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Abstract: Exponential stability analysis via Lyapunov-Krasovskii method is extended to linear
time-delay systems in a Hilbert space. The operator acting on the delayed state is supposed to
be bounded. The system delay is admitted to be unknown and time-varying with an a priori
given upper bound on the delay. Sufficient delay-dependent conditions for exponential stability
are derived in the form of Linear Operator Inequalities (LOIs), where the decision variables are
operators in the Hilbert space. Being applied to a heat equation and to a wave equation, these
conditions are represented in terms of standard Linear Matrix Inequalities (LMIs). The proposed
method is expected to provide effective tools for robust control of distributed parameter systems
with time-delay.
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1. INTRODUCTION

Time-delay often appears in many control systems and, in
many cases, delay is a source of instability (Hale & Lunel,
1993). In the case of distributed parameter systems, even
arbitrarily small delays in the feedback may destabilize
the system (see e.g. Datko (1988), Logemann et al. (1996),
Rebarber & Townley (1998), Nicaise & Pignotti (2006)).
The stability issue of systems with delay is, therefore, of
theoretical and practical importance.

During the last decade, a considerable amount of attention
has been paid to stability of Ordinary Differential Equa-
tions (ODEs) with uncertain constant or time-varying
delays (see e.g. Kolmanovskii & Myshkis (1999), Niculescu
(2001), Gu et al. (2003), Richard (2003)).

The stability analysis of Partial Differential Equations
(PDEs) with delay is essentially more complicated. There
are only a few works on Lyapunov-based technique for
PDEs with delay. The second Lyapunov method was ex-
tended to abstract nonlinear time-delay systems in the
Banach spaces in Wang (1994a). Stability conditions and
exponential bounds were derived for some scalar heat and
wave equations with constant delays and with Dirichlet
boundary conditions in Wang (1994b), Wang(2006). Sta-
bility and instability conditions for wave delay equations
were found in (Nicaise & Pignotti, 2006). Recently condi-
tions for asymptotic stability of linear parabolic systems
were derived in (Fridman & Orlov, 2007) via Lyapunov
method. However, extension of the method of (Fridman &
Orlov, 2007) to hyperbolic systems seems to be compli-
cated.

In the present paper we study the exponential stability of
general distributed parameter systems. A class of linear
systems is considered, where a bounded operator acts
on the delayed state. The system delay is admitted to
be unknown and time-varying. Sufficient delay-dependent
exponential stability conditions are derived in the form
of LOIs, where the decision variables are operators in the
Hilbert space. Being applied to a heat equation and to a
wave equation, these conditions are represented in terms of
standard finite-dimensional LMIs. We note that the delay-
independent stability conditions were recently derived in
(Orlov & Fridman, 2007), where the results were applied
to the heat equation.

Notation and Preliminaries

The notation used throughout is fairly standard. The su-
perscript ‘T ’ stands for matrix transposition, Rn denotes
the n-dimensional Euclidean space with the norm | · |,
Rn×m is the set of all n ×m real matrices. The notation
P > 0, for P ∈ Rn×n means that P is symmetric and
positive definite, whereas λmin(P ) and λmax(P ) denote
its minimum and maximum eigenvalues.

Let H be a Hilbert space equipped with the inner product
〈·, ·〉 and the corresponding norm |·|. The identity operator
in H is denoted by I. Given a linear operator P : H → H
with a dense domain D(P ) ⊂ H, the notation P ∗ stands
for the adjoint operator. Such an operator P is strictly
positive definite, i.e., P > 0, iff it is self-adjoint in the
sense that P = P ∗ and there exists a constant β > 0 such
that 〈x, Px〉 ≥ β〈x, x〉 and for allx ∈ D(P ), whereas P ≥ 0
means that P is self-adjoint and nonnegative definite, i.e.,
〈x, Px〉 ≥ 0 for all x ∈ D(P ).
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If an infinitesimal operator A generates a strongly con-
tinuous semigroup T (t) on the Hilbert space H (see, e.g.,
Curtain & Zwart (1995) for details), the domain of the op-
erator A forms another Hilbert space D(A) with the graph
inner product (·, ·)D(A) defined as follows: (x, y)D(A) =
〈x, y〉 + 〈Ax, Ay〉, x, y ∈ D(A). Moreover, the induced
norm ‖T (t)‖ of the semigroup T (t) satisfies the inequality
‖T (t)‖ ≤ κeσt everywhere with some constant κ > 0 and
growth bound σ.

The space of the continuous H-valued functions x :
[a, b] → H with the induced norm ‖x‖C([a,b],H) =
maxs∈[a,b] |x(s)| is denoted by C([a, b],H). The space of
the continuously differentiable H-valued functions x :
[a, b] → H with the induced norm ‖x‖C1([a,b],H) =
max(‖x‖C([a,b],H), ‖ẋ‖C([a,b],H)) is denoted by C1([a, b],H).

L2(a, b;H) is the Hilbert space of square integrable H-
valued functions on (a, b) with the corresponding norm;
L2(a, b;R) := L2(a, b).

W l,2([a, b], R) is the Sobolev space of absolutely continu-
ous scalar functions on [a, b] with square integrable deriva-
tives of the order l ≥ 1

Given x(·) ∈ L2([a, b],H), we denote xt = x(t + θ) ∈
L2([−h, 0],H) for t ∈ [a + h, b]; to reduce the notational
burden the dependence xt on θ is subsequently suppressed.
Lemma 1. Wang (1994b) (Wirtinger’s inequality). Let u ∈
W 1,2([a, b], R) be a scalar function with u(a) = u(b) = 0.
Then

b∫
a

u2(ξ)dξ ≤ (b− a)2

π2

b∫
a

(u′(ξ))2dξ. (1)

Lemma 2. (Jensen’s inequality). Let H be a Hilbert space
with the inner product 〈·, ·〉. For any linear bounded
operator R : H → H, R > 0, scalar l > 0 and x ∈
L2([a, b],H) the following holds:

l

l∫
0

〈x(s), Rx(s)〉ds ≥ 〈
l∫

0

x(s)ds, R

l∫
0

x(s)ds〉. (2)

We note that (2) follows from the Cauchy-Schwartz in-
equality

l

l∫
0

〈R 1
2 x(s), R

1
2 x(s)〉ds ≥ 〈

l∫
0

R
1
2 x(s)ds,

l∫
0

R
1
2 x(s)ds〉.

2. PROBLEM FORMULATION

Consider a linear infinite-dimensional system
ẋ(t) = Ax(t) + A1x(t− τ(t)), t ≥ t0 (3)

evolving in a Hilbert space H where x(t) ∈ H is the
instantaneous state of the system, the system delay τ(t)
is a piecewise continuous function of class C1 on each
continuity subinterval and it satisfies

inf
t

τ(t) > 0, sup
t

τ(t) ≤ h (4)

for some constant h > 0, A1 is a linear bounded opera-
tor, A is an infinitesimal operator, generating a strongly

continuous semigroup T (t), and the domain D(A) of the
operator A is dense in H.

Throughout, solutions of such a system are defined in the
Caratheodory sense, i.e., equation (3) is required to hold
almost everywhere only. Let the initial conditions

xt0 = ϕ(θ), θ ∈ [−h, 0], φ ∈ W (5)

be given in the space

W = C([−h, 0],D(A)) ∩ C1([−h, 0],H). (6)

Definition 1. A function x(t) ∈ C([t0−h, t0 + η],D(A)) is
said to be a solution of the initial-value problem (3), (5) on
[t0−h, t0 + η] if x(t) is initialized with (5), it is absolutely
continuous for t ∈ [t0, t0 +η], and it satisfies (3) for almost
all t ∈ [t0, t0 + η].

The initial-value problem (3), (5) turns out to be well-
posed on the semi-infinite time interval [t0,∞) (Orlov &
Fridman, 2007).

Our aim is to derive robust stability criteria for linear time-
delay systems (3), (4), thus defined. The stability concept
under study is based on the initial data norm

‖φ‖W = |Aφ(0)|+ ‖φ‖C1([−h,0],H) (7)

in space (6). Suppose x(t, t0, φ) denotes a solution of (3),
(5) at a time instant t ≥ t0.
Definition 2. System (3) is said to be exponentially stable
with a decay rate δ > 0 if there exists a constant K ≥ 1
such that the following exponential estimate holds:

|x(t, t0, φ)|2 ≤ Ke−2δ(t−t0)‖φ‖2
W ∀t ≥ t0. (8)

”Quasi delay-independent” exponential stability condi-
tions, which become delay-independent for δ → 0, have
been recently derived in (Orlov & Fridman, 2007). In the
present paper we derive delay-dependent conditions.

3. DELAY-DEPENDENT EXPONENTIAL STABILITY

Consider Lyapunov-Krasovskii Functionals (LKFs), which
depend on x and ẋ (Kolmanovskii & Myshkis, 1999). Given
a continuous functional

V : R×W × C([−h, 0],H) → R, (9)

its upper right-hand derivative along solutions xt(t0, φ), t ≥
t0 of (3), (5) is defined as follows:

V̇ (t,φ,φ̇) = lim sups→0+
1
s
[V (t+s, xt+s(t,φ), ẋt+s(t, φ))

−V (t, φ, φ̇)].
Lemma 3. (Orlov & Fridman, 2007) Let there exist posi-
tive numbers δ, β, γ and a continuous functional

V : R×W × C([−h, 0],H) → R

such that the function V̄ (t) = V (t, xt, ẋt) is absolutely
continuous for xt, satisfying (3), and

β|φ(0)|2 ≤ V (t, φ, φ̇) ≤ γ‖φ‖2
W ,

V̇ (t, φ, φ̇) + 2δV (t, φ, φ̇) ≤ 0.
(10)

Then (3) is exponentially stable with the decay rate δ and
(8) holds with K = γ

β .
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3.1 Delay-Dependent LOI in the Hilbert Space

In this section, the delay is assumed to be either slowly-
varying with τ̇ ≤ d < 1, or fast-varying (with no restric-
tions on the delay-derivative). We consider a ”simple” (as
defined in Gu et al. 2003) LKF:

V (t, xt,ẋt) = 〈x(t), Px(t)〉

+

t∫
t−h

e2δ(s−t)〈x(s), Sx(s)〉ds

+h

0∫
−h

t∫
t+θ

e2δ(s−t)〈ẋ(s), Rẋ(s)〉dsdθ

+

t∫
t−τ(t)

e2δ(s−t)〈x(s), Qx(s)〉ds

(11)

where R,Q, S ∈ L(H) and R,Q, S ≥ 0. Moreover,

〈x, Px〉 ≤ γP [〈x, x〉+ 〈Ax, Ax〉],
〈x,Qx〉 ≤ γQ〈x, x〉,
〈x,Rx〉 ≤ γR〈x, x〉, 〈x, Sx〉 ≤ γS〈x, x〉

(12)

for all x ∈ D(A) and for some positive constants
γP , γQ, γS , γR.

Differentiating V , we find

V̇ (t, xt, ẋt) + 2δV (t, xt, ẋt)
≤ 2〈x(t), P ẋ(t)〉+ 2δ〈x(t), Px(t)〉+ h2〈ẋ(t), Rẋ(t)〉

−he−2δh

t∫
t−h

〈ẋ(s), Rẋ(s)〉ds + 〈x(t), (Q + S)x(t)〉

−(1− τ̇(t))〈x(t− τ(t)), Qx(t− τ(t)〉e−2δh

−〈x(t− h), Sx(t− h)〉e−2δh.

(13)

Following He et al. (2007), we employ the representation

−h

t∫
t−h

〈ẋ(s), Rẋ(s)〉ds = −h

t−τ(t)∫
t−h

〈ẋ(s), Rẋ(s)〉ds

−h

t∫
t−τ(t)

〈ẋ(s), Rẋ(s)〉ds

(14)

and apply the Jensen’s inequality (2)
t∫

t−τ(t)

〈ẋ(s), Rẋ(s)〉ds

≥ 1
h
〈

t∫
t−τ(t)

ẋ(s)ds, R

t∫
t−τ(t)

ẋ(s)ds〉,

t−τ(t)∫
t−h

〈ẋ(s), Rẋ(s)〉ds

≥ 1
h
〈

t−τ(t)∫
t−h

ẋ(s)ds, R

t−τ(t)∫
t−h

ẋ(s)ds〉.

(15)

Then, taking into account that τ̇ ≤ d < 1 and following
Gouasbaut & Peaucelle (2006), we obtain

V̇ (t, xt, ẋt) + 2δV (t, xt, ẋt)
≤ 2〈x(t), P ẋ(t)〉+ 2δ〈x(t), Px(t)〉+ h2〈ẋ(t), Rẋ(t)〉
−

[
〈x(t)− x(t− τ(t)), R(x(t)− x(t− τ(t)))〉

+〈x(t− τ(t))− x(t− h), R(x(t− τ(t))− x(t− h))〉
+(1− d)〈x(t− τ(t)), Qx(t− τ(t)〉

]
e−2δh

+〈x(t), (Q + S)x(t)〉 − 〈x(t− h), Sx(t− h)〉e−2δh.

(16)

We will derive stability conditions in two forms. The first
one is derived by substituting the right-hand side of (3)
for ẋ(t). Setting η(t) = col{x(t), x(t− h), x(t− τ(t))}, we
find that

V̇ (t, xt, ẋt) + 2δV (t, xt, ẋt) ≤ 〈η(t),Φhη(t)〉 ≤ 0 (17)

is satisfied if the following LOI

Φh =
[

Φ11 0 PA1

0 0 0

A
∗
1P 0 0

]
+ h2

[
A
∗
RA 0 A

∗
RA1

0 0 0

A
∗
1RA 0 A

∗
1RA1

]
−e−2δh

[
R 0 −R

0 (S + R) −R

−R −R 2R+(1− d)Q

]
≤ 0,

(18)

holds provided that
Φ11 = A∗P + PA + 2δP + Q + S. (19)

The resulting inequality (18) is convex with respect to
h: given h0 > 0, it becomes feasible for all h̄ ∈ [0, h0]
whenever it is feasible for h0. The convexity follows from
the fact that Φh̄ ≤ Φh0 since h2 and −e−2δh multiply
the non negative definite operators. Summarizing, the
following result is obtained:
Theorem 1. Given δ > 0, let there exist a positive definite
operator P , bounded on D(A), and non negative definite
operators R,Q, S ∈ L(H) such that the LOI (18) with no-
tations (19) holds in the Hilbert spaceD(A)×D(A)×D(A).
Then system (3) is exponentially stable for all differen-
tiable delays 0 ≤ τ(t) ≤ h with τ̇ ≤ d < 1. The inequality
(8) is satisfied with this δ and K = max{γP , h(γQ + γS +
h2γR/2)}/β. Moreover, (3) is exponentially stable for all
fast-varying delays 0 ≤ τ ≤ h if the LOI (18) is feasible
with Q = 0.

It may be difficult to verify the feasibility of (18), if the
operator that multiplies h2 (and depends on A) in Φh is
unbounded. To avoid this, we will derive the second form
of LOI by the descriptor method (Fridman, 2001), where
the right-hand sides of the expressions

0 = 2〈x(t), P ∗2 [Ax(t) + A1x(t− τ(t))− ẋ(t)]〉,
0 = 2〈ẋ(t), P ∗3 [Ax(t) + A1x(t− τ(t))− ẋ(t)]〉 (20)

with some P2, P3 ∈ L(H) are added into the right-hand
side of (16).

Setting ηd(t) = col{x(t), ẋ(t), x(t − h), x(t − τ(t))}, we
obtain that

V̇ (t, xt, ẋt) + 2〈x(t), P ẋ(t)〉 ≤ 〈ηd(t),Φdηd(t)〉 ≤ 0, (21)

if the LOI
Φd = Φd11 Φd12 0 P

∗
2 A1 + Re

−2δh

∗ Φd22 0 P
∗
3 A1

∗ ∗ −(S + R)e
−2δh

Re
−2δh

∗ ∗ ∗ −[2R + (1− d)Q]e
−2δh

 ≤ 0 (22)
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holds, where

Φd11 = A∗P2 + P ∗2 A + 2δP + Q + S −Re−2δh,
Φd12 = P − P ∗2 + A∗P3, Φd22 = −P3 − P ∗3 + h2R.

(23)

and ∗ denotes the symmetric terms of the matrix. Thus,
the following result is obtained.
Theorem 2. Given δ > 0, let there exist a positive def-
inite operator P , bounded on D(A), non negative defi-
nite operators R,Q, S ∈ L(H), and indefinite operators
P2, P3 ∈ L(H) such that the LOI (22) with notations given
in (23) holds in the Hilbert space D(A)×D(A)×D(A)×
D(A). Then system (3) is exponentially stable with a decay
rate δ for all differentiable delays (4) with τ̇ ≤ d < 1.
Moreover, (3) is exponentially stable for all fast-varying
delays 0 ≤ τ ≤ h if the LOI (22) is feasible with Q = 0.

3.2 Delay-Dependent Stability of the Heat Equation

Consider the heat equation

ut(ξ, t) = auξξ(ξ, t)− a1u(ξ, t− τ(t)),
t ≥ t0, 0 ≤ ξ ≤ π

(24)

with the constant parameters a > 0 and a1, with the time-
varying delay τ(t), satisfying (4), and with the Dirichlet
boundary condition

u(0, t) = u(π, t) = 0, t ≥ t0. (25)

The boundary-value problem (24), (25) describes the prop-
agation of heat in a homogeneous one-dimensional rod
with a fixed temperature at the ends in the case of the
delayed (possibly, due to actuation) heat exchange with
the surroundings. Here a and a1 stand for the heat conduc-
tion coefficient and for the coefficient of the heat exchange
with the surroundings, respectively, u(ξ, t) is the value
of the temperature field of the plant at time moment t
and location ξ along the rod. In the sequel, the state
dependence on time t and spatial variable ξ is suppressed
whenever possible.

The boundary-value problem (24), (25) can be rewritten
as the differential equation (3) in the Hilbert space H =
L2(0, π) with the infinitesimal operator A = a ∂2

∂ξ2 of double
differentiation with the dense domain

D(
∂2

∂ξ2
) = {u ∈ W 2,2([0, π],R) : u(0) = u(π) = 0}, (26)

and with the bounded operator A1 = −a1 of the multi-
plication by the constant −a1. The infinitesimal operator
A generates an exponentially stable semigroup (see, e.g.,
Curtain & Zwart (1995) for details).

We apply Theorem 2 and choose the LKF of the form

V (t, ut, ut
s) = (p1 − p3a)

π∫
0

u2(ξ, t)dξ

+p3a

π∫
0

u2
ξ(ξ, t)dξ

+

π∫
0

[
r

0∫
−h

t∫
t+θ

e2δ(s−t)u2
s(ξ, s)dsdθ

+s

t∫
t−h

e2δ(s−t)u2(ξ, s)ds

+q

t∫
t−τ(t)

e2δ(s−t)u2(ξ, s)ds
]
dξ

(27)

with some constants p1 > 0, p3 > 0, s > 0, r > 0 and q ≥ 0.
Then the operators in (11) take the form

P = −p3(a
∂2

∂ξ2
+ a) + p1, R = r, Q = q, S = s. (28)

In order to apply Theorem 2 we first note that P > 0
(see Fridman & Orlov, 2007). Now setting P2 = p2 and
P3 = p3, where p2 > 0 and p2 − δp3 ≥ 0, we obtain that

〈ẋ, (P − P ∗2 + A∗P3)x〉 = 〈ẋ, (p1 − p2 − ap3)x〉;
〈x, A∗P2x〉+ 〈x, P ∗2 Ax〉+ 2δ〈x, Px〉

= 2a(p2 − δp3)

π∫
0

uξξudξ + 2δ(p1 − ap3)

π∫
0

u2dξ

= −2a(p2 − δp3)

π∫
0

u2
ξdξ + 2δ(p1 − ap3)

π∫
0

u2dξ

≤ [−2ap2 + 2δp1]

π∫
0

u2dξ,

where the latter inequality follows from the Wirtinger’s
inequality (1). Therefore, (22) holds if

φ11 φ12 0 φ14

∗ −2p3 + h2r 0 −p3a1

∗ ∗ −(s + r)e−2δh re−2δh

∗ ∗ ∗ φ44

<0,

φ11 = −2ap2 + 2δp1 + q + s− re−2δh,
φ12 = p1 − p2 − ap3,
φ14 = −p2a1 + re−2δh, φ44 = −[2r+(1− d)q]e−2δh.

(29)

Summarizing the following result is obtained
Theorem 3. Given δ > 0, let there exist scalars p1 >
0, p2 > 0, p3 > 0, s > 0, r > 0 and q ≥ 0 such that
p2− δp3 ≥ 0 and the LMI (29) holds. Then the boundary-
value problem (24), (25) is exponentially stable with a
decay rate δ for all differentiable delays (4) with τ̇ ≤ d < 1.
Moreover, (24), (25) is exponentially stable with a decay
rate δ for all fast varying delays (4) with no restrictions on
τ̇ if LMIs p2 − δp3 ≥ 0 and (29) are feasible with q = 0. If
(29) holds for δ = 0, then (24), (25) is exponentially stable
with a sufficiently small decay rate.
Remark 1. The same LMI (29) guarantees the exponen-
tially stability of the scalar ODE

ẏ(t) + ay(t) + a1y(t− τ(t)) = 0, (30)
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System (30) corresponds to the first modal dynamics
(with k = 1) in the modal representation of the Dirichlet
boundary-value problem (24), (25)

ẏk(t) + ak2yk(t) + a1yk(t− τ(t)) = 0,
k = 1, 2, . . .

(31)

projected on the eigenfunctions of the operator ∂2

∂ξ2 ( this
operator has eigenvalues −k2, see e.g. Wu (1996)). The
stability of (24), (25) implies the stability of (31). Thus
the reduction of infinite-dimensional LOI of Theorem 2 to
finite-dimensional LMI of Theorem 3 is tight, since the
stability of (30) is necessary for the stability of (24), (25).

The above is consistent with the frequency domain analysis
in the case of constant delays, where the characteristic
equations of (24), (25) are given by

λk + ak2 + a1e
−λkτ = 0, k = 1, 2, . . . (32)

(see, e.g., Wu, 1996). The exponential stability of (24), (25)
is shown in Huang & Vanderwalle (2004) to be determined
by (32) with k = 1, i.e., by the stability of the ODE (30).
Example 1. Consider

ut(ξ, t) = 0.9uξξ(ξ, t)− u(ξ, t− τ(t)),
t ≥ 0, 0 ≤ ξ ≤ π

(33)

with boundary condition (25) and 0 ≤ τ ≤ h, τ̇ ≤ d < 1.
Applying Theorem 3 (with δ = 0), we verify the feasibility
of LMI (29) by using LMI toolbox of Matlab. Letting d to
be 0.5 and unknown, respectively, we find the maximum
values of h for which the system remains exponentially
stable:

d = 0.5, h = 2.04; unknown d, h = 1.34.

As shown before (see Remark 1), the latter results corre-
spond also to the stability of ODE ẏ = −0.9y(t) − y(t −
τ(t)). These results for ODE coincide with the results of
Example 7 in (He et al., 2007).

3.3 Delay-Dependent Stability of the Wave Equation

Consider the wave equation
utt(ξ, t) = auξξ − µ0ut(ξ, t)− a0u(ξ, t)
−a1u(ξ, t− τ(t)), t ≥ 0, 0 ≤ ξ ≤ π

(34)

with the Dirichlet boundary condition (25). The boundary-
value problem (25), (34) describes the oscillations of a
homogeneous string with fixed ends in the case of the
delayed (possibly, due to actuation) stiffness restoration
and dissipation. Here a stands for the elasticity coefficient,
µ0 stand for the dissipation coefficient, and a0, a1 stand
for the restoring stiffness coefficients, the state vector
x = col{u, ut} consists of the deflection u(ξ, t) of the string
and its velocity ut(ξ, t) at time moment t and location ξ
along the string.

Let us introduce the operators

A =

 0 1

a
∂2

∂ξ2
−a0 −µ0

 , A1 =
[

0 0
−a1 0

]
(35)

where the domain D( ∂2

∂ξ2 ) of the double differentiation op-
erator is still determined by (26). Then the boundary-value

problem (25), (34) can be represented as the differential
equation (3) in the Hilbert space H = L2(0, π)× L2(0, π)
with the infinitesimal operator A, possessing the domain
D(A) = D( ∂2

∂ξ2 )×L2(0, π) and generating an exponentially
stable semigroup (see, e.g., Curtain & Zwart (1995) for
details). We apply the conditions of Theorem 1. Since the
delay appears only in u, we choose V as follows:

V = ap3

π∫
0

u2
ξ(ξ, t)dξ +

π∫
0

[u(ξ, t) ut(ξ, t)]P0

×
[

u(ξ, t)
ut(ξ, t)

]
dξ +

π∫
0

[
hr

0∫
−h

t∫
t+θ

u2
t (ξ, s)e

2δ(s−t)dsdθ

+s

t∫
t−h

u2(ξ, s)e2δ(s−t)ds + q

t∫
t−τ

u2(ξ, s)e2δ(s−t)ds
]
dξ,

P0 =
[

p1 p2

p2 p3

]
, Pw =

[
ap3 + p1 p2

p2 p3

]
> 0.

where r > 0, s > 0, q ≥ 0. Then the operators P,Q,R in
(18) are given by

P =

−ap3
∂2

∂ξ2
+ p1 p2

p2 p3

 > 0, Q =
[

q 0
0 0

]
≥ 0,

R = diag{r, 0} ≥ 0, S = diag{s, 0} ≥ 0.

(36)

We have h2A∗RA = diag{0, h2r}, h2A∗RA1 = 0,
h2A∗1RA1 = 0. Now, integrating by parts and taking into
account the inequality p3 > 0 (extracted from Pw > 0)
and Wirtinger’s inequality we obtain that

〈x, Px〉 =

π∫
0

[
−ap3uξξu + uT P0u

]
dξ = a

π∫
0

p3(uξ)2dξ

+〈x, P0x〉 ≥ 〈x, Pwx〉 ≥ λmin(Pw)|x|2 > 0

(37)

for all x ∈ D(A) × L2(0, π). It is thus shown that the
operator P is strictly positive definite whereas the matrix
operator Q is so by construction.

Finally, integrating by parts and applying Wirtinger’s
inequality (1) under condition p2 − p3δ ≥ 0 yield

−〈x, P (A− δ)x〉 − 〈x, (A∗ − δ)Px〉 =

π∫
0

[u ut]

×
{ p1 − ap3

∂2

∂ξ2
p2

p2 p3

 δ 1

a
∂2

∂ξ2
− a0 −µ0 + δ


+

 δ a
∂2

∂ξ2
− a0

1 −µ0 + δ

 p1 − ap3
∂2

∂ξ2
p2

p2 p3

}[
u
ut

]
dξ

= −2a(p2 − p3δ)

π∫
0

(uξ)2dξ −
π∫

0

[u ut]×

×
[

−2p2a0 + 2p1δ p1−(µ0− 2δ)p2−p3a0

p1 − (µ0 − 2δ)p2 − p3a0 2p2 − 2(µ0 − δ)p3

]
×

[
u
ut

]
dξ ≤

π∫
0

[u ut](PwCδ + CT
δ Pw)

[
u
ut

]
dξ,

(38)

where
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Cδ =
[

δ 1
−a− a0 −µ0 + δ

]
. (39)

From (38) it follows that (18) is feasible if the following
LMIs are satisfied:

p2 ≥ p3δ, φw 0 Pw

[
0

−a1

]
+

[
re
−2δh

0

]
∗ −(s + r)e

−2δh
re
−2δh

∗ ∗ −(2r + (1− d)q)e
−2δh

 < 0,
(40)

where φw = CT
δ Pw + PwCδ + diag{q + s − re−2δh, h2r}.

Summarizing the following result is obtained
Theorem 4. Given δ > 0, let there exist a 2 × 2−matrix
Pw > 0 and scalars q ≥ 0, r > 0, s > 0 such that
satisfy LMI (40). Then the wave time-delay equation
(34) and with the Dirichlet boundary condition (25) is
exponentially stable with a decay rate δ. Moreover, if LMIs
(40) are feasible with q = 0, then the wave equation is
exponentially stable with a decay rate δ for all fast varying
delays 0 ≤ τ ≤ h. If the second LMI (40) holds for
δ = 0, then the wave equation is exponentially stable with
a sufficiently small decay rate.
Remark 2. The same LMIs (40) appear to guarantee the
ODE with delay ˙̄z(t) = C0z̄(t)+A1z̄(t−τ(t)), z̄(t) ∈ R2

or, equivalently, the scalar ODE
ÿ(t) + µ0ẏ(t) + (a + a0)y(t) + a1y(t− τ(t)) = 0 (41)

to be exponentially stable. As in the case of the heat
equation, ODE (41) governs the first modal dynamics of
the modal representation of the Dirichlet boundary-value
problem (25), (34)

ÿk(t) + µ0ẏk(t) + (ak2 + a0)yk(t)
+a1yk(t− τ(t)) = 0, k = 1, 2, . . .

(42)

on the eigenfunctions of the operator ∂2

∂ξ2 . Hence, the
results of Theorem 4 are tight in the sense that the stability
of ODE (41) is necessary for the stability of (25), (34).
Example 2. Consider the controlled wave equation

ztt(ξ, t) = 0.1zξξ(ξ, t)− 2zt(ξ, t) + u, (43)

with boundary condition (25), t ≥ t0, 0 ≤ ξ ≤ π, 0 ≤
τ ≤ h, τ̇ ≤ d < 1. Applying Theorem 4 to the open-loop
system we find that (43) with u = 0 is exponentially stable
with the decay rate δ = 0.05. Considering next a delayed
feedback u = −z(ξ, t − τ(t)) and verifying conditions
of Theorem 4, we find that the closed loop system is
exponentially stable with a greater decay rate δ = 0.8 for
all 0 ≤ τ(t) ≤ 0.31.

4. CONCLUSIONS

A general framework is given for exponential stability anal-
ysis of linear time-delay systems in a Hilbert space with
a bounded operator acting on the delayed state. Delay-
dependent stability conditions are derived in terms of
linear operator inequalities in the Hilbert space. In the case
of a heat scalar equation and in the case of a wave scalar
equation with the Dirichlet boundary conditions, these
LOIs are reduced to finite-dimensional LMIs by applying
new Lyapunov-Krasovskii functionals. The reduced-order
LMIs coincide with the stability conditions for appropriate

ODEs with delay, whereas the stability of the latter ODEs
are necessary for the stability of the original boundary
value problems.

LOIs are expected to provide effective tools for robust
control of distributed parameter systems.
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