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Abstract: Recently, a novel multivariate statistical process monitoring method, known as dissimilarity 
algorithm(DISSIM), has been developed based on the idea that a change of operating condition can be 
detected by monitoring a distribution of process data set, where a dissimilarity index is introduced to 
quantitatively evaluate the difference between distributions of process data. However, as a fixed-model 
monitoring technique, it inevitably gives false alarms when applied to real processes involving slow 
changes. In this paper, an adaptive DISSIM(ADISSIM) algorithm is proposed for on-line updating to 
consecutively adapt to process slow-varying behaviors. The key to the proposed method is that whenever 
the old model is judged to be inefficient to capture the current normal operation status, a new monitoring 
model is developed by integrating the old model and the new updating data. The effectiveness of 
ADISSIM algorithm is successfully illustrated when applied to simulated data collected from a simple 

 numerical process. The results clearly show that the proposed adaptive method is effective to 
accommodate the normal gradual changes and distinguish them from real process faults, thus providing a 
new feasible statistical monitoring method for the prevalent slow-varying processes. 
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1. INTRODUCTION 

Proper process monitoring and diagnosis is important not 
only to quality improvement but also to process safety. Most 
statistical process monitoring methods are based on principal 
component analysis (PCA) and partial least squares (PLS) 
(Kourti and MacGregor, 1995; Kosanovich, Dahl and 
Piovoso, 1996; Louwerse and Smilde, 2000; Nomikos and 
MacGregor, 1994, 1995a, 1995b). In recent years, a novel 
statistical process monitoring method known as DISSIM has 
been developed and successfully applied in process 
monitoring(Kano and Hasebe et al. 1999, 2000, 2001, 2002; 
Zhao and Wang et al. 2007), which detects the change of 
operating condition by quantitatively evaluating the changes 
of correlations of process variables using dissimilarity index. 
A series of successful theory researches and applications 
have demonstrated that the method can fast and effectively 
detect the occurrence of process disturbances. However, the 
monitoring model is constructed based on data from a certain 
number of observed data. Its major limitation is that the 
invariant model can’t reveal the slow time-varying changes 
that real industrial processes often experience, such as 
equipment aging, catalysis deactivation, sensor and process 
drifting, and degradation of efficiency(Qin, 1998; Li, Yue, 
Valle-Cervantes and Qin, 2000). Despite the gradual changes 
of operating conditions, such kind of slow varying 
behaviours is deemed to be normal features underlying the 
process operation because they reflect practical process status 
and won’t drastically affect the process correlations. If the 
gradual process drift is overlooked over evolvement without 
being differentiated from real process faults, it is not difficult 
to imagine that the invariant statistical model can often result 
in false alarms. Therefore it is desirable to develop an 

adaptive algorithm to update the model based on new normal 
process data and track the normal slow-varying features 
effectively. However, it has limitation in updating a DISSIM 
model online using newly available data. While one could 
rebuild a new model based on merging the new data and old 
data, it is computationally inefficient because more and more 
new process measurements are available consecutively. In the 
present work, we modify and extend the general DISSIM 
algorithm so that an adaptive DISSIM(ADISSIM) algorithm 
can be successfully applied in slow-varying processes. The 
main advantage of the proposed approach lies in the use of 
weighted eigenvector so that one can update the monitoring 
model based on new data in a more parsimonious and smart 
way without increasing greatly the size of modelling data set. 
The application to a simple  numerical process 
demonstrates the effectiveness of the method. 
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2. ADISSIM-BASED MONITORING AND 
UPDATING STRATEGY FOR SLOW-VARYING 

PROCESSES 

2.1  Dissimilarity index 

Kano and Hasebe et al.(1999, 2000, 2001, 2002) 
proposed a statistical process monitoring method based on 
the dissimilarity analysis of process data. Their method, 
termed DISSIM, is based on the idea that a change of 
operating condition can be detected by monitoring the 
distribution of process data because the distribution reflects 
the corresponding operating condition. Thus a dissimilarity 
index is defined to quantitatively evaluate the difference 
between distributions of process data. 
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Consider the following two data sets,  and .  

consists of  samples of  variables. Here, without special 
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On the basis of the fact that the covariance matrix  can 
be diagonalized by an orthogonal matrix  
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Where, Λ  is a diagonal matrix whose diagonal elements 

are eigenvalues of . Then the original data matrices  are 
transformed into . 
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Where, P  is a transformation matrix defined as . 2/1
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satisfy the following equations: 
ISS =+ 21    (6) 

By application of eigenvalue decomposition to the 
covariance matrices 
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Here,  and  are the eigenvalues and the corresponding 
eigenvectors, respectively. The superscript  denotes the 

 eigenvalue or eigenvector. From Eqs. (6) and (7), the 
following relationships 
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can be derived. The above two relationships mean the 
transformed data matrices,  and , have the same set of 
principal components and the principal components are 
reversely ordered. In other words, the most important 
correlation for the transformed data set  is equivalent to the 
least important correlation for the other transformed data set 

, and vice versa. 
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Finally, the following index D  was defined for 

evaluating the dissimilarity of data sets. 
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where, jλ  denotes the eigenvalues of the covariance matrix 
of the transformed data matrix and J is the number of process 

variables. When data sets are quite similar to each other, the 
eigenvalues jλ  must be near 0.5, and then D should be near 
zero. On the other hand, when data sets are quite different 
form each other, the largest and the smallest eigenvalues 
should be near one and zero respectively and D should be 
near one. Therefore, the index D changes between zero and 
one. 

2.2  ADISSIM monitoring and updating algorithm 

For continuous process modelling using DISSIM 
method, one reference data set under normal operating 
conditions is defined. Then the dissimilarity indices between 
time series data sets spanning other time regions and the 
reference one are compared to determine the control limit 
simply by sorting the vector data of a variable from the 
lowest to largest values and then taking 99.9% and 0.1% 
percentile of the data to be the upper and lower control limits 
respectively. So it assumes that future process features 
exactly behave in the same way as those used for model 
identification. However, industrial processes commonly 
exhibit slow time-varying behaviours, such as catalyst 
deactivation, equipment aging, sensor and process drifting, 
and preventive maintenance and cleaning. Therefore they 
induces slow and normal process changes in most real 
chemical process, including their mean, variance, and 
correlation structure among their measurement variables. 
Different from real process abnormalities, they are deemed as 
normal process dynamics. The monitoring performance will 
lose sensitiveness thus inducing false fault indications when 
an invariant model is used to monitor such slow-varying 
processes, which significantly compromise the reliability of 
the monitoring system. In order to accommodate the normal 
slow varying in operating conditions, an adaptive algorithm 
should be developed by updating the model structures 
recursively with accumulation of new normal data. Several 
methods(Qin, 1998; Li, Yue, Valle-Cervantes and Qin, 2000; 
Lee, Yoo, and Lee, 2003; Zhao, Chai and Wang, 2005) based 
on recursive PCA/PLS have been proposed to resolve the 
kind of monitoring problem, which have greatly promoted 
and extended the development of multivariate statistical 
process control(MSPC). Similarly, considering the inherent 
characteristics of slow-varying processes, only one invariant 
reference data set as monitoring model to calculate the 
dissimilarity values is not enough, in which dissimilarity 
values between different time-serial data sets and the 
reference model may change along time without tracking the 
similar trajectory as before. Here, an adaptive DISSIM 
algorithm(ADISSIM) is explored based on simple updating 
strategy for the slow-varying processes. 

Generally, based on common adaptive idea, new process 
information can be infused into the monitoring models by 
merging the new process measurement consecutively since it 
is a time-wise modelling approach. However, the typical 
updating algorithm involves time-consuming and repetitive 
calculation since more and more new process data are added 
into the modelling database, which will augment the size of 
modelling data set infinitely with time evolving. Thus it is 
desirable to improve the computation efficiency if the 
previous calculation result can be made better use of. In the 
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present work, the ADISSIM algorithm can adapt the model 
based on new data and the old model, thus avoiding re-
modelling the old data and the over-increase of modelling 
data. 

From Eq. (3), by application of eigenvalues 
decomposition, we can readily deduce the following 
relationship: 
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where 5.0~
Λ= PJP , here it is termed as weighted 

eigenvector.  is a diagonal matrix whose diagonal elements 

are eigenvalues of 

Λ

XX
N

T1 . 
Moreover, combined with the DISSIM algorithm in 

section 2.1, it is clear that performing dissimilarity analysis 
on iP~  and jP~  results in the same dissimilarity index value as 
performing on data pair  and . Based on such idea, the 
weighted eigenvector can naturally take the place of process 
measurements as monitoring model. Especially, instead of 
storing old reference data set in memory, we can simply 
replace them with the weighted eigenvector. Thus instead of 
integrating old data set and new data set to updating the 
reference model, the ADISSIM can update the model using 
the old model 

iX jX

refP~  and new process measurements, . 
Whenever model updating is required, the new modelling 

data set  are formulated and new monitoring 

model 
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refP~  are thus developed. Moreover, in the present 

work, we use nonparametric kernel density estimation 
method(Levinson, 1997; Chen, Wynne, Hiden, Sandoz, 2000; 
Martin, Morris, 1996) to develop the control limits for D -
statistic. Based on normal operating data, the univariate 
kernel density estimator is used to estimate the density 
function of these normal dissimilarity index values. The point, 
occupying certain quantile area of density function, can be 
obtained and employed as the control limit of normal 
operation conditions. One major advantage of kernel density 
estimation is that it needs no specific statistical distribution 
prior and the determined control limits follows the data more 
closely. With enough train samples, no matter which kernel 
function is adopted, a reliable density estimation result can be 
finally obtained in theory. However, using kernel estimation 
method might be sometimes dangerous for designing 
thresholds. The kernel itself increases variance from the 
histogram of data, and in particular in the tails this is critical. 

It should be noted that n the adaptive updating algorithm, 
a potential adaptation problem is that the model may adapt 
not only to normal process evolution, but also to process 
disturbances and failures. To prevent this, it is necessary and 
vital to exactly distinguish the normal gradual variations from 
the real abnormal variability so that the adaptation of 
monitoring model to slow-varying features won’t impact 
disadvantageously on the accuracy and sensitivity of process 
fault detection. 

According to what is analyzed above, an adaptive 
DISSIM algorithm with respect to modelling, monitoring and 
updating may be implemented in the following manner: 
(1) Acquire time series data as the training database when a 
process is operated under a normal condition. The current 
time is denoted as . Determine the size of time window, 

. Generate data set with l  samples from the data by moving 
the time window. Select a reference data set  by trial and 
error and normalize it to zero mean and unit variance. 
Moreover, the ‘rest training data windows’ are also scaled 
using the mean and variance obtained from reference data. 

refk
l

refX

(2) Then the weighted eigenvector refP~  is obtained as the 
initial monitoring model by eigenvalues decomposition on 
the selected reference data set in step (1). Dissimilarity 
analysis can thus be performed between those ‘rest training 
data windows’ and refP~ . Consequently, the control limits are 
derived from those obtained D -statistic values, , 
using kernel-based density estimation method. 

refDISS

(3) For online monitoring, the data window , representing 
the current operating condition at time interval , is obtained 
consecutively by moving the time-window step by step, and 
is scaled by the same mean and variance derived from 
reference data set in step (1). Then the dissimilarity values 
between them and the monitoring model 

kX
k

refP~  are calculated, 
and process monitoring is conducted by continuously 
comparing the obtained D -statistic with the predetermined 
control limits. Whenever a new normal process measurement 
is available, it will be archived into the candidate updating 
database. 
(4) If the current  is outside the control limits, there are 
two potential causes. One may result from the real operation 
abnormality, and the other may be due to the failure of old 
monitoring model in pursuing the current new operating 
status. To identify the two cases, the reliability of the old 
models can be checked online. That is, those available 
normal time serial measurements newly archived in updating 
database from  to the current time enter into the reference 

dataset forming the new modelling data set as . 

New monitoring model, 
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refP~  is readily recalculated in the 

same way as refP~ . By doing so, the new monitoring model 
will accommodate the evolving slow changes of process 
features and more process operation information. Thus using 
the newly obtained monitoring model, new D -statistic 
values, termed as , are recalculated for those time 
windows acted on by . Then the reference  used 
for estimating the control limits will be augmented to include 

, , where  is gradually 

filled by the new statistic values along time evolving. 
Correspondingly, the control limits will be adjusted in the 
same way as step (2). 
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(5) The current sampling time window is re-monitored using 
the newly designed models. If the dissimilarity statistic 
returns below the control limits, it indicates that the previous 
alarm indication is caused by the failure of old model and 
thus the new model should replace the old ones as the current 
monitoring tool to adapt to the new process operating feature. 
Otherwise, if fault alarm is still exposed, it reveals that a real 
process abnormality has occurred, resulting from the 
unknown disturbances rather than the normal slow-varying 
dynamics. Correspondingly, the process should be analyzed 
in detail to give the possible cause for the fault. 

3. APPLICATION TO  PROCESS  22×

In this section, the proposed monitoring method, 
ADISSIM, is applied to on-line monitoring problems of a 
simple  process, which initially is a typical continuous 
process. The monitoring results demonstrate the effectiveness 
of the proposed method to adapt easily to slow-varying 
processes. 

22×

For simplicity, the  multivariate process(Ku et al., 
1995) is described as follows: 

22×
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Where  is the correlated input: u
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The input  in  are uncorrelated Gaussian signals 
with zero mean and unit variance. The output  in  is 
corrupted by uncorrelated Gaussian errors with zero mean 
and variance 0.1. The input u and the output y are measured, 
and their measurements are used for monitoring. 
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Fig. 1 Density estimate for dissimilarity values 

Under the normal operating conditions, a time-series 
data set  can be obtained from the continuous 
process with the development of time. The window length is 
set to be 50 by trial and error and then 451 moving windows 

are generated. Using the modelling procedure mentioned in 
section 2.2, one data window is selected properly to build a 
reference model. Then focusing on the process variation 
along time direction, the other moving windows are used as 
training data sets to determine the control limits of D -
statistic. Without prior statistical distribution knowledge, the 
density distribution rule can be readily obtained using 
nonparametric kernel estimation method as visually shown in 
Fig. 1. However, considering that the dissimilarity index 
values are positive, the estimated density corresponding to 
negative values, here termed “losing density”, is improper. 
Thus the subsequently calculated control limits might be not 
accurate enough under its influence. Naturally, some 
modification should be made to better adapt to the specific 
circumstance. Here, the control limits are properly raised to 
make for those “lost density”. This is carried out by 
modifying the imposed quantile used to compute the control 
limits until a certain OTI(overall type I error) value, for 
instance 0.05, is met(Camacho and Picó, 2006). 

)4500( ×X

Once the model is developed, it can be used for online 
application. To quantitatively evaluate the performance of the 
proposed method in comparison with DISSIM method, two 
performance indices can be used in the simulation: the 
overall type I error(OTI) and the relative action signal 
time(AST). The OTI is the proportion of faults in the process 
representing normal operation conditions. The AST is 
defined as the time elapsed between the introduction of an 
error and the out-of-control signal in the control chart. In the 
present work, we mimic the slow-varying behaviours by 
introducing the gradual increase on the mean of  from 0 to 
0.5 within 500 time intervals. Despite the gradual increase, 
the process is regarded as normal because this change will 
not drastically affect the other process variables. Fig. 2 shows 
the monitoring result with the fixed model without updating, 
where the -statistic demonstrate an obvious trend to violate 
the confidence limits after about 200th time interval. Hence 
the reliability of initial model has been compromised. 
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Fig. 2 Monitoring result for normal case before updating 
(solid line, 99% control limit; dashed line, 95% control 

limit; bold line, D-statistic) 
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Fig. 3 Monitoring result for normal case after updating 
(solid line, 99% control limit; dashed line, 95% control 

limit; bold line, D-statistic) 
However, for practical application in industrial 

processes, there is no prior knowledge about the inherent 
alarm cause. Thus we need to check whether the alarm is 
induced by real process fault or the failure of monitoring 
model. Using the proposed method, the reference model is 
put into updating and then the monitoring result using the 
updated model is shown in Fig. 3. It can be seen that after 
updating, the alarms disappear, revealing that the false alarms 
are caused by the failure of old model in tracking slow-
varying behaviours. Thus updating procedure is necessary to 
accommodate the norm gradual changes and adapt to the new 
operation conditions. 

Moreover, to verify the fault detection performance of 
the proposed updating algorithm, two kinds of process 
disturbances are taken into account. One is step shift from 0 
to 0.5 in case of the mean of w and the other is the step 
change of a coefficient relating u1 with x2 from 3.0 to 4.5. 
Different from normal slow variations, they are believed to 
be real process faults because the abrupt changes have 
seriously affected the process correlations. Thus with time 
evolving, those fault data are entering the time windows and 
checked by means of dissimilarity index. As shown in Figs. 4 
and 5, both of the two significant deviations are correctly 
detected soon after the occurrence of fault using the updated 
model visually which shows that updating algorithm doesn’t 
compromise the performance of the process fault detection. 
Therefore, normal slow-varying behaviours are correctly 
distinguished from real significant process faults. In case of 
the normal slowing varying and the above two faults, the 
serials of monitoring results have demonstrated the swiftness 
and effectiveness of the proposed method for process 
monitoring and fault detection. Thus it is viable to monitor 
such slow-varying processes using consecutively updating 
algorithm, in which the adjustment considering the 
successive slow variation in evolution is reasonable and will 
benefit the efficiency of process monitoring. 

However, it should be noted that the algorithm has the 
potential problem that the newly updated model sometimes 
might adapt itself to faulty data when the fault is small and 
slow varying. In the present work, we only put emphasis on 
the detection of significant faults. To correctly distinguish the 
normal slow varying behaviours from slow faults, some 

process expertise may be necessary. On the other hand, the 
dissimilarity index only concerns the covariance matrix, i.e., 
the underlying process correlations, without considering the 
varying in mean of data. Moreover, due to the smoothing 
function of moving window, the monitoring results suffer a 
time delay. Therefore, the selection of an appropriate time-
window size is crucial for the effective function of ADISSIM 
method. In the modelling procedure, we have chosen the 
time-window length by trial and error. 

0 50 100 150 200
0

0.05

0.1

0.15

0.2

0.25

Time

D

 
Fig. 4 Monitoring result for fault 1 with updating model 
(solid line, 99% control limit; dashed line, 95% control 

limit; bold line, D-statistic) 
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Fig. 5 Monitoring result for fault 2 with updating model 

(solid line, 99% control limit; dashed line, 95% control limit; 
bold line, D-statistic) 

4. CONCLUSIONS 

A new monitoring and adaptively updating method has 
been proposed as a response to these problems in the case of 
slow-varying processes. This method, termed ADISSIM, 
supplies a simple and promising updating way to adapt to the 
common slow-varying dynamics in real industrial processes, 
which reduces false alarms and provides greater reliability. 
Meanwhile, a more accurate control limit is developed 
properly using kernel-based density estimation method. The 
results of application to a simple  process indicate that 
the method is feasible and competent used as a monitoring 
tools when applied to the monitoring of processes whose 
normal operating conditions undergo normal gradual 
changes. Therefore, a process monitoring system based on 
dissimilarity analysis of moving windows will be promising. 
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