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TAbstract:  

Considering the TKalman–Bucy Filter (KBF) from an engineering point of view it is always important to know 

in advance, before KBF implementation, which variables are practically "good" and which are "bad" 

observable and how long it will take to estimate all of them in the presence of measurement noise to some 

appropriate (not necessarily theoretically optimal) level. This article presents an approach to measuring the 

observability by a special index that has the physical meaning of signal to nose ratio. This approach leads 

to the decomposition of the KBF in the time domain into two filters applied consecutively in time: the 

filter estimating the transitional process caused by the uncertainty in initial conditions and the filter 

estimating the system steady state. In turn; this results in mitigation of the computational requirements and 

in a simplification of the filter implementation by the engineers. 

1. INTRODUCTION 

The TKalman–Bucy Filter has become a very popular 

mathematical tool for solving diverse applied problems. The 

filter's property is that it can provide optimal estimates for all 

observable variables of the dynamical system that meets KBF 

theory assumptions. Since the publishing in 1960 by R.E. 

Kalman  [3] and in 1961 by R.E Kalman and R.S Bucy [4] of 

two famous articles on a new approach to Linear Filtering 

and Prediction problems, the set of mathematical equations 

considered in these articles for obtaining an optimal estimate 

of a linear dynamical system state vector with minimum of 

the mean of the squared error has been widely adopted in 

many scientific and technical applications. This set of the 

equations (continuous or recursive) has obtained the name of 

Kalman Filter (KF) or Kalman-Bucy Filter (KBF). Many 

publications have been dedicated to KBF sub-optimization to 

make it less computationally demanding and more robust (for 

example [6, 7]) as well as for explanation and popularization 

of the KBF principles [1, 3, 11]. However, from an 

engineering point of view for many designers the filter still 

remains to be a mathematical magic "black box". There are 

two polar points of view on KBF: "KBF can solve any 

engineering problem with excellent accuracy" or "KBF is 

very sensitive to the system model, computationally 

demanding and can hardly be practically used". Acceptance 

one of these philosophies leads to the formal programming of 

the original KBF equations or rejection of the KBF and using 

traditional methods for automatic control and communication 

with analog or digital filters, correspondingly. This article is 

based on previous publications of the author [6– 10] and has 

the intent to show that a comprehensive analysis of system 

observability for the considered applied problem performed 

prior to KBF implementation might resolve the antagonism 

between the philosophies mentioned above. It is proposed to 

introduce a quantitative observability measure (observability 

index-signal/noise ratio) that would evaluate the time 

required for estimation of a certain state vector component in 

the presence of measurement noise to some level of unbiased 

estimation. As such, it allows one to restrict the estimated 

vector components by the number of the last one that can be 

confidently obtained within allowed observation period. It 

allows one also to divide the observation period into two 

stages: transitional process estimation and steady state 

estimation. At the first stage, the estimated dynamical system 

can be considered as " purely deterministic" and at the second 

as "purely stochastic". For a time invariant (stationary) 

system, the KBF coefficients can be expressed by simple set 

of analytical functions of time instead of the recursive 

computation of the KBF matrix Riccati equation for the 

covariance matrix. At the steady state stage only constant 

gains can be kept. For many cases, the time variable and 

stationary (constant) gains can be applied consecutively: time 

variable at the transitional stage to insert the roughly 

estimated initial conditions and constant at the steady state to 

get the final fine unbiased estimation. 

2. OBSERVABILITY MEASURE 

2.1 Observability Criteria 

The meaning of the term observability (this concept was 

introduced by R. Kalman) can be considered from both 

deterministic and stochastic points of view. In the 

deterministic case, the observability is the possibility to 

determine the initial state of the linear dynamical system with 

some measurements of system state vector. In the stochastic 

case this is the possibility to decrease initial uncertainty 

(covariance matrix) about the system state vector using the 

state vector measurements accompanied by noise. In both 

cases, this is a fundamental system characteristic that only 

indicates the existence of a potential for the estimation of the 
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system state vector rather than providing any quantitative 

information about the estimation quality. In both cases, the 

criteria of observability are almost identical and don't take 

into account any random disturbances applied to dynamical 

system. Only the system free motion is considered. Let us 

consider a linear dynamical system that is given by the 

following matrix differential equation in the state-vector 

differential equation form [1] 

    
( ) ( ) ( ),

( ) ( ),

x F t x G t w t

z H t x v t

= +

= +

�

 (1) 

where: x is an n -vector of the system state, w is an m -

vector of external disturbances, z is a p -vector of 

measurements, v is a p -vector measurement noise, ( )F t is 

an ( )n n× system dynamics matrix, ( )G t is an ( )n m×  

disturbances matrix, ( )H t is a ( )p n× measurements 

matrix.  

Let us the following information about (1) is given: 

, ,F G H are known matrices of time (in the stationary case, 

constants),  

0 0 0 0

0

[ ( )] 0, [ ( ) ( )] ,

[ ( )] 0, [ ( ) ( )] ( ) ( ),

[ ( )] 0, [ ( ) ( )] ( ) ( ),

[ ( ) ( )] [ ( ) ( )] [ ( ) ( )] 0,

T

T

T

T T T

E x t E x t x t M

E w t E w t w Q t t

E v t E v t v R t t

E w t v E v t w E w t x t

τ δ τ

τ δ τ

τ τ

= =

= = −

= = −

= = =

(2) 

where: 0M  is the initial state covariance matrix, ( )R t is the 

covariance matrix of measurement noise, ( )Q t is the 

covariance matrix of disturbance noise, ( )tδ τ− is the Dirac 

delta function. Hence, ( )w t and ( )v t are Gauss white noise 

processes. In the stationary case, the matrices Q and R are 

constants and have the meaning of spectral densities of the 

white noises ( )w t and ( )v t , correspondingly. The following 

criteria can be applied for system (1) observability analysis  

[1, 3]:   A. Stochastic case  

0

1

0 0( , ) ( ) ( ) ( ) ( , ) 0

t

T

t

I t H R H t dτ τ τ τ τ τ−= Φ Φ >³ ,  (3) 

where: 0.R >  B. Deterministic case 

0

0 0( , ) ( ) ( ) ( , ) 0

t

T

t

I t H H t dτ τ τ τ τ= Φ Φ >³ , (4) 

where: 0( , )t tΦ is the system transition matrix corresponding 

to the matrix F in (1). In other words, if the integrals (3) (in 

the stochastic case) and (4) (in the deterministic case) are 

positive definite, then system (1) is completely observable 

and all n components of vector x can be estimated with the 

measurements Z The R -matrix in (3) is assumed to be 

positive definite and affects only the scale (4) w.r.t (3), hence 

both approaches to the observability analysis are in complete 

agreement.  The solution to (1) for free motion can be 

expressed by the following formula [1] 

  0 0( ) ( , ) ( )x t t t x t= Φ . (5) 

If this solution is known, then the direct approach to 

analyzing observability [6] can be used. It is based on the 

following definition of observability [3], [10]: if from the 

condition 

     0 0( ) ( , ) ( ) 0Z H t t t x t= Φ ≡  (6) 

follows that 

 0( ) 0x t = , (7)       

then the system (1) is completely observable.                  

In the stationary case (when the matrixes F and H are 

constants), the observability property can be analysed with 

the determination of the rank of the observability 

matrix N [1, 3, 10]  

2 ( 1)( ) ......( )T T T T T T n T TN H F H F H F H−ª º= ¬ ¼ . (8) 

If rankN n= then all n components of the x -vector will be 

observable. 

One can see that observability defined by this way is an 

inherent system property that depends on matrices 

F and H properties only. The abovementioned criteria allow 

one to determine if the system (1) state vector x is observable 

in principle, however, at least in the stochastic case, these 

criteria don't answer all questions connected to the considered 

problem. Indeed, it is clear that the system initial state can be 

set by its measured output variable (signal) and its linearly 

independent derivatives, but to determine a high order 

derivative in presence of noise is very difficult and not 

always practically possible. Another concern can be 

expressed about a priori estimate error covariance and 

random disturbances, applied to the system.   It raises the 

question if applying the KBF to an observable system will 

always decrease the initial covariance about system state 

vector independently on the ratios between the matrices 

QM ,0  and R . We will try to discuss these issues 

introducing an additional parameter – an observability index 

that would present some quantitative observability measure in 

addition to basic criteria (4), (5). 

2.2 Substantially Deterministic and Stochastic Systems 

 

Depending on the ratios between values of initial conditions, 

the elements of matrix Q  and the time of observation, the 

system (1) can be considered as almost deterministic or 

almost stochastic. 
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Let us consider differential equation for the covariance 

matrix for equation (1). It can be written as follows [1] 

 
T TM FM MF GQG= + +� , (9) 

where: M is the covariance matrix of the vector x  in (1). 

The solution (9) can be presented in the following form 

0

0 0 0( ) ( , ) ( , ) ( , ) ( ) ( ) ( ) ( , ) .

t

T T T

t

Mt t t M t t t G Q G t dτ τ τ τ τ τ=Φ Φ + Φ Φ³   (10) 

It has two different components: free motion covariance 

caused by the initial conditions vector 0x  with initial 

covariance 0M  and forced motion covariance caused by the 

disturbance noise ( )w t with covariance matrix Q or as 

follows 

   
0

( ) ( ) ( ),M QM t M t M t= +  (11) 

where: 
0 0 0 0( , ) ( , )T

MM t t M t t= Φ Φ  and  

     

0

( ) ( , ) ( ) ( ) ( ) ( , )

t

T T

Q

t

M t t G Q G t dτ τ τ τ τ τ= Φ Φ³  

Depending on the ratios between 
0MM  and QM  during the 

observation period, the system (1) can be considered as  

substantially    stochastic or substantially deterministic.  

When the following inequality takes place 

                
0M QdiagM diagM>> ,          (12) 

( , 1,..
ii

diagM M i n= = means the diagonal elements of 

the matrix) the deterministic motion is dominant and the 

system can be considered as substantially deterministic and 

during the time of observation when the opposite inequality 

takes place 

                  
0Q MdiagM diagM>> , (13)          

the system can be considered as substantially stochastic. It is 

clear that for an asymptotically stable system, the 

deterministic component 
0MM will decay and after the time 

of decaying of the transitional process, the system becomes 

substantially stochastic. In this case, for a time invariant 

system, the steady state covariance matrix 
*( )M t M→ ∞ = can be found from the following 

algebraic matrix equation 

     
* * 0T TFM M F GQG+ + =  . (14) 

When 
*

0diagM diagM>> , then during the time of the 

transitional process, system (1) can be considered as 

substantially deterministic and after this time as substantially 

stochastic. 

2.3 Estimation of stochastic system with KBF as an 

equivalent     deterministic system 

Let us consider the estimation of system (1) with a KBF, 

assuming that system meets the observability criterion (3) 

and the all n  components of the vector x are observable. In 

this case, the KBF should provide a stable optimal estimate 

x . The KBF equations for the estimation of (1) in 

continuous form can be written as follows [1] 

  

0

1

1

0 0

ˆ ˆ ˆ ˆ( ) ( ( ) ), 0,

( ) ( ) ,

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ,

T

T T

T

x F t x K z H t x x

K PH t R t

P F t P PF t PH t R t H t P

G t Q t G t P M

−

−

= + − =

=

= + − +

+ =

�

�
(15) 

where: ( )K K t=  is the KBF matrix gain, ( )P P t=  is the 

KBF estimate errors covariance matrix that should be found 

from the solution of the third matrix equation  (Riccati type) 

in (15).  

It can be shown [7], that the KBF (15) can be presented as 

two filters working in parallel: one for steady state estimation 

of original system (1), where all transitional processes have 

been completed and it has become substantially stochastic, 

estimating the steady state motion of (1), and another one for 

a substantially deterministic system with modified matrix F  

and modified initial conditions, estimating the transitional 

process in a modified deterministic system. Mathematically it 

results in the presented KBF covariance matrix and gain as 

follows:
*K K K= + �  and 

*P P P= + � , where 
*P and 

*K are related to steady state estimation in the stochastic 

system (original KBF (15) with t → ∞ ), P� and K� related 

to transitional process estimation in the deterministic system, 

correspondingly. Let us assume that the matrixes 
*P and 

*K for the steady state KBF have been found by some way 

and consider the deterministic system. This modified 

deterministic system is as follows                     

         

*( ) ,

( ) ( ),

x F t x

z H t x v t

=

= +

�
   (16)  

where: 
* * * * 1( ) ( ) ( ) ( ), ( ) ( ) ( ) ( ).TF t F t K t H t K t P t H t R t−= − =  

The covariance matrix 
* ( )P P t= → ∞ is the steady state 

covariance matrix that is defined by solving the Riccati 

equation in (15) for t → ∞ . For the case of time invariant 

system it can be found from the following algebraic matrix 

equation 

  .0*1*** =+−+ − TTT GQGHPRHPFPFP  (17) 

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

12524



 

 

     

 

Then for system (16), the modified KBF becomes as follows 

*

0

1

* * 1 *

0 0 0

ˆ ˆ ˆ ˆ( ), 0,

,

, .

T

T

x F x K z Hx x

K PH R

P F P PF PH R HP P P P

−

−

= + − =

=

= + − = −

��

� �

�� � � � � �

     (18) 

Note: the index "~" will represent the transient components 

for the matrixes P and K . 

For the deterministic system (16), the covariance equation in 

(18) can be solved with the following formula [2] 

0

* 1 * 1 * 1 *

0 0 0( ) ( , )[ ( , ) ( ) ( ) ( ) ( , )] ( , ),

t

T T T

t

Pt t t P t H R H t t tτ τ τ τ τ− − −=Φ + Φ Φ Φ³� �   (19) 

where:
*

0( , )t tΦ is the system (16) transition matrix, 

corresponding to the matrix 
*F .    

Examining (10), (11) and (19), one can conclude that (19) 

establishes the connection between the covariance of the 

errors of estimating the initial and current states of the 

deterministic system  (16). The covariance matrix of the 

errors in estimation of the initial state of (16) is determined 

by the following formula 

0

1 * 1 * 1

0( ) [ ( , ) ( ) ( ) ( ) ( , ) ] ,

t

T T

t

D t P t H R H t dτ τ τ τ τ τ− − −= + Φ Φ³�        (20) 

  where: 00000 )(ˆ~],~~[)( xtxxxxEtD
T −==   and  

0
ˆ ( )x t can be estimated with the following observer   

0

1

0
ˆ ( ) ( , ) ( ) ( ) ( )

t

T T

t

x D t t H R z dτ τ τ τ τ−= Φ³  (21) 

that can be derived by applying the Least Square Method  [1] 

to the following system 

                
*

0 0( ) ( , ) ( )z H t t t x v t= Φ +   (22) 

Hence, we have converted the original problem of the 

estimation of the current state of the stochastic system (1) 

into the problem of the estimation of the initial state of an 

equivalent deterministic system (16). For this case, all of the 

above mentioned observability criteria were developed and 

now we can try to modify them to measure the observability 

quantitatively. 

2.4 Observability Index 

The first attempt to introduce the observability (estimability) 

index was undertaken by author in [7, 8], where mainly 

polynomial signals (KBF for polynomial signals can be found 

also in [11]) were considered. A more general discussion is 

presented in this article. Looking at (20), one can conclude 

that when the integral in (20) will dominate over the inverse 

initial covariance matrix 
1

0 ,P
−�  then the estimate errors 

covariance will be almost independent of the initial 

uncertainty about the system initial state. In this case, the 

unbiased estimation process  [1] will start from this time 

instant. This condition can be written as follows 

³ ΦΦ<< −−
*

0

),()()()(),(
~ *1*1

0

t

t

TT
dtHRHtdiagPdiag ττττττ (23) 

where: *t  is the time domain, where (23) is satisfied. 

In many practical cases, the matrices 0P�  and R are diagonal.  

Then (23) can be written for each separate i-th component of 

the vector x as follows  

*

0

0 * *

2
1 [ ( , ) ( ) ( ) ( , )]

i

ii

i

t

T T

v t

P
diag t H H t dτ τ τ τ τ

σ
<< Φ Φ³
�

, (24) 

where: 
2

ivσ  are the diagonal elements of the matrix R . 

Let us introduce the observability index for i -th component 

of x by the following formula 

0

* *

0

2

[ ( , ) ( ) ( ) ( , )]

( )

ii

t

T T

ii

t

i

v

p diag t H H t d

t

τ τ τ τ τ

χ
σ

Φ Φ

=
³�

. (25) 

In many practical cases this formula allows to compute the 

index χ even analytically and get some very important 

general conclusions about considered system observability 

features. Then, the condition of unbiased estimation (24) can 

be rewritten as follows 

                           .,...2,1,1)( * nit ii =>>χ      (26) 

 The time instant *it  when the i -th component of vector 

x starts unbiased estimation process can be found from the 

inequality (26). In (25), the numerator can be interpreted as 

the work of signal (
*

0 0( ) ( ) ( , )s t H t t t x= Φ ), performed for 

the time t , and the denominator is measurement noise 

spectral density (in the considered frequency range). As such, 

(26) has the physical meaning of ratio deterministic signal 

energy to noise power spectral density 

(
0

2

2

( )

( )

ii

t

i

t

i

v

s d

t

τ τ

χ
σ

=
³

).  Hence, the unbiased estimation 

process for each of an observable component of x starts then, 

when corresponding to this component the signal work to 

measurement noise power spectral density (observability 

index) exceeds the value of one. 
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3. KBF DECOMPOSITION IN THE TIME DOMAIN 

3.1General Approach 

In many practical cases, condition (12) is satisfied (at least at 

the beginning of the observation period). In these cases,  the 

following condition 

                  
*

0diagP diagP>>  (27) 

is usually satisfied as well. If (27) is satisfied, then at least for 

a time invariant system, the optimal KBF filter with 

connected in parallel 
*K and K� can be replaced with a 

suboptimal scheme, applying these coefficients consecutively 

in time as follows 

             

°
°
¯

°°
®



≡

>

≤≤

=

−+=

,0,0

,,

,,
~

),ˆ(ˆˆ

*

*

*0

zif

ttK

tttK

K

xHzKxFx�

 (28) 

where: *t  is the time required for unbiased estimation of all 

n components of vector x . This time is found from the 

condition (27). 

The gains K� and 
*K are found with the following formulas 

.

,

,
~

,
~~~~~

,
~~

*1***

1**

00

1

1

TTT

T

TT

T

GQGHPRHPFPFP

RHPK

PPPHRHPFPPFP

RHPK

+−+

=

=−+=

=

−

−

−

−

�

 (29)  

In other words, K� is computed for system (1), considered as 

a substantially deterministic ( 0w ≡ ), and 
*K - considering 

(1) as a substantially stochastic system, where only steady 

state motion, caused by the random disturbance w  takes 

place. For many applied problems (see, for example [7, 8]) 

the coefficients ( )K t� and 
*K can even be found analytically 

and programmed as functions of time ( K� ) and constants 

(
*K ), correspondingly. In some cases, when any reliable 

information about the Q matrix is absent. It can be set with 

the guaranteed approach, as an equivalent white noise 

providing a 
*P ellipsoid that will be similar to 

F.Chernousko's Q guaranteed ellipsoid [9]. The suboptimal 

filter (28) was firstly considered in [7] and called there as the 

"filter with bounded growing memory" (FBGM). Being 

almost identical to the KBF it is more computationally 

economical and more robust for many engineering 

applications. Applying (28) in conjunction with the use of the 

observability index χ  allows one to avoid any of the 

unexpected effects of filtering process divergence as well as 

performing superfluous computations in contrast to the 

formal implementation of the KBF in its original form.  

4. CONCLUSION 

The proposed observability index allows one to measure the 

observability property quantitatively and has the physical 

meaning of the ratio of deterministic signal energy to noise 

power spectral density. When the index becomes greater than 

one, then the corresponding estimated state vector component 

becomes free from any bias caused by the initial uncertainty 

about the system state vector. Applying the observability 

index to the system analysis allows one to implement the 

KBF with transitional and steady state suboptimal gains 

consecutively in time as a FBGM that has important 

advantages for practical filter implementation. 
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Appendix A. EXAMPLE OF THE FIRST ORDER 

DIFFERENTIAL EQUATION STATIONARY SYSTEM 

Let us consider the scalar case of system (1) with following 

equations 

 

1 1
,

,

x x w
T T

z x v

= − +

= +

�
,   (A.1) 

where: 100=T s is system time constant, 100 =x m, 

.1,200

,1,
1

,100,
1

2222

2

0

smRsmQ

H
T

GmM
T

F

vw ====

===−=

σσ

 

The covariance matrix equation for (A.1) is as follows 

  
2

2

2 1
wM M

T T
σ= − +� .   (A.2) 

The solution of (A.2) can be written as follows 

     

2 22

0( ) (1 ).
2

t t
wT TM t M e e
T

σ− −

= + −   (A.3) 

Steady state covariance can be found from (A.3) if one puts 

t → ∞ . This covariance is as follows 

2

2

* 1
2

m
T

M w ==
σ

As it can be seen from (A.3), after 

)150(
2

3
sTt >  the system can be considered as 

substantially stochastic (
*M M≈ ).  

Considering the KBF for system (A.1), one can find that the 

steady state covariance equation is as follows  

         

2
*2 *

2

2
0

w

v wP P
T T

σ σ
+ − = .              (A.4)   

The algebraic equation (A.4) has the following solution  

 )363.0(1317.0)11( *2

2

22

* mm
T

P
v

wv ==−+= σ
σ

σσ
        (A.5) 

The modified deterministic system (16) will be as follows 

         
*

1
x x

T
= −� ,   (A. 6) 

where: sTT
v

w 07.7)1( 2

1

2

2

* =+=
−

σ

σ
. 

The transition matrix for (A.6) is as follows 

              
*

1

( ) Te
τ

τ
−

Φ =   (A.7) 

Using formula (25), one can find that the observability index 

will be expressed by the following formula 
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3.5 s. However, until 150 s of the observation period, the 

system is almost deterministic. Therefore, the FBGM (28), 
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Plots of the simulation of the KBF and the FBGM for the 

considered example are presented in Fig. 1-3 

 

  
Figure 1. Model (1); )(tx -left,    )(tz -right [m], [s] 

  

Figure 2. KBF; )(ˆ tx -left,    )()( tPt =σ -right [m], [s] 

  

Figure 3. FBGM; )(ˆ tx  -left, )()( tPt =σ -right [m], [s] 

Switching time; st 10* =  

This example demonstrates that both filters (KBF and FBGM) 

provide practically very close estimation accuracy. Unbiased 

estimation starts very fast; after about 10 sec since the starting 

filtering. This agrees well with the time evaluated with the 

observability index. 
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