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Abstract: A novel technique called noncausal linear periodically time-varying (LPTV) scaling
was introduced recently, and it was shown that even static noncausal LPTV scaling has an ability
of inducing frequency-dependent scaling if it is interpreted in the context of the conventional
scaling approach. Motivated by this preceding study of ours, this paper studies to exploit this
attractive property and demonstrates with numerical examples that it leads to quite effective
robust stability analysis. The idea of noncausal LPTV scaling is then applied to the robust
stability analysis of continuous-time systems via the Tustin transformation, and the effectiveness
of such an approach is again demonstrated with a numerical example.

1. INTRODUCTION
In the study of sampled-data systems, the continuous-
time lifting technique [Yamamoto (1994); Bamieh and
Pearson (1992); Tadmor (1992); Toivonen (1992)] plays
a significant role, and enables us to introduce the transfer
operator and frequency response operator of sampled-data
systems defined in an operator theoretic framework.

Based on such treatment, a general necessary and sufficient
condition of a separator-type was given for robust stabil-
ity of sampled-data systems [Hagiwara and Tsuruguchi
(2004)]. This result, together with a generalized result
[Hagiwara (2006)], suggested us to introduce a novel
technique called causal/noncausal LPTV scaling for robust
stability analysis of sampled-data systems [Hagiwara and
Mori (2006); Hagiwara (2006)], including continuous-time
systems as a special case. Furthermore, the effectiveness of
such a technique, in particular noncausal LPTV scaling,
has been demonstrated in Hagiwara (2006) and Hagiwara
and Umeda (2007).

An interesting result about the use of noncausal LPTV
scaling on continuous-time systems is that even static non-
causal scaling has an ability of inducing some frequency-
dependent scaling when it is interpreted in the context
of conventional scaling approach. This paper aims at ex-
ploiting a parallel property and thus demonstrating the
usefulness of noncausal LPTV scaling in the context of
discrete-time systems. Regarding noncausal LPTV scal-
ing of discrete-time systems, we have already established
fundamental theoretical results and given a few support-
ing numerical examples in Hagiwara and Ohara (2007).
With regard to this previous study, the significance of
the present study lies in providing extended numerical
analysis techniques in two respects. The first extension is
to exploit noncausal LPTV scaling of the (D, G)-scaling
type, while the numerical study in Hagiwara and Ohara
(2007) was restricted to that of the D-scaling type. This
leads to quite effective improvement of the robust stabil-
ity analysis especially in the context of noncausal LPTV
scaling. The second extension is to exploit an idea of

what might be called “nested lifting.” More precisely, we
demonstrate the advantage of dealing with an N -periodic
system as a special case of µN -periodic systems, where
µ is a positive integer greater than 1. This corresponds to
doubly applying the discrete-time lifting to the LTI system
representation that is obtained by applying the lifting
technique to the N -periodic system, where in the second
application of lifting we regard the above intermediate
LTI system as a special case of µ-periodic systems. The
advantages of these extended approaches are demonstrated
with numerical examples. The application of noncausal
LPTV scaling of discrete-time systems to continuous-time
systems via the aid of the Tustin transformation is also
studied.

The contents of this paper are as follows. Section 2 states
the problem studied in this paper and reviews some
fundamental results. Section 3 reviews the definitions and
properties of causal/noncausal LPTV scaling of discrete-
time systems. Section 4 contains the arguments stated
above, which constitutes the main contribution of this
paper. Section 5 summarizes the arguments of the paper
and gives some remarks on further research directions.

2. ROBUST STABILITY PROBLEM AND
PRELIMINARIES

In this section, we state the problem we study in this pa-
per, and review some fundamental results for the problem.

2.1 Robust Stability Problem

In this paper, we consider the discrete-time closed-loop
system shown in Fig. 1 consisting of the nominal system G
and the uncertainty ∆. We assume that G has q inputs and
p outputs and is an internally stable, finite-dimensional
(FD) linear periodically time-varying (LPTV) system with
period N (i.e., an N -periodic system), where N is a
positive integer. Also, we assume that ∆ belongs to some
given set ∆ satisfying the following assumption:

A1. Every ∆ ∈ ∆ is FD, N -periodic, and internally
stable, and ∆ is a connected set such that 0 ∈∆.
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Fig. 1. Discrete-time system Σ∆ with uncertainty ∆.

We also prepare the following alternative assumption,
which is a special case of the above assumption.

A1’. Every ∆ ∈∆ is FD, LTI, and internally stable, and
∆ is a connected set such that 0 ∈∆.

We introduce the state equations for G and ∆, respectively,
given by

xk+1 = Akxk + Bkuk, yk = Ckxk + Dkuk (1)
ξk+1 = A∆kξk + B∆kyk, −uk = C∆kξk + D∆kyk (2)

where Ak, Bk, Ck, Dk and A∆k, B∆k, C∆k, D∆k are N -
periodic matrices, i.e., Ak+N = Ak for every integer k, and
similarly for other matrices. In the following, we denote by
Σ∆ the closed-loop system shown in Fig. 1. Now, what we
discuss in this paper is concerned with the robust stability
analysis problem of the family Σ(∆) := {Σ∆ |∆ ∈∆}.
2.2 Discrete-Time Lifting of N -Periodic Systems

It is well known [Bittanti and Colaneri (2000)] that the
N -periodic system G can be associated with its LTI repre-
sentation via the discrete-time lifting technique. That is,
by defining x̂ν := xνN , ûν := [uT

νN , uT
νN+1, · · · , uT

νN+N−1]
T

and ŷν := [yT
νN , yT

νN+1, · · · , yT
νN+N−1]

T , the N -periodicity
of G leads to an alternative representation of (1) given by

Ĝ : x̂ν+1 = Âx̂ν + B̂ûν , ŷν = Ĉx̂ν + D̂ûν (3)

where Â, B̂, Ĉ and D̂ are appropriately defined constant
matrices independent of ν. It is a fact that G is internally
stable if and only if Â is Schur stable. In a similar fashion,
∆ can be associated with the LTI representation

∆̂ : ξ̂ν+1 = Â∆ξ̂ν + B̂∆ŷν , −ûν = Ĉ∆ξ̂ν + D̂∆ŷν (4)

with suitably defined Â∆, B̂∆, Ĉ∆ and D̂∆. The feedback
connection of the LTI systems Ĝ and ∆̂ is well-posed in
the usual sense and internally stable if and only if Σ∆ is
well-posed and internally stable.

2.3 Stability Analysis via Separator

Let us introduce the discrete-time transfer matrices of Ĝ
and ∆̂, respectively, given by

Ĝ(z) = Ĉ(zI − Â)−1B̂ + D̂ (5)

∆̂(z) = Ĉ∆(zI − Â∆)−1B̂∆ + D̂∆ (6)
which we call the N -lifted transfer matrices of the N -
periodic systems G and ∆, respectively. Then, we have
the following result regarding the robust stability analysis
of the family Σ(∆) [Hagiwara and Ohara (2007); Iwasaki
and Hara (1998)], which plays a crucial role throughout
the paper (see also Megretski and Rantzer (1997) for a
closely related result).

Proposition 1. Suppose that ∆ satisfies the Assump-
tion A1 (or Assumption A1’) and Σ∆ is well-posed for
every ∆ ∈ ∆. Then, Σ(∆) is robustly stable if and only
if there exists Θ̂(z) = Θ̂(z)∗, z ∈ ∂D such that

[
I Ĝ(z)∗

]
Θ̂(z)

[
I

Ĝ(z)

]
≤ 0 (∀z ∈ ∂D) (7)

[
−∆̂(z)∗ I

]
Θ̂(z)

[
−∆̂(z)

I

]
> 0 (∀∆ ∈∆, ∀z ∈ ∂D) (8)

where ∂D denotes the unit circle {z : |z| = 1}.
If both G and ∆ are LTI, then, without applying the lifting
technique, we can consider their usual transfer functions
G(ζ) and ∆(ζ) (the symbol for z-transformation is changed
from z to ζ in the lifting-free treatment), and we have the
following result.

Proposition 2. Suppose that G is LTI, ∆ satisfies the
Assumption A1’ and Σ∆ is well-posed for every ∆ ∈ ∆.
Then, Σ(∆) is robustly stable if and only if there exists
Θ(ζ) = Θ(ζ)∗, ζ ∈ ∂D such that

[ I G(ζ)∗ ]Θ(ζ)
[

I
G(ζ)

]
≤ 0 (∀ζ ∈ ∂D) (9)

[−∆(ζ)∗ I]Θ(ζ)
[
−∆(ζ)

I

]
> 0 (∀∆ ∈∆, ∀ζ ∈ ∂D) (10)

The matrices Θ̂(z) and Θ(ζ) contained in the above
propositions are called (dynamic) separators [Iwasaki and
Hara (1998)]. We say that Θ̂(z) and Θ(ζ) are static
separators if they are in fact independent of z and ζ,
respectively.

Before closing this section, we remark that we can view
the N -periodic system G as a µN -periodic system, where
µ is an arbitrary positive integer. If we view G in this
way, we can also obtain another lifted representation and
an associated transfer matrix. The latter will be called the
µN -lifted transfer matrix of the N -periodic system G, and
its use will be studied in Section 4.

3. CAUSAL/NONCAUSAL LPTV SCALING

Here, we simply review the definitions and properties of
causal/noncausal LPTV scaling introduced and discussed
in Hagiwara and Ohara (2007). Arguments about the
rationale behind these definitions are omitted due to
limited space; see Hagiwara and Ohara (2007) for details.

3.1 Definitions of Causal/Noncausal LPTV Scaling

Definition 1. We say that the separator Θ̂(z) induces
causal LPTV scaling (or equivalently, Θ̂(z) is a causal
LPTV separator) in an N -periodic feedback system if it
can be represented as

Θ̂(z) =
[
V̂1(z) V̂2(z)

]∗
Λ̂

[
V̂1(z) V̂2(z)

]
(11)

where V̂1(z) and V̂2(z) are the N -lifted transfer matrices of
a causal N -periodic system V1 with q input and a causal N -
periodic system V2 with p input, respectively, and Λ̂ = Λ̂∗

is a constant matrix of the form Λ̂ = diag[Λ1, · · · ,ΛN ] with
the size of Λi being the same for all i = 1, · · · , N .

Definition 1 applies also to the case with N = 1, i.e., an
LTI feedback system, in which case (11) reduces to

Θ(z) = V (z)∗ΛV (z), V (z) := [V1(z), V2(z)] (12)
with the transfer matrix V (z) of an LTI system V with
p+ q inputs and a constant matrix Λ = Λ∗. This would be
worth calling a causal LTI separator, which is nothing but
the conventional separator in the analysis of LTI feedback
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systems, and is general enough in the sense that every
matrix Θ = Θ∗ can be represented as

Θ = V ∗ΛV, Λ = Λ∗ (13)

Definition 2. We say that the separator Θ̂(z) induces non-
causal LPTV scaling (or equivalently, Θ̂(z) is a noncausal
LPTV separator) in an N -periodic feedback system if it
can be represented as

Θ̂(z) = Γ̃ ∗V̂ (z)∗Γ V̂ (z)Γ̃ (14)
where Γ = Γ ∗ and Γ̃ are constant matrices and V̂ (z) is
the transfer matrix of a causal LTI system defined on the
lifted time axis ν.

Definition 2 also applies to the case with N = 1, but it is
obvious that (14) again reduces to the causal LTI separator
(12) when N = 1. In other words, we can say that there
exists no “(strictly) noncausal LTI separator,” and hence
it would be justified to refer to (12) simply as an LTI
separator rather than a causal LTI separator.

3.2 Properties of Causal/Noncausal LPTV Scaling

Here we consider the case when G and ∆ are both LTI, and
review some properties of causal/noncausal LPTV scaling
clarified in Hagiwara and Ohara (2007).

Theorem 1. Suppose that G is LTI, and ∆ satisfies the
Assumption A1’. If there exists an LTI separator Θ(ζ)
satisfying (9) and (10), then there also exists a causal
LPTV separator Θ̂(z) satisfying (7) and (8). In particular,
if Θ is in fact a static LTI separator, there also exists a
static causal LPTV separator Θ̂ satisfying (7) and (8).

Roughly speaking, the above theorem (and its proof) says
that if there exists a dynamic (resp. static) LTI separator
that “resolves” the original lifting-free robust stability
analysis problem, then the “lifted version” of that sep-
arator is also causal and dynamic (resp. static), and “re-
solves” the lifted restatement of the same problem. This in
particular implies that we never lose anything in recasting
the lifting-free problem into the lifted counterpart as far
as the solvability issues of these problems are concerned.
This suggests us to study possible advantages of treating
the lifted counterpart instead of the original lifting-free
problem; noncausal LPTV separators could possibly re-
duce the conservativeness of the robust stability analysis
in the practical situation in which we cannot sweep over
all possible separators Θ(ζ) but have to restrict the class
of Θ(ζ) to a tractable one, e.g., a class of static separators.

The above observation is further supported from a
frequency-domain viewpoint by the following theorem.

Theorem 2. Suppose that G is LTI, and ∆ satisfies the
Assumption A1’. If there exists a separator Θ̂(z) satisfying
(7) and (8), then there also exists a separator Θ(ζ)
satisfying (9) and (10). One such Θ(ζ) is given by

Θ(ζ) := diag[Tq(ζ), Tp(ζ)]∗Θ̂(ζN )diag[Tq(ζ), Tp(ζ)] (15)

where Tm(ζ) = [Im, ζIm, · · · , ζN−1Im]T .

The above theorem, in particular (15), suggests that
even a static noncausal LPTV separator Θ̂(z) = Θ̂ in
the lifted treatment leads to Θ(ζ) corresponding to the
lifting-free treatment that is frequency-dependent (i.e.,
dependent on ζ ∈ ∂D and thus a dynamic separator). To

put it another way, the lifted treatment possibly has an
ability to convert the problem of searching for frequency-
dependent separators satisfying (9) and (10) in the lifting-
free treatment into a simpler problem of finding a static
separator satisfying (7) and (8). Compared with static
Θ , it is obvious that ζ-dependent Θ has more freedom,
and thus we could expect the above ability to reduce the
conservativeness in the robust stability analysis.

The purpose of this paper is to exploit this advantage and
demonstrate its effectiveness through numerical examples.
Even though the above results are for the case with
LTI G and ∆, we also show that this advantage can be
exploited even when we are to deal with N -periodic G or
∆. Regarding the advantage, however, we remark here that
it is known to be specific to noncausal (rather than causal)
LPTV separators, as stated in the following theorem.

Theorem 3. Suppose that G is LTI, and ∆ satisfies the
Assumption A1’. There exists a static causal LPTV sepa-
rator Θ̂ satisfying (7) and (8) if and only if there exists a
static LTI separator Θ satisfying (9) and (10).

4. EXPLOITING FREQUENCY-DEPENDENT
SCALING INDUCED BY STATIC NONCAUSAL

LPTV SCALING

This section demonstrates the effectiveness of noncausal
LPTV scaling with numerical examples. We confine our-
selves to static noncausal LPTV scaling, but it leads
to (almost) exact robust stability analysis. This can be
attributed to the advantage of noncausal LPTV scaling
suggested by Theorem 2, i.e., the fact that even static non-
causal LPTV scaling induces frequency-dependent scaling
in the context of the conventional treatment.

4.1 Noncausal LPTV Scaling of the (D, G)-Scaling Type

In our previous study [Hagiwara and Ohara (2007)], we
confined ourselves to noncausal LPTV scaling of the D-
scaling type. That is, we only considered the separators of
the form

Θ̂ =
[−γ2ŴT Ŵ 0

0 ŴT Ŵ

]
, ŴT Ŵ > 0, γ > 0 (16)

In this subsection, we demonstrate the effectiveness of
(D, G)-scaling especially in the context of noncausal
LPTV scaling. Specifically, we confine ourselves to static
noncausal LPTV separators for simplicity, but consider
applying the so-called (D, G)-scaling by taking a more
general separator of the form

Θ̂ =
[−γ2ŴT Ŵ X̂

X̂T ŴT Ŵ

]
,

ŴT Ŵ > 0, X̂ + X̂T = 0, γ > 0 (17)
in the conditions (7) and (8).

Example 1. We study a numerical example with the nom-
inal system G that is a stable LTI system given by

A =

[
0 1 0
0 0 1

−0.2 0.5 0.1

]
, B =

[
0 0
0 1
1 0

]
, C =

[
0 −1 0
0 0 1

]
, (18)

and D = 0. Here we assume that ∆ is static, and is in
fact given by ∆ = δI with a time-invariant real scalar δ.
We intend to analyze via noncausal LPTV scaling of the
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Table 1. The results of static noncausal LPTV
scaling for an LTI nominal system

(Example 1).

N 1 2 3 4 5 6

γnoncausal
min,(D,G)

3.6215 1.0833 1.1008 1.0833 1.0833 1.0833

CPU time (sec) 4.63 5.53 10.44 13.00 18.05 40.53

γnoncausal
min,D 3.6215 1.7918 1.7146 1.6674 1.6533 1.6429

CPU time (sec) 4.64 4.99 6.27 10.34 12.21 18.73

(D, G)-scaling type (i.e., with (17)) a lower bound of the
robust stability radius.

Since ∆ = δI, it is easy to see that the condition
(8) reduces to |δ| < 1/γ, which is independent of Ŵ

and X̂. Also, the condition (7) can be rearranged as an
LMI condition via the KYP lemma [Rantzer (1996)],
and thus Θ̂ of the form (17) with minimum γ (denoted
by γnoncausal

min,(D,G)) can be computed. The results, together
with the computation time with a PC with Pentinum
4, 3.6GHz, are shown in Table 1, where the reciprocal
of each value gives a lower bound of the robust stability
radius. This table shows that γnoncausal

min,(D,G) is not necessarily
monotonically decreasing with respect to N , but the
results are consistent with Theorem 1 † . Table 1 also shows
the results when X̂ is restricted to 0, or equivalently, when
noncausal LPTV scaling of the D-scaling type is used as
in our preceding study [Hagiwara and Ohara (2007)]; the
reciprocal of γnoncausal

min,D gives a lower bound of the robust
stability radius obtained by applying noncausal LPTV
scaling of the D-scaling type. We can thus see that even
though the results remain much the same when N = 1,
noncausal LPTV scaling of the (D, G)-scaling type leads
to much better results when N > 1. Indeed, the results
with N = 2 leads to the lower bound of the robust stability
radius given by 1/γnoncausal

min,(D,G) = 1/1.0833 = 0.9231, which
is almost exact as shown in Fig. 2 with the thin solid line;
the unshaded part corresponds to the stability region on
the (δ1, δ2) plane that is obtained via fine gridding if δ were
assumed to be 2-periodic and take δ1 and δ2 alternately—
it can be seen from the figure that stability is retained
under −0.9231 < δ < 1.5001. The thick solid line on the
figure corresponds to the case of D-scaling with N = 5,
i.e., 1/1.6533 = 0.6049.

To summarize, this example demonstrates the effectiveness
of the frequency-dependent scaling induced by static non-
causal LPTV scaling (in particular, of the (D, G)-scaling
type) as suggested by Theorem 2. The same comments
apply also to other examples to follow, and this is what is
stressed by the title of the present paper.

4.2 µN -Lifted Treatment for N -Periodic Systems

We have mentioned about the µN -lifted transfer matrix
of an N -periodic system at the end of Section 2, where µ
is an arbitrary positive integer. This corresponds to the
two-step procedure consisting of (i) first regarding the N -
lifted LTI representation of the N -periodic system as if it
† We can regard the case with N = N0 as if it corresponds to
the analysis with Proposition 2, while we can regard the case with
N = µN0 as if it corresponds to the analysis with Proposition 1,
where N0 and µ are arbitrary positive integers. Hence, Theorem 1
ensures that the result with N = µN0 is no worse than that with
N = N0.

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

δ1

δ2

Fig. 2. Robust stability analysis for an LTI nominal system
(Example 1).

were a given LTI system, and (ii) then considering the µ-
lifted transfer matrix of the “given LTI system” viewed as
a special case of µ-periodic systems. Regarding the latter
step above, we have seen in the preceding section that it
is quite promising and effective as far as the case with LTI
nominal G is concerned, and thus it is quite reasonable
to expect that considering the µN -lifted transfer matrix
is also quite effective in the robust stability analysis with
N -periodic G. Here we demonstrate that this is indeed the
case.

Example 2. We study a numerical example with the nomi-
nal system G being a stable 2-periodic LPTV system given
by

A1 =




0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

0.1 0.1 1 −1 1.9


 , A2 =




0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

0.1 −0.1 0.01 −0.5 0.2




B1 = B2 = [ 0 0 0 0 1 ]T , C1 = [ 0 0.6 0.6 1.5 0 ] ,
C2 = [ 0 0.3 0.3 0.3 0 ] , D1 = D2 = 0 (19)

Here we assume that ∆ is static, and is in fact 2-periodic,
taking the real scalar values δ1 and δ2 alternately. We
intend to analyze via noncausal LPTV scaling a lower
bound of the robust stability radius.

Here we introduce the 2µ-lifted transfer matrices of the
2-periodic systems G and ∆. Since ∆ is 2-periodic, the
2µ-lifted transfer matrix of ∆ is given by the matrix

∆̂ = Iµ ⊗ diag[δ1, δ2] (20)
where Iµ denotes the µ×µ identity matrix and ⊗ denotes
the Kronecker product. Now, let us denote the class of 2×2
diagonal matrices by Λ2, and define the class Λµ×µ

2 by the
set of the matrices of the form

(Lij)
µ
i,j=1, Lij ∈ Λ2 (21)

We further define the class W µ×µ
2 of symmetric matrices

and the class Xµ×µ
2 of skew symmetric matrices by

W µ×µ
2 =

{
W |W = L + LT , L ∈ Λµ×µ

2

}
,

Xµ×µ
2 =

{
X |X = L− LT , L ∈ Λµ×µ

2

}
, (22)

respectively. Then, we see that Θ̂ given by (17) with
Ŵ ∈ W µ×µ

2 and X̂ ∈ Xµ×µ
2 is a static noncausal LPTV

separator of the (D, G)-scaling type. Also, it is not hard
to see that, under such Θ̂ , the condition (8) reduces to
the condition max(|δ1|, |δ2|) < 1/γ, which is independent
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Table 2. The results of static noncausal LPTV
scaling for an LPTV nominal system

(Example 2).

µ 1 2 3 4 5

γnoncausal
min,µ 3.4897 3.2195 3.1594 3.1445 3.1445

CPU time (sec) 5.32 6.83 8.61 8.58 11.56

of Ŵ and X̂. Hence, as in the preceding subsection, we
can compute Θ̂ of the form (17) with the above-restricted
forms of Ŵ and X̂ and with minimum γ, where the
minimum γ is denoted by γnoncausal

min,µ . The results are shown
in Table 2, from which we can see that considering the
µN -lifted transfer matrix for the N -periodic nominal G is
successful in reducing the conservativeness in the robust
stability analysis. The result with µ = 4 is shown in Fig. 3
with the dash-two-dot square (the meaning of the figure is
parallel to Fig. 2), and we can see that this result is indeed
almost exact.

As a side remark, we state that if we consider the separator
(17) with Ŵ and X̂ both being the 2µ × 2µ diagonal
matrices, then it is a static causal LPTV separator of the
(D, G)-scaling type ‡ . We can also minimize γ under this
class of separators, which leads to γcausal

min,µ = 3.4897 for all
µ = 1, · · · , 5 with our numerical computations (this cor-
responds to the dash square in Fig. 3, while the dash-dot
square corresponds to the small-gain theorem). In other
words, taking µ ≥ 2 does not lead to the improvement of
the results, but this is in fact consistent with Theorem 3
if this theorem is interpreted after introducing the N -
lifted transfer matrices of the N -periodic systems G and ∆
(where N = 2 in the context here). Another independent
interpretation of this lack of improvement with µ ≥ 2
is that considering the above causal LPTV separators
corresponds to failing to rule out the possibility that the
uncertainty ∆ is 2µ-periodic †† , which naturally leads to
conservativeness since our assumption here is that ∆ is
known to be 2-periodic.

4.3 Application of Discrete-Time Noncausal LPTV Scaling
to Continuous-Time Systems

We have seen in the robust stability analysis of discrete-
time systems that applying the discrete-time lifting and
then introducing noncausal LPTV scaling are quite effec-
tive in reducing the conservativeness in the analysis. In this
subsection, we intend to make use of the advantage even
in the robust stability analysis of continuous-time systems
with the aid of the Tustin transformation. This leads to an
alternative algebraic approach to noncausal LPTV scaling
of continuous-time systems, which was first studied in
Hagiwara (2006) in an operator theoretic framework and
strongly motivated the present study.

‡ As far as this example is concerned, such a separator in fact
degenerates to a separator of the D-scaling type, since ∆ is scalar.
However, the above arguments can be extended to the case with ∆
given by a matrix by appropriately modifying (22) in an obvious
fashion, and the subsequent arguments remain the same in such a
case, too.
††Under the above causal LPTV separators, the condition (8) leads
to maxk=1,···,2µ |δ(k)| < 1/γ for the 2µ-periodic scalar ∆(k) = δ(k),
while under the above noncausal LPTV separators, the condition
(8) does not lead to such a simple condition unless ∆(k) = δ(k) is
2-periodic.
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Fig. 3. Robust stability analysis for an LPTV nominal
system (Example 2).

Example 3. We now consider the continuous-time counter-
part of Fig. 1 composed of the continuous-time LTI system
Gc given by

Ac =




0 1 0 0
0 0 1 0
0 0 0 1
−5 −15 −20 −40


, Bc =




0 0
0 0
0 1
1 0


, Cc =

[
1 1 0 0
0 0 1 1

]
(23)

and Dc = 0, and the static uncertainty ∆c. We consider
the two situations about ∆c: (i) ∆c = δI with a time-
invariant real scalar δ; (ii) ∆c = diag[δ1, δ2] with time-
invariant real scalars δ1 and δ2. It is obvious that this
continuous-time feedback system is stable if and only if
the discrete-time feedback system in Fig. 1 with G and ∆
given respectively by the Tustin transforms of Gc and ∆c

is stable. Thus, we can compute (a lower bound of) the
robust stability radius for each of the above two situations
by the discrete-time noncausal LPTV scaling. Here, note
that the Tustin transform of ∆c is nothing but itself since
∆c is static. Regarding Gc, on the other hand, we take
the fictitious sampling period T = 2, for simplicity, for
the Tustin transformation and then consider the N -lifted
transfer matrix of the resulting discrete-time LTI system.

In the first situation, we can introduce the separator
Θ̂ given by (17) so that (8) reduces to the condition
|δ| < 1/γ, and then γ is minimized with respect to (7),
where the minimum γ is denoted by γnoncausal

min,(i) . The results
are shown in Table 3 (γnoncausal

min,(i) ) and their reciprocals
give lower bounds of the robust stability radius, which
clearly indicates the effectiveness of applying noncausal
LPTV scaling. We also remark that the (D, G)-scaling
in the conventional continuous-time system analysis leads
to γmin = 7.3618, which obviously equals the result with
N = 1 in Table 3.

In the second situation, on the other hand, we can see
that we can use the separator (17) with Ŵ ∈ W µ×µ

2

and X̂ ∈ Xµ×µ
2 and we are led to the results shown in

Table 3 (γnoncausal
min,(ii) ). Again, their reciprocals give lower

bounds of the robust stability radius, and we can confirm
the effectiveness of noncausal LPTV scaling. In this case,
too, the (D, G)-scaling in the continuous-time setting leads
to the same result as that with N = 1 in Table 3.

The above results are shown in Fig. 4, where the unshaded
part corresponds to the stability region on the (δ1, δ2)-
plane, the solid line corresponds to the lower bound of
the robust stability radius for the case (i) obtained with
N = 3, and the dash square corresponds to that for the
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Table 3. The results of static noncausal LPTV
scaling for a continuous-time feedback system

(Example 3).

N 1 2 3 4 5

γnoncausal
min,(i)

7.3618 4.1242 2.8953 2.8953 2.8953

CPU time (sec) 6.53 9.47 9.82 15.02 20.52

γnoncausal
min,(ii)

8.6904 4.8899 3.4678 3.4678 3.4678

CPU time (sec) 5.84 6.86 8.43 11.20 13.86
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Fig. 4. Robust stability analysis for a continuous-time
feedback system (Example 3).

case (ii) obtained with N = 3. We can see from this figure
that we are successful in (almost) exact robust stability
analysis even in the continuous-time setting. Note that the
conventional (D, G)-scaling in the continuous-time setting
for the case (ii) leads to only a quite conservative result
as shown as the dash-dot square (which corresponds to
the reciprocal of γnoncausal

min,(ii) for N = 1 in Table 3). We
can observe similar conservativeness for the case (i) from
Table 3 and Fig. 4.

5. CONCLUSION

Motivated by the study on noncausal linear periodically
time-varying (LPTV) scaling for sampled-data/continuous-
time systems [Hagiwara (2006); Hagiwara and Umeda
(2007)], the discrete-time counterpart was introduced and
its effectiveness in the robust stability analysis of discrete-
time systems was studied in Hagiwara and Ohara (2007).
In parallel to the case of sampled-data/continuous-time
systems, it was shown that even static noncausal LPTV
scaling has an ability of inducing frequency-dependent
scaling if it is interpreted in the context of the conventional
scaling treatment. Motivated by this observation, this pa-
per studied to exploit this property and demonstrated with
numerical examples that it leads to quite effective robust
stability analysis. We also demonstrated that the idea of
noncausal LPTV scaling can readily be applied to the
robust stability analysis of continuous-time systems via
the Tustin transformation, and gave a numerical example
showing that such an approach is quite effective.

The above treatment of continuous-time systems, by the
way, can be regarded as giving an alternative approach
to noncausal LPTV scaling of continuous-time systems,
which was first introduced in Hagiwara (2006); compared
with the approach in Hagiwara (2006) that is operator-
theoretic, the alternative approach here is algebraic and
thus is quite simple. This was indeed one of the reasons
why we were motivated to the present study in the
discrete-time setting from the original study in Hagiwara
(2006) in the sampled-data/continuous-time setting, and

in that sense, we could say that we have arrived at
a nearly equivalent “simplified method” for noncausal
LPTV scaling of continuous-time systems. However, there
are still some freedom in this simplified method; the
fictitious sampling period for the Tustin transformation
used in the simplified method is arbitrary, theoretically
speaking, but it does affect the analysis results for fixed N ,
the parameter for discrete-time lifting. Hence, it would be
an interesting topic to study how to choose this fictitious
sampling period to arrive at an effective result. Also, it
is important to clarify some mutual relationship between
this noncausal LPTV scaling approach of continuous-time
systems via the Tustin transformation and the purely
continuous-time noncausal LPTV scaling introduced in
Hagiwara (2006). These are left to our future studies.
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