 
The associative search process consists in the 
recovery of all symptoms describing the specific 
object based on its images. Denote the image 
initiating the associative search by P and the 
corresponding resulting image of the associative 
search by R. A pair of images (P,R) will be further 
called association A or A(P,R). The set of all 
associations on the set of images forms the memory 
of the knowledgebase of the intelligent system. 

At the system learning phase, an archive of 
images is created. In our case, a set of n input vectors 
selected form the process history according to the 
algorithm described in Section 1 will be considered 
as an image. 

At the prediction stage, the input vector xt will be 
considered as an initial image Pa of the associative 
search, while approximating hypersurface formed by 
the input vectors from the process history built with 
the help of the algorithm from Section 1 will be the 
final image Ra of the associative search. This means 
that to build a virtual model, one should select the 
existing hypersurfaces stored in the archive at the 
learning phase rather than individual vectors close to 
xt. The selected hypersurface is an image of the 
current input vector which is used for output 
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prediction. The algorithm implements the process of 
image Ra recovery based on Pa, i.e., the associative 
search process, and can be described by a predicate 

={ΞΞ i(Pi
a,Ri

a,Ta)}, where Pi
a ⊆ P, Ri

a  R, and T⊆ a 
is the duration of the associative search. 

For the algorithm described in Section 2, 
this predicate is a function asserting the truth or the 
falsity of input vector’s membership of the specific 
domain in the inputs space. Therefore, the associative 
search process is reduced to the selection of a certain 
set of input vectors satisfying the condition (4) from 
the process archive. If the process history contains no 
image satisfying (4), then either the threshold Dt 
should be increased, or for a certain image of our 
input vector, some symptom should be replaced with 
a more relevant one. Formally, this means that the 
“worst” (i.e., located farther away from the current 
input then the rest ones w.r.t. the chosen criterion) 
vector from the process history will be deleted and 
replaced with a more relevant one, and so on. 
 
 

4. FUZZY VIRTUAL MODELS 
 
Assume that one or more variables in (1) are 

fuzzy. In real life this may mean the following. 
Product qualities are measured by the laboratory as 
seldom as once or several times per shift. In model 
(1), the values of process variables at any time steps 
can be used, while the results of lab analyses can be 
specified as a range of values of some product 
quality. Such ranges reflect process knowledge by 
some experts. 

Generally, (1) can be represented as a fuzzy 
Takagi–Sugeno (TS) model (Takagi and Sugeno, 
1985). The fuzzy TS model consists of a set of 
production rules with linear finite difference 
equations in the right-hand member (for simplicity, a 
single input case, i.e., P=1, is considered): 
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adjustable parameter vectors; y(t – r) = (1, y(t – 1),…, 
y(t – r)) is state vector; x(t – s) = (x(t), x(t – 1),…, x(t 
– s)) is an input sequence; , 

are fuzzy sets. 
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By redenoting input variables: (u0(t), u1(t), …, 
um(t)) = (1, y(t – 1), …, y(t – r), x(t),…, x(t – s)), 
finite difference equation’s coefficients: 

, and 
membership functions: 
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one can obtain the analytic form of the fuzzy model 
(4), intended for calculating the output : )(ˆ ty
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where is the vector 
of the adjustable parameters;  
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is a fuzzy function, where ⊗  denotes the  
minimization operation or fuzzy product. 

If for t = 0, the vector с(0) = 0, the correcting 
nm×nm matrix Q(0) (m is the number input vectors, n 
is the number of production rules), and the values of 
u(t), t = 1 ,…, N are specified, the parameter vector 
с(t) is calculated using the known multi-step LSM 
(Buckley, 1993): 
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where I is the unit matrix.  
The above equations show that even in case of 

one-dimensional input and few production rules, a lot 
of observations are needed to apply LSM that makes 
the fuzzy model too unwieldy. Therefore, only a part 
of the whole set of rules ( nr < ) should be chosen 
according to a certain criterion. 

The application of the associative search 
techniques where one or more model parameters are 
fuzzy, is reduced to such determination of the 
predicate Ξ={Ξ i(Pi

a,Ri
a,Ta)}, that the number of 

production rules in the TS model is significantly 
reduced according to some criterion.  

For example, the following matrix: 
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can be defined for P-dimensional input vectors at 
time steps t–j, j = 1,…,s. If the rows of this matrix are 

ranged, say, w.r.t. ∑
=
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β  decrease and a certain 

number of rows, are selected, then such selection 
combined with the condition (4) will determine the 
predicate Ξ  and, respectively, the criterion for 
selecting the images (sets of input vector) from the 
history.  
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5. PREDICTING THE QUALITIES OF 
DELAYED COKING UNIT’S 

DISTILLATES 
 

Quality control of delayed coker distillates for 
their subsequent utilization as hydrotreater’s 
feedstock is a challenge. The reason is that coker’s 
fractionator was originally designed for some 
average feed rate and quality, while in real life both 
change several times per day sufficiently for making 
a serious disturbance for downstream process 
equipment. 

The traditional control strategy for a fractionator 
under disturbances is temperature profile stabilization 
closer to the steady-state values established at design 
phase for average feed rate and quality, and their 
further slight adjustment subject to lab data. The 
product samples are analyzed by refinery lab 3–6 
times per day. This makes the control strategy 
ineffective because the object’s state cannot be 
identified unambiguously from such scanty samples. 

SS-based virtual models were built for this plant 
using both process history and lab data. Those 
models enabled on-line calculation of desirable 
product qualities with sufficient accuracy. This 
resulted in process unit’s throughput increase 
combined with more consistent product quality. 

The SS-based quality analyzers were built for 
coker naphtha IBP, 50%, 90% distillation points, and 
EP and coker gas oil IBP, 50%, and 90% distillation 
points. Based on these, a predictive model structure 
for distillation points of key product streams was 
obtained as well as the forecast accuracy estimate. 

The forecast was calculated using a 
mathematical model whose inputs were process 
variable measured on-line. The forecast accuracy 
depends on right selection of informative variables, 
memory depth, and the amount of available plant 
data. 

Typically, the precise forecast is impossible for 
such complex objects as fractionator because the 
existing measurements do not observe all factors 
affecting the product qualities. For example, there 
were no tools at the process unit to measure 
feedstock makeup changes. In such case, the 
informative variables had to be selected from the vast 
amount of data. This was done using process history. 
At design operation of the model-based predictor, its 
adaptation to plant dynamics and input properties 
changes is executed automatically with the changes 
of the nonlinear model’s structure, while its dynamic 
depth remains the same. 

Figure 2 shows an example of a predictive model 
for naphtha 50% distillation point (ASTM D86). The 
model was built for the delayed coking unit of 
LUKOIL-Perm refinery, Russia. The model 
prediction accuracy is 95%. 

The SS-based control system can calculate 
control actions with adaptive models adjustment. 

After site acceptance tests in advising mode are 
complete, the recommended control action can be 
further used in the closed loop, i.e., in the automatic 
control system with an identifier (Figure 3). 

 
 

 
Fig. 2.  Naphtha 50% distillation point model 
 

 
 

Fig. 3.  Adaptive control system with identifier 
 
 

6. CONCLUSIONS 
 

To develop decision making support for 
process operator, soft sensors are offered underlain 
by a novel approach to identification. The approach 
presumes forecast generation on every time step 
based on virtual models rather than the time 
approximation of the process. To simplify the 
identification algorithm, an associative search 
procedure is offered based on process knowledge 
employment for generating the images of the 
variables under investigation. The application of this 
approach is especially effective whilst compensating 
for insufficient lab data for model development. In 
such case, fuzzy specification of certain process 
variables using process knowledgebase is practiced. 
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