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Abstract: During the past few decades, a number of methods for selection of input-output
pairings for decentralized control have been proposed. Most of these available methods require
evaluation of every alternative in order to find the optimal pairings. As the number of
alternatives grows rapidly with problem size, pairing selection through an exhaustive search can
be computationally forbidding for large-scale process. In this paper, we present novel branch
and bound (BAB) approaches for pairing selection using relative gain array and µ-interaction
measure as the selection criteria to overcome this difficulty. We demonstrate the computational
efficiency of the proposed BAB approaches by applying them to randomly generated matrices
as well as to the Tennessee Eastman benchmark example.

1. INTRODUCTION

For control of large-scale processes, use of decentralized
controllers is predominant in process industries. The de-
sign of a decentralized controller involves selection of ap-
propriate input-output pairing and subsequently tuning
parameters of the controller. For appropriate pairing se-
lection, a number of criterion are available in the liter-
ature [Van de wal, 1994, Skogestad and Postlethwaite,
2005]. A common feature of these available pairing se-
lection methods is that every alternative needs to be
evaluated individually. For a process with n outputs and
n inputs, the total number of pairing alternatives is n!.
For large-scale processes (e.g. pulp and paper mill [Castro
and Doyle, 2002], and vinyl acetate monomer plant [Chen
et al., 2003]), pairing selection through an exhaustive
search can be computationally forbidding. This paper ad-
dresses this combinatorial issue arising in pairing selection.

The computational expense for pairing selection can be
reduced by using optimization based approaches. In these
approaches, the binary variables related to the selection of
pairings are relaxed as continuous variables. Depending on
the choice of pairing selection criterion, the relaxed prob-
lem can be a mixed integer linear program (MILP) [Kookos
and Perkins, 2001] in some cases. In general, however,
solution of a mixed integer nonlinear program (MINLP)
is required upon relaxation. Such schemes have been used
widely in the literature dealing with integrated design
and control of chemical processes [Luyben and Floudas,
1994, Sakizlis et al., 2004]. The MINLP based approaches
usually result in non-convex optimization problems and
thus global optimality of the selected pairing cannot be
guaranteed.

In this paper, we propose an efficient branch and bound
(BAB) approach for the pairing selection problem. In com-
parison to an exhaustive search, a BAB approach gains its
efficiency by pruning branches of the solution tree, which
cannot lead to the optimal solution. Note that the BAB is
also used by many optimization algorithms for solving the
MILPs and MINLPs. The BAB method proposed in this
paper, however, does not require solving relaxed optimiza-
tion problems. Instead, monotonicity arguments are used
for pruning purposes. The usefulness of BAB approaches
for some other problems arising in control structure design
has been demonstrated by the authors earlier [Cao et al.,
1998, Cao and Saha, 2005, Kariwala and Skogestad, 2006,
Cao and Kariwala, 2008].

The proposed method is general and can be applied to
most of the available pairing selection criteria. In this
paper, we discuss pairing selection based on relative gain
array (RGA) [Bristol, 1966]. As shown by Kookos and
Perkins [2001], this problem can be posed as an MILP.
The advantage of the proposed approach is that it can
also handle selection criteria which do not lead to MILP
formulations. To emphasize this issue, we show the applica-
tion of proposed approach for pairing selection based on µ-
interaction measure (µ-IM) [Grosdidier and Morari, 1986],
where µ-IM is seen as a measure of generalized diagonal
dominance [Kariwala et al., 2003]. Numerical examples
demonstrate that both criteria can be combined with the
BAB approaches to efficiently solve pairing selection prob-
lems for large-scale processes. Furthermore, we also point
out the possible paths, which can be undertaken to apply
the proposed approach to other selection criteria such as
ν-gap metric [Samyudia et al., 1995], Hankel interaction
measure [Wittenmark and Salgado, 2002] and effective
RGA [Xiong et al., 2006].
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Fig. 1. Solution tree for selecting pairings for a system with 4 outputs and 4 inputs

The rest of this paper is organized as follows: the general
BAB framework used in this work is proposed in Section
2. In Sections 3 and 4, the BAB approach is customized
for pairing selection using RGA and µ-IM as the selection
criteria, respectively. The efficiency of the BAB approaches
is demonstrated in Section 5 through some numerical tests
and the work is concluded in Section 6.

2. BRANCH AND BOUND METHOD

In this paper, {a, b} denotes an unordered set, while (a, b)
denotes an ordered set, both consisting of the elements
a and b. Note that {a, b} = {b, a}, but (a, b) 6= (b, a).
We define Nn as the set of first n natural numbers, i.e.
Nn = {1, 2, · · · , n}, where the subscript n is explicitly used
to denote the size of the set. For a given set Xn, P(Xn)
represents the ensemble of all possible permutations of the
elements of Xn. For n = 2, P(N2) = {(1, 2), (2, 1)}. An
element of P(Nn) is represented as Pn.

G(s) denotes the transfer function matrix relating the
inputs u and outputs y of the process. The transfer
function matrix G(s) evaluated at the frequency ω is
represented as G(jω) ∈ C

n×n and the steady-state gain
matrix as G ∈ R

n×n. For Pn ∈ P(Nn), G∗Pn
or simply

GPn
denotes the permuted matrix G with columns indexed

by Pn. For given Pn, it is considered that the pairings are
selected on the diagonal elements of GPn

. For example, for
n = 2 the selected pairing are {y1 − u1, y2 − u2} or {y1 −
u2, y2 −u1}, when P2 is (1, 2) or (2, 1), respectively. Thus,
the pairing selection can be seen as finding the optimal set
P opt

n by solving the following optimization problem

min
Pn∈P(Nn)

J(Pn) (1)

s.t. Li(Pn) ≥ 0; i = 1, 2, · · · , ℓ (2)

where J is the pairing selection criterion and Li, i =
1, . . . , ℓ denotes a set of inequality constraints. In general, a
combinatorial optimization problem can also have equality
and logical constraints. Such constraints are not considered
in this paper.

The implementation of BAB schemes requires a solution
tree containing all possible alternatives. For pairing selec-
tion, the solution tree for n = 4 is shown in Figure 1. The
tree has (n + 1) levels, where level i corresponds to ith

output yi (except level 0 corresponding to the empty root
node). A node at level i represents a partially assigned
pairing, where the label of the node denotes the input
with which yi is paired. At level i, a node has (n− i) sub-
nodes and the pairings assigned at a node are passed to all
its sub-nodes. The tree has n! terminal nodes (marked by

grey circles in Figure 1), which represent different pairing
alternatives Pn.

For ease of notation in the subsequent discussion, we
introduce the concepts of fixed and candidate sets.

Definition 1. For a node Pf , f ≤ n, the fixed set Ff is an
ordered set and is same as the node itself.

Definition 2. The candidate set Cc = Nn \ Ff is an
unordered set, whose elements can be freely chosen to
append Pf .

Based on these definitions, the solution tree is branched
as follows:

Definition 3. A node Pf with candidate set Cc has c =
(n − f) branches. The fixed and candidate sets of the ith

sub-node, i = 1, 2, · · · , c are defined as

F i
f+1 = (Ff , ci) (3)

Ci
c−1 = Cc \ ci (4)

where ci is the ith element of Cc.

To illustrate the concepts of fixed and candidate sets,
consider the leftmost node on level 2. The fixed and
candidate sets of this node are F2 = (1, 2) and C2 = {3, 4},
respectively. Similarly, the fixed and candidate sets of the
adjacent node with label 3 are F2 = (1, 3) and C2 = {2, 4}.
It can be easily established that the symmetric solution
tree branched based on Definition 3 is non-redundant and,
every terminal node belongs to one and only one branch.

One should note that the number of nodes in the solution
tree for pairing selection is much more than the number of
pairing alternatives n!. A BAB method gains its efficiency
by pruning branches of the tree that cannot lead to the
optimal solution. To illustrate this, consider a node Pf

with fixed set Ff and candidate set Cc. Then, the ensemble
of all n-element ordered sets that can be obtained by
expanding Pf is given as

S = {(Ff , Pn−f )|Pn−f ∈ P(Cc)} (5)

For example, for a node with F2 = (2, 4) and C2 = {1, 3},
S = {(2, 4, 1, 3), (2, 4, 3, 1)}. Let J(S) be a lower bound of
J calculated over all the elements of S,

J(S) ≤ J(Pn) ∀Pn ∈ S (6)

If B is a known upper bound on Jopt(Pn) and J(Pn) > B,
then it follows that

J(S) > Jopt(Pn) (7)
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Then the set S ⊂ P(Nn) cannot contain the optimal
solution, hence, none of the pairing alternatives contained
in S need to be evaluated. Similarly, let L̄i(S) denote an
upper bound of Li(Pn) calculated over all the elements
of S. Then the node Pf can be pruned, if L̄i(S) < 0,
i = 1, 2, · · · , ℓ. Whenever the BAB method encounters a
terminal node, which gives a lower criterion value than B
and satisfies (2), the bound B is updated. This way the
optimal solution can be obtained without evaluating all
the alternatives.

Remark 4. For a node Pn−1 on level (n−1), the cardinality
of the candidate set is 1. This implies that the only
terminal set that can be reached from Pn−1 is Pn =
(Fn−1, C1). Thus, instead of evaluating nodes on level (n−
1), one may directly consider the terminal node Pn. For
feature subset selection using BAB approaches, a similar
recommendation has been made by Yu and Yuan [1993].

Remark 5. Instead of finding the optimal solution only,
the BAB method can easily be modified to find the best
q solutions. This can be achieved by replacing the scalar
bound B with a q-element vector of bounds and always
using the vector element with maximum value (B̄) for
pruning purposes. Whenever a feasible terminal node with
criterion value lower than B̄ is found, B̄ in the vector
of bounds is replaced by the criterion value of the new
terminal node and B̄ is recalculated from the updated
vector.

3. RELATIVE GAIN ARRAY

RGA is one of the simplest and most popular tools for
pairing selection. For a steady-state gain matrix G ∈
R

n×n, the RGA is defined as [Bristol, 1966]

Λ(G) = G ◦ G−T (8)

where ◦ is the element-wise or Hadamard product and
G−T is transpose of the inverse of G. Though originally
defined for steady-state gain matrices, frequency depen-
dent RGA can be calculated similarly by replacing G with
G(jω) in (8) [Hovd and Skogestad, 1992]. The follow-
ing rules are often used for selecting pairings based on
RGA [Skogestad and Postlethwaite, 2005]:

(1) Avoid pairings on the negative elements of RGA
evaluated at steady-state.

(2) Prefer pairings on the elements of RGA, evaluated
at (expected) bandwidth frequency ωB , such that the
permuted RGA matrix with selected pairings along
the diagonal is close to the identity matrix.

The first rule is a necessary condition for integrity of the
closed-loop system against loop failure [Grosdidier et al.,
1985]. The second rule is based on interpreting RGA as an
interaction measure. Although the theoretical foundations
of the second rule are weak for processes with more than 3
inputs and 3 outputs [Skogestad and Postlethwaite, 2005],
it has been proven to be beneficial for screening pairing
alternatives in the past. For selecting pairings according to
the second rule, Skogestad and Postlethwaite [2005] have
introduced the RGA-number defined as

RGA-number(Pn) = ‖Λ(GPn
(jωB)) − I‖sum (9)

where ‖ · ‖sum is the sum-norm, computed as the sum
of the absolute values of all the elements of a matrix.

We recall that RGA for a permuted matrix results in
similar permutation in RGA itself, i.e. Λ(GPn

(jωB)) =
ΛPn

(G(jωB)) [Bristol, 1966]. In the subsequent discussion,
we drop the argument of Λ for notational simplicity. We
only consider RGA-number evaluated at the steady-state
for pairing selection, but the proposed results hold at any
arbitrary frequency. Furthermore,

‖Λ − I‖sum = ‖Λ‖sum + trace (|Λ − 1nn| − |Λ|)

where | · | represents element by element absolute values
and 1nn is an n×n matrix of 1’s. Let M = |Λ−1nn|− |Λ|.
Since ‖Λ‖sum is constant and MPn

= |ΛPn
− 1nn| − |ΛPn

|,
the optimization problem for selecting pairings based on
RGA can be stated as

min
Pn∈P(Nn)

trace (MPn
) (10)

s.t. [ΛPn
]ii > 0; i = 1, 2, · · · , n (11)

The key for applying BAB method for pairing selection is
derivation of a tight lower bound on the selection criterion
over the set of all pairing alternatives that can be reached
from a node representing partially assigned pairings. Such
a lower bound is proposed in the next proposition.

Proposition 6. For a node Pf with fixed set Ff and can-
didate set Cc, let S in (5) represent the ensemble of all
n-element ordered sets that can be obtained by expanding
Pf . For Pn ∈ S, let MPn

= |ΛPn
− 1nn| − |ΛPn

| be
partitioned as

MPn
=

[

M11 M12

M21 M22

]

(12)

where M11 ∈ R
f×f and M22 ∈ R

c×c correspond to the
assigned and unassigned pairings, respectively. Define c-
dimensional vectors r and t with elements

ri = min
j

[M22]ij and tj = min
i

[M22]ij (13)

Then,

min
Pn∈S

‖ΛPn
− I‖sum ≥ ‖Λ‖sum

+ trace (M11) + max





c
∑

i=1

ri,

c
∑

j=1

tj



 (14)

The BAB method can be applied for pairing selection
based on RGA using the bound in Proposition 6. Note
that the constraint on the sign of relative gains provides
another alternative for pruning nodes. This constraint only
needs to be checked for the element being moved from
Cc to Ff during the expansion of node using branching
rule in Definition 3. By deriving lower bounds similar
to (14), the BAB approach can also be used for pairing
selection using Hankel interaction measure [Wittenmark
and Salgado, 2002] and variants of RGA, such as effective
RGA [Xiong et al., 2006].

The reader should note that the optimization problem
for pairing selection using RGA can also be cast as an
MILP [Kookos and Perkins, 2001]. The original formu-
lation proposed by Kookos and Perkins [2001] was for
non-squared systems. For square systems, as considered in
this paper, the formulation of Kookos and Perkins [2001]
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is not very efficient (details not shown due to lack of
space). Furthermore, the general BAB framework can also
handle selection criterion, which cannot be represented as
an MILP, as discussed next.

4. µ-INTERACTION MEASURE

The individual loops of a decentralized controller are often
designed independent of each other. For assessing the
feasibility of stabilizing the closed-loop system through the
independent design method, Grosdidier and Morari [1986]
proposed the µ-interaction measure (µ-IM). To present
this method, let the columns of the transfer matrix G(s)
be permuted such that the chosen pairings lie along the
diagonal and G̃(s) represent the matrix consisting of the
diagonal elements of G(s). Then, the diagonal controller

K(s) stabilizing G̃(s) also stabilizes G(s), if [Grosdidier
and Morari, 1986]

σ̄
(

T̃ (jω)
)

< µ−1
∆ (E(jω)) ∀ω ∈ R (15)

where µ denotes the structured singular value [Skogestad
and Postlethwaite, 2005], which is computed with a diag-

onally structured ∆, T̃ (s) = G̃K(s)(I + T̃K(s))−1 and

E(s) =
(

G(s) − G̃(s)
)

G̃(s)−1 (16)

The condition in (15) is called µ-IM. This powerful result
allows the designer to impose restrictions on the individual
controllers, but still design the controller solely based on
G̃(s) such that closed loop stability is ensured. We note
that E(s) is independent of the controller, but depends
on the selected pairings. If the pairings are chosen such
that µ∆ (E(jω)) is small at all frequencies, the restrictions
on decentralized controller synthesis using independent
design method is minimum. µ∆ (E(jω)) can also be seen as
a measure of generalized diagonal dominance of the matrix
G(jω), where G(jω) is said to be generalized diagonally
dominant if [Skogestad and Postlethwaite, 2005]

µ∆ (E(jω)) < 1 (17)

If a pairing exist for which (17) holds, this pairing can be
easily found using iterative RGA [Skogestad and Postleth-
waite, 2005]. In absence of existence of such a pairing, a
BAB method can be used to find the pairing for which
G(jω) is most diagonally dominant. In this paper, we
consider pairing selection by minimizing µ∆ (E), but the
proposed results hold for any other frequency. As the
exact computation of µ is computationally intractable,
we instead minimize the upper bound on µ (denoted as
µ̄) obtained through D-scaling method [Skogestad and
Postlethwaite, 2005]. Specifically, the following optimiza-
tion problem is considered

min
Pn∈P(Nn)

µ̄∆

(

GPn
(I ◦ GPn

)−1 − I
)

(18)

s.t. [ΛPn
]ii > 0; i = 1, 2, · · · , n (19)

A lower bound of (18) for the application of BAB method
is derived next.

Proposition 7. For a node Pf with fixed set Ff and can-
didate set Cc, let S in (5) represent the ensemble of all

n-element ordered sets that can be obtained by expanding
Pf . For Pn ∈ S, consider that E = GPn

(I ◦ GPn
)−1 − I is

decomposed as

E =

[

E11 E12

E21 E22

]

(20)

where E11 ∈ R
f×f and E22 ∈ R

c×c. Then

min
Pn∈S

µ̄∆ (E) ≥ ρ (E11) (21)

In comparison to ρ (E11), µ̄∆1
(E11) provides a tighter

lower bound on µ̄∆ (E), where ∆1 is f×f diagonal matrix.
The computation of µ̄∆1

(E11), however, is costly. As a
BAB method spends most of its time in evaluating nodes
that cannot lead to the optimal solution, we use the com-
putationally cheaper albeit weaker lower bound ρ (E11) in
this paper. With this lower bound, the computation of µ̄ is
only required at the terminal nodes. Note that in (21), E11

corresponds to the assigned pairings. A similar idea can
be used for deriving the lower bound for pairing selection
based on ν-gap metric [Samyudia et al., 1995] using BAB
approach.

5. NUMERICAL TESTS

In this section, we demonstrate the efficiency of the de-
veloped BAB methods through numerical examples. First,
we use randomly generated matrices to check the average
performance of these BAB algorithms. Subsequently, these
methods are used for selecting pairings for the Tennessee
Eastman benchmark problem [Downs and Vogel, 1993].
All these tests are carried out on a notebook with Intelr

CoreTM Duo Processor T2400 (1.83 GHz, 2MB RAM)
using MATLABr 7.0.
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Fig. 2. Random test for pairing n×n systems based on the
RGA-number, (a) computation time against n and (b)
number of nodes evaluated against n;

5.1 Randomly generated matrices

The efficiency of the BAB pairing approaches are firstly
examined through some random tests. The RGA-number
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based BAB algorithm (BBRGA) is applied to 100 ran-
domly generated n × n matrices for every n ranging from
2 to 20. The average computation times and the av-
erage number of node evaluations required by BBRGA
are shown in Figure 2. For comparison, the estimated
computation time and the number of node evaluations
(n!) required by a brute-force approach are also shown in
Figure 2. For each n, the computation time required for a
brute-force approach is estimated by multiplying n! with
the time required for evaluating the RGA-number of an
n × n matrix (averaged over 10, 000 instances).

It can be seen from Figure 2 that the BAB approach can
easily handle matrix sizes as large as n = 20 within 1
minute. The brute-force based approach can only deal with
matrix sizes up to n = 9 in the same amount of time.
For n > 8, BBRGA is at least 100 times more efficient
(in terms of both computation time and number of nodes
evaluated) than the brute-force search.

A similar test is carried out for µ-IM based pairing
selection. The BAB based approach (BBMU) is applied
to 100 randomly generated n × n matrices for every n
ranging from 2 to 10. The average computation time and
number of node evaluations of BBMU are compared with
the brute-force approach in Figure 3. For the brute-force
approach, the computation time for every n is estimated
as the product of n! and the time required for evaluating
µ̄ of an n × n matrix (averaged over 10 instances).
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Fig. 3. Random test for pairing n×n systems based on the
µ-IM, (a) computation time against n and (b) number
of nodes evaluated against n;

The lower bound on µ̄(E) in (21) is loose. Therefore,
the node evaluation improvement of BBMU over the
brute-force search is not as large as that achieved by
BBRGA. However, calculation of the lower bound ρ(E11)
is much faster than direct evaluation of µ̄(E). Therefore,
the improvement in computation time is still significant.
Overall, BBMU is at least 100 times faster than the brute-
force search for n > 6. Efforts are currently being made to
find a tighter and computationally cheaper lower bound

on µ̄(E) in order to improve the efficiency of the BAB
approach further.

5.2 Tennessee Eastman benchmark problem

Finally, the RGA-based approach is applied to the Ten-
nessee Eastman (TE) benchmark problem [Downs and
Vogel, 1993], which has 12 manipulated variables and 22
(non-analyzer) measurements. For this process, McAvoy
and Ye [1994] selected 10 out of 22 measurements to form
the inner loops of cascade controllers. In addition, 3 mea-
surements were used to stabilize the system. Finally, a 9×9
steady-state gain matrix corresponding to the outputs and
inputs shown in Table 1 was provided for pairing selection.

Table 1. Input and output variables

Input Description Output Description

u1 A feed s.p. y1 Reactor feed
u2 D feed s.p. y2 Reactor temp.
u3 C feed s.p. y3 Reactor pressure
u4 Purge s.p. y4 Separator temp.
u5 Steam s.p. y5 Stripper temp.
u6 Reactor cooling s.p. y6 Recycle flow
u7 Separator cooling s.p. y7 Compressor power
u8 Recycle valve y8 Separator pressure
u9 Agitator speed y9 Stripper pressure

This problem has 362,880 pairing alternatives. BBRGA is
able to find the best 50 pairing alternatives in less than 0.1
seconds with evaluation of only 843 nodes. 28 among these
50 pairing alternatives have the same minimum RGA-
number value, 47237.6359. We also use BBMU, which finds
50 best pairing alternatives with positive RGA elements
in about 10 seconds with evaluation of 4787 nodes. The
10 best pairing alternatives found using BBMU and their
corresponding µ̄(E) values are shown in Table 2.

Table 2. Best pairing alternatives using BBMU

µ̄(E) y1 y2 y3 y4 y5 y6 y7 y8 y9

3.9635 u7 u6 u4 u2 u5 u9 u8 u1 y3

3.9890 u7 u6 u4 u2 u5 u9 u8 u3 u1

3.9988 u3 u6 u4 u9 u5 u7 u8 u1 u2

4.0203 u3 u6 u4 u9 u5 u7 u8 u2 u1

4.0871 u7 u6 u4 u9 u5 u2 u8 u1 u3

4.1125 u7 u6 u4 u9 u5 u2 u8 u3 u1

4.3469 u7 u6 u4 u3 u5 u9 u8 u1 u2

4.3676 u7 u6 u4 u3 u5 u9 u8 u2 u1

4.4243 u3 u6 u4 u2 u5 u9 u8 u7 u1

4.4246 u3 u6 u4 u2 u5 u9 u8 u1 u7

For this process, McAvoy and Ye [1994] used some intuitive
knowledge to reduce the pairing selection problem to 36
cases of 4 × 4 and 5 × 5 systems. Among these cases,
4 schemes, which are shown in Table 3, were selected
for detailed comparison. It seems to us that such an
approach was undertaken due to the lack of availability
of tools to handle large-scale processes. The promising
pairing alternatives found in this paper cannot be directly
compared with the pairings suggested by McAvoy and
Ye [1994], as some pairing information is unavailable.
It is interesting to note, however, that among the 10
best pairing alternatives found using BBMU, all contain
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scheme 1, 6 of them include scheme 2 and 2 contain
scheme 4. In comparison, no match is seen between the 28
pairings with minimum RGA-number and the suggestions
made by McAvoy and Ye [1994]. One apparent reason
for this discrepancy is that for pairing selection the use
of RGA-number evaluated at bandwidth frequency has
been recommended and not at steady-state [Skogestad and
Postlethwaite, 2005]. Overall, it is demonstrated that the
pairing selection problem for a large-scale process can be
solved easily with the tools developed in this work.

Table 3. Pairing alternatives recommended by
McAvoy and Ye [1994]

.

y1 y2 y3 y4 y5 y6 y7 y8 y9

Scheme 1 n/a u6 u4 n/a u5 n/a u8 n/a n/a
Scheme 2 u7 u6 u4 n/a u5 n/a u8 n/a n/a
Scheme 3 n/a u6 u4 u7 u5 n/a u8 n/a n/a
Scheme 4 n/a u6 u4 n/a u5 u7 u8 n/a n/a

6. CONCLUSIONS

A branch and bound framework for input-output pairing
selection is developed. The generality and efficiency of this
framework is demonstrated using two different pairing se-
lection criteria, i.e. the RGA-number and the µ-IM, where
a reduction of several orders of magnitude in solution time
is seen over brute-force search. Future work will focus on
development of tighter lower bounds and alternate pruning
strategies in order to improve the efficiency further. To this
end, the pairing selection problem has many similarities to
the well-studied Traveling Salesman Problem (TSP); (see
e.g. [Gutin and Punnen, 2002]. We will aim at adapting
some of the pruning and branching strategies used for
solving the TSP problem using BAB algorithms for the
pairing selection problem.
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