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Abstract: The paper studies robust simultaneous stabilization problem via output feedback for
a set of nonlinear discrete-time uncertain systems. New version of dissipativity called exponential
dissipativity is defined for discrete-time stochastic system with Markovian switching. It is proved
that if this stochastic system with special choice of its parameters is exponentially dissipative
then the original set of uncertain system is simultaneously stabilizable and the stabilizing control
has robustness properties in the sense that it admits some feedback uncertainties. The linear
robust simultaneous stabilization problem is considered as a particular case. In this case the
results are obtained in the form of convergent algorithm for computing of output feedback
gain, based on iterative solution of LMI’s. This algorithm is applied to the problem of angular
stabilization of longitudinal multi-regime aircraft motion.

1. INTRODUCTION

Stabilization via output feedback and simultaneous stabi-
lization are ”hard” problems in control theory, see Polyak
and Shcherbakov (2005) and references therein. At the
same time the control practice requires to solve these
problems under parameters uncertainty and the ”hard-
ness” of the above problem increases. Moreover if we have
obtained some stabilizing control the following question
arises: whether this control admits some uncertainties such
that the system saves the stability property?

There exist several ideas and approaches for the solu-
tion of the mentioned problems. This paper considers
the stabilization problem for a set of nonlinear discrete-
time uncertain systems via output feedback. To evalu-
ate admissible uncertainties of stabilizing control we de-
velop new stochastic version of Willems dissipativity, see
Willems (1972) called here ”exponential dissipativity”. For
obtaining the stabilizing control we use the comparison
idea, see Bernstein (1987); Pakshin (2007) and introduce
into consideration the stochastic system with Markovian
switching such that if this system is exponentially stable
in the mean square (ESMS), then the considered set of
uncertain system is exponentially stable.

The dissipative systems theory has become an important
tool in the investigations of stability and stabilization of
nonlinear deterministic control systems, as evident from
the works of numerous authors, see Hill and Moylan
(1980); Byrnes et al. (1991); Byrnes and Lin (1994);
Andrievskii and Fradkov (2006) and references therein.

⋆ This work was supported in part by the Russian Foundation for

Basic Research under grants 07-01-92166, 08-01-00495

In recent years this theory has been extended to stochastic
systems in various different ways by many authors, see
Florchinger (1999); Thygesen (1999); Borkar and Mitter
(2003); Aliyu (2004); Shaked and Berman (2005); Zhang
and Chen (2006); Pakshin (2007) and references therein.
Florchinger (1999); Thygesen (1999); Borkar and Mitter
(2003); Shaked and Berman (2005); Zhang and Chen
(2006) studied the controlled systems described by the Itô
diffusion processes while Aliyu (2004) investigated the
controlled systems with time delay and Markov jumps.
Shaked and Berman (2005); Zhang and Chen (2006)
develope H∞ control theory, from the dissipation point
of view, for a large class of stochastic, nonlinear, time-
invariant systems with state and output feedback. Borkar
and Mitter (2003) showed relevance of dissipativity ideas
by examining the problem of ergodic control of partially
observed diffusions. Pakshin (2007) studied dissipativity
of Itô diffusion processes with Markovian switching.

The particular case of dissipativity called passivity is
effectively used for deterministic systems, see Byrnes et al.
(1991); Byrnes and Lin (1994); Polushin et al. (2000);
Andrievskii and Fradkov (2006) and references therein.
The main relevant result in this direction is following:
if considered deterministic system is passive and zero-
state detectable then any output feedback in the form of
smooth first/third sector function stabilizes this system.
This property is not valid for stochastic systems with
control dependent noise, see Pakshin (2007) and this fact
motivated to introduce in this paper the new notion of
exponential dissipativity, study its properties, and apply
it to robust simultaneous stabilization problem.

The paper is organized as follows. In Section 2 the notion
of exponential dissipativity is defined and main general
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theorems are formulated. In section 3 these theorems are
applied to robust simultaneous stabilization problem via
output feedback. In linear case the convergent algorithm
for obtaining the output feedback gain is proposed. This
algorithm is based on iterative solution of LMI’s. An
example from the field of flight control ends the paper.

2. EXPONENTIAL DISSIPATIVITY

Consider nonlinear discrete-time system described by the
following stochastic difference equations with Markovian
switching:

xn+1 = a(xn, rn) + B(xn, rn)un +
s

∑

l=1

γl[fl(xn, rn) + Gl(xn, rn)un]vnl, (1)

zn = c(xn, rn), n = 0, 1, . . . (2)

where xn ∈ R
m is the state vector, un ∈ R

k is the input
vector, zn ∈ R

q is the output vector, rn is the homogenous
Markov chain whose state space is the set of integers
N = {1, 2, ..., ν} and the matrix of transition probabilities
P = [Pij ]

ν
1 = [Prob{rn+1 = j | rn = i}]ν1 ; vn =

[vn1vn2 . . . vns]
′ is the Gaussian white noise defined on

the complete probability space (Ω,F , P) with the natural
filtration Fn, n = 0, 1 . . . , generated by v up to time n and
with the identity covariance matrix; γl, l = 1, . . . , s are
positive scalars; the initial state [x0 r0]

′ is deterministic.
Take the assumptions that the noise process vn does not
depend on the initial state and un is Markov process with
respect to Fn; a(x, i), B(x, i), fl(x, i), Gl(x, i) are smooth
in x functions, such that a(0, i) ≡ 0, B(0, i) ≡ 0, fl(0, i) ≡
0, Gl(0, i) ≡ 0, l = 1, . . . , s, i ∈ N.

Denote L2
F ([0, N ], Rk) the set of all Fn-Markov input

processes such that

‖ u ‖2
L2([0,N ]), E

N
∑

n=0

‖ un ‖2< ∞, N = 0, 1, . . . ,

where E is the expectation operator.

Consider a function W : R
m × N × R

q → R associated
with the system (1), (2). This function is called the µ–
supply rate on [0,∞) if it has the following property:
for any u ∈ L2

F ([0, N ], Rk) the system (1) with arbitrary
deterministic initial conditions x0, r0 has the following
property

E

N
∑

n=0

| W (un, rn, zn) | + | µ(xn, rn) |< ∞, N = 0, 1 . . . ,

where µ(x, i) is continuous in x for all i ∈ N function such
that µ(x, i) > 0, x 6= 0, µ(0, i) = 0.

Definition 1. System (1), (2) with µ–supply rate W is said
to be exponentially dissipative on [0,∞), if there exists a
nonnegative continuous function V : R

m × N → R called
the storage function, such that for all N = 1, 2 . . . ., x0 =
x ∈ R

m, r0 = i ∈ N

Ex,iV (xN , rN ) − V (x, i) ≤ Ex,i

N−1
∑

n=0

W (un, rn, zn) −

µ(xn, rn). (3)

The above inequality according to Willems (1972) can
be called the exponential dissipation inequality. If the
considered system is autonomous then the inequality (3)
under known additional conditions expresses the condition
of the ESMS, see Pakshin (1994). This fact explains the
term ”exponential dissipativity”. It is possible to define the
stochastic dissipativeness in more general form based on
notions of the Fn-stopping time and Fn-super-martingale
Thygesen (1999); Borkar and Mitter (2003), but such a
generalization will not be considered in this paper.

Definition 2. The available storage Va(x, i) of the system
(1), (2) with µ–supply rate W (u, i, z) is the function
defined for N ≥ 0 by

Va(x, i) = sup
u∈L2

F
([0,N−1],Rk)

sup
N=1,2...

Ex,i

N−1
∑

n=0

[−W (un, rn, zn)

+µ(xn, rn)]; Va(x, i) = 0, if N = 0.

As in the deterministic case the available storage plays
important role in determining whether or not the system
is dissipative. This is shown in the following theorem.

Theorem 3. The available storage Va(x, i) is finite for all
x ∈ R

m, i ∈ N if and only if the system (1), (2) is
exponentially dissipative on [0,∞). Moreover, for any
possible storage function V the following inequality holds
0 ≤ Va(x, i) ≤ V (x, i) ∀x ∈ R

m, i ∈ N and Va is itself a
possible storage function.

Now consider the functions W and µ in the special
quadratic forms

W (u, i, z) = z′Q(i)z + 2z′S(i)u + u′R(i)u,

µ(x, i) = x′M(i)x, M(i) = M ′(i) > 0, i ∈ N (4)

Theorem 4. Suppose that the system (1), (2) is exponen-
tially dissipative with storage function V (x, i), satisfying
the inequality

λ1 ‖ x ‖2≤ V (x, i) ≤ λ2 ‖ x ‖2, λ1, λ2 > 0, (5)

and the functions W and µ are given by (4). Let ϕ : R
q →

R
k is continuous function such that ∀z 6= 0

z′Qz − 2z′Sϕ(z) + ϕ′(z)Rϕ(z) ≤ 0, ϕ(0) = 0. (6)

Then the output feedback control

u = −ϕ(z) (7)

provides ESMS of the trivial solution xn ≡ 0 of the system
(1).

The proofs of both the theorems are discrete-time counter-
part of the results by Pakshin (2007) and they are omitted
because of limited space.

Theorem 4 can be interpreted in the following way. Sup-
pose that some stabilizing output feedback control pro-
vides exponential dissipativity of the considered system.
Then this systems will be stable for all additional feed-
backs (7), satisfying (6). This property will be used in the
sequel by studying the robustness of stabilizing control.

3. ROBUST SIMULTANEOUS STABILIZATION

3.1 Nonlinear systems

Let the set of deterministic nonlinear systems described
by the following difference equations:
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xn+1 = ai(xn) + Bi(xn)un +
s

∑

l=1

σil(n)(fil(xn) + Gil(xn)un), (8)

zn = ci(xn), n = 0, 1, . . . , i ∈ N, (9)

where σil(n), n = 0, 1, . . . , l = 1, . . . , s i = 1, . . . , ν, are
uncertain parameters such that

| σil(n) |≤ δil, n = 0, 1, . . . , l = 1, . . . , s, i ∈ N, (10)

other notations are the same as above. Consider the follow-
ing robust simultaneous stabilization problem: determine
the output feedback control law in the form

u = −υ(z), υ(0) = 0, (11)

where υ : R
q → R

k is continuous function such that the
closed loop systems from the set (8), (9) are asymptotically
stable for all σil(n), satisfying (10). Denote

āi(x) = ai(x) − Bi(x)υ(z), f̄il(x) = fi(x) − Gil(x)υ(z),

and consider the following stochastic system with Marko-
vian switching

xn+1 = (1 + α(rn))1/2[ā(xn, rn) + B(xn, rn)ũn] +
s

∑

l=1

γl(rn)[f̄l(xn, rn) + Gl(xn, rn)ūn]vnl, (12)

zn = c(xn, rn), n = 0, 1, . . . , (13)

where α(i) = αi > 0 is some parameter and ũ is some
additional input (possible feedback uncertainty), a(x, i) =
ai(x), B(x, i) = Bi(x), fl(x, i) = fil(x), Gl(x, i) =
Gil(x), c(x, i) = ci(x), γl(i) = γil, l = 1, . . . , s, i ∈
N. The noise intensities and the uncertainty bounds are
connected by the following inequalities

(αi −

s
∑

l=1

δ2
il

Γil
) > 0,

0 < Γil ≤ γ2
il − δil(

s
∑

j 6=l

δij + δil) i ∈ N. (14)

Theorem 5. Suppose that (11) is robust stabilizing control
for the set of parameter-uncertain system (8), (9) that
simultaneously renders the system (12), (13) exponentially
dissipative with quadratic storage function

V (x) = x′Px. (15)

and with quadratic µ–supply rate given by (4). Let ϕ :
R

q → R
k be a continuous function satisfying (6). Then

each output feedback control in the form

u = −(υ(z) + ϕ(z)), (16)

is robust stabilizing control for the set of system (8), (9).

The proof is based on results by Bernstein (1987) and
Pakshin (2007).

So, the property of exponential dissipativity of stochastic
comparison system (12), (13) allows to find the family of
output feedback controllers (16) providing robust simul-
taneous stabilzation of the set of uncertain systems (8),
(9). The function ϕ(z) plays here the role of the ”feedback
uncertainty”.

3.2 Linear systems

As an important particular case consider the set of linear
discrete-time uncertain system described by the equations

xn+1 = Aixn + Biun +

s
∑

l=1

σil(n)(Ailxn + Bilun), (17)

zn = Cxn, i ∈ N.

The problem is to find the gain matrix F of the output
feedback control

un = ūn + ũn, ūn = −Fzn, ũn = −ϕ(zn) (18)

such that (18) provides exponential stability of all the
closed loop systems from the set (17) under parameters un-
certainties satisfying (10) and under feedback uncertainty
ϕ(z), satisfying (6). Denote Aci = Ai−BiFC, Acil = Ail−
BilFC and consider the system

xn+1 = Acixn + Biũn +

s
∑

l=1

σil(n)(Acilxn + Bilũn),(19)

zn = Cxn, i ∈ N.

Stochastic comparison system for (19) has the form

xn+1 = [1 + α(rn)]1/2[Ac(rn)xn + B(rn)ũn] +
s

∑

l=1

γl(rn)[Acl(rn)xn + Bl(rn)ũn]vnl, zn = Cxn, (20)

where Ac(i) = Aci, B(i) = Bi, Acl(i) = Acil, Bl(i) = Bil

The noise intensities γl(i) = γil and uncertainty bounds δil

satisfy the inequalities (14). Applying theorem 3 we obtain
the following result.

Theorem 6. System (20) with quadratic µ–supply rate is
exponentially dissipative if and only if the following matrix
inequalities hold

Hi = H ′
i > 0,

[

Λi11 Λi12

Λ′
i12 Λi22

]

≤ 0, i ∈ N, (21)

where

Λi11 = A′
cαiPiAcαi−Hi+

s
∑

l=1

γ2
ilA

′
cilPiAcil+Mi−C ′

iQiCi,

Λi12 = A′
cαiPiBαi − C ′

iS +

s
∑

l=1

γ2
ilA

′
cilPiB

′
il,

Λi22 = B′
αiPiBαi − Ri +

s
∑

l=1

γ2
ilB

′
ilPiB

′
il,

Acαi = (1+αi)
1/2Aci, Bαi = (1+αi)

1/2Bi, Pi =

ν
∑

j=1

pijHj .

The corresponding storage function has the form: V (x, i) =
x′Hix, i ∈ N.

Letting Hi = H, i ∈ N. we exclude dependency from the
transition probabilities. Then we can formulate sufficient
conditions of exponential dissipativity as follows.

Corollary 7. System with quadratic µ–supply rate is ex-
ponentially dissipative if the following matrix inequalities
hold
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H = H ′ > 0,

[

Γi11 Γi12

Γ′
i12 Γi22

]

≤ 0, i ∈ N, (22)

where

Γi11 = A′
cαiHAcαi−H+

s
∑

l=1

γ2
ilA

′
cilHAcil+Mi−C ′

iQiCi,

Γi12 = A′
cαiHBαi − C ′

iS +

s
∑

l=1

γ2
ilA

′
cilHB′

il,

Γi22 = B′
αiHBαi − Ri +

s
∑

l=1

γ2
ilB

′
ilHB′

il.

The corresponding storage function has the form: V (x, i) =
x′Hx, i ∈ N.

The problem will be solved if we obtain the matrices F, H,
satisfying bilinear matrix inequalities (22). Unfortunately
the solution of these inequalities with respect to pair F, H
is connected with essential difficulties. We propose the
following approach. First obtain the gain matrix F, which
provides ESMS of the system (20) with ũn ≡ 0. Then
the inequalities (22) are reduced to LMI’s with respect
to matrix H and this matrix can be easily found by the
feasibility test, see Boyd et al. (1994). According to reasons
above consider the stochastic system

xn+1 = [1 + α(rn)]1/2[A(rn)xn + B(rn)ūn] +
s

∑

l=1

γl(rn)[Al(rn)xn + Bl(rn)ūn]vnl, zn = Cxn, (23)

Suppose that the state feedback control

ūn = −Kxn (24)

provides ESMS of the system (23). Then the gain matrix
can be found as K = ΥX−1, see Boyd et al. (1994) for
details, where the pair Υ, X is solution of the LMI’s

X > 0,

[

X Z
Z ′ Di(X)

]

> 0, (25)

Z = [(AαiX − BαiΥ)′ γ1(Ai1X − Bi1Υ)′ . . .

γN (AiNX − BiNΥ)′, ], Di(X) = diag[M−1
ai X . . . X]

for some matrix Mai = M ′
ai > 0. If the the equation

FC = K, (26)

has exact solution with respect to matrix F , then this
matrix is the gain matrix of output stabilizing control

ūn = −Fzn (27)

and it can be easily found from the equation (26). Unfor-
tunately it is possible only with a special structure of the
matrix K. To find exact solution of (26) we try impose
the structural constrains for the matrix K. Write singular
value decomposition for the matrix C :

C = USV ′, U ′U = I, V ′V = I, (28)

where U and V are orthogonal matrices, S is rectangular
matrix which diagonal elements represent singular values
of C, and other elements are zeroes. Let V = [V1 V2], where
V1 ∈ R

m×q, V2 ∈ R
m×(m−q).

Define
F = KC+, (29)

where superscript + denotes Moore-Penrose inverse. De-
noting Âαi = V ′AαiV , B̂αi = V ′Bαi , K̂ = KV =
[K̂1 K̂2], where K̂1 = KV1, V1 ∈ R

m×q, K̂2 =
KV2, V2 ∈ R

m×(m−q) and taking into account (28) we
have

Aαi − BαiFC = V (Âαi − B̂αi[K̂1 K̂2]

[

Iq 0
0 0

]

V ′, (30)

similarly

Aij−BijFC = V

(

Âij − B̂ij [K̂1 K̂2]

[

Iq 0
0 0

])

V ′. (31)

Using these relations we can write

KC+C = KV1V
′
1 = K(I − V2V

′
2) = K − KV2V

′
2 . (32)

The relations (30), (31) do not depend on a specific value

of K̂2. At the same time if

K̂2 = KV2 = 0, (33)

then from (32) we obtain that equation (26) holds. So if
K is the gain matrix of state feedback stabilizing control
(24) satisfying (33), then (29) is the gain matrix of output
feedback stabilizing control (27).

The gain matrix K nonlinearly depends on variables X and
Υ from (25) and attempt to solve the LMIs (25) together
with the constraint (33) is not effective. For this reason
we take into consideration this constraint using Lagrange
multipliers method.

Consider the the cost functional

J = E[

∞
∑

n=0

(x′
nQa(rn)xn + u′

nRa(rn)un)], (34)

where Qa(i) = Qai = Q′
ai ≥ 0, Ra(i) = Rai = R′

ai >
0, i = 1, . . . , ν. Let the function (15) satisfies the equations

LiV (x) = −x′(Qai + C ′F ′RaiFC)x, i = 1, . . . , ν (35)

where LiV (x) = E[V (xn+1] | xn = x, rn = i] − V (x) is
stochastic first difference along trajectories of the system
(23) with ū given by (27).

Consider the following optimal stabilization problem. Find
the control law in the form (24), which provides ESMS of
the system (23) and minimizes the cost functional (34)
along solutions of this system under constrains (33), (35).
The constraints (35) is equal to the following system of
the algebraic matrix equations, see Pakshin (1994, 1997)

(Aαi − BαiK)′P (Aαi − BαiK) − P + Qai + K ′RaiK +
N

∑

j=1

γ2
ij(Aij − BijK)′P (Aij − BijK) = 0, i ∈ N.(36)

The functional (34) can be rewritten in the form

J = trace[PX0], (37)

where X0 = x0x
′
0. So we have the minimization problem of

the function (37) under constrains (36), (33). Solving this
problem by Lagrange multipliers method and taking into
account the results by Pakshin (1997) and Yu (2004) we
obtain the following algorithm based on iterative solution
of LMI’s.

Step 1. Assign the matrices Mai > 0, Qai ≥ 0, Rai >
0, X0 > 0 and obtain the initial value of the gain matrix
K = K0 as a solution of LMI’s (25).
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Step 2. Solve the LMI’s with respect to Yl = Y ′
l > 0 and

with respect to Pl = P ′
l > 0 :

ν
∑

i=1

(Aαi − BαiKl)Yl(Aαi − BαiKl)
′ +

s
∑

j=1

γ2
ij(Aij −

BijKl)Yl(Aij − BijKl)
′ + X0 − νYl < 0,

(Aαi − BαiKl)
′Pl(Aαi − BαiKl) +

s
∑

j=1

γ2
ij(Aij −

BijKl)
′Pl(Aij − BijKl) + K ′

lRaiKl + Qai − Pl < −I.

Step 3. Evaluate the gain increment

∆Kl = [

ν
∑

i=1

Rai + B′
αiPlBαi +

s
∑

j=1

γ2
ijB

′
ijPlBij ]

−1[

ν
∑

i=1

B′
αiPlAαi +

s
∑

j=1

γ2
ijB

′
ijPlAij ][I − V2(V

′
2Y −1

l V2)
−1V ′

2Y −1
l ] − Kl

Step 4. Update the gain Kl+1 = Kl + βl∆Kl, where
0 < βl < 2 and βl is chosen so that the system (23) with
un = Klxn is ESMS. Set l = l + 1.

Step 5. If ‖ KlV2 ‖< ǫ, then stop the procedure and let
F = KlC

+, else go to step 2.

The following theorem gives a method of obtaining the
parameter βn, that provides both ESMS of the system
(23) with un = −Kl+1xn for all the steps of the algorithm
and convergence of this algorithm. Denote

M1i = Aαi − BαiKl, W = Pl,

M2i = −Bαi∆Kl, Nij = Aij − BijKl, Ñij = −Bij∆Kl,

Zi = Qai + K ′
lRaiKl + I, i = 1, . . . , ν, j = 1, . . . , N,

ail =‖ Z
−1/2
i (M ′

2iWM2i +

N
∑

j=1

γ2
ijÑ

′
ijWÑij)Z

−1/2
i ‖2

bil = 2 ‖ Z
−1/2
i (M ′

1iWM2i +

N
∑

j=1

γ2
ijN

′
ijWÑij)Z

−1/2
i ‖2 .

Theorem 8. (Convergence of the algorithm). Let the pa-
rameter βl, l = 1, 2, . . . satisfies on each step the condition

βl < min
i

min{β+
il , 2},

where β+
il is positive root of the quadratic equation

ailβ
2 + bilβ − 1 = 0.

Then the considered algorithm converges and the system
(23) with un = −Klxn is ESMS.

Corollary 9. The parameter βil (i = 1, 2, . . . .ν; l =
0, 1, . . .) can be obtained on each step as solution of the
LMI–optimization problem:

βil →max,

0 < βil < 2,

[

Φi11 Φi12

Φ′
i12 Φi22

]

> 0, (38)

where

Φi11 = Pl,

Φi12 = [(Aαi − BαiKl − Bαiβil∆Kl)
′ (γi1(Ai1 −

Bi1 Kl − Bi1βil∆Kl)
′ . . . γis(Ais −

Bis Kl − Bisβil∆Kl)
′]Pl, Φi22 = diag[Pl . . . Pl].

4. EXAMPLE

In flight control practice it is very important to obtain an
output feedback controller with a constant gain to stabilize
the aircraft in all the possible flight modes. In this section
we briefly demonstrate the application of the proposed
method in the design of a control system for the linearized
model of the angular longitudinal aircraft motion. This
model is given by the following equations

ϑ̇ = ωz,

ω̇z =−aα
mzϑ − aωz

mzωz + aα
mzΘ + aδ

mzδ, (39)

Θ̇ =−aα
y ϑ + aα

y Θ,

where ϑ is the pitch angle, ωz is the angular velocity,
Θ = ϑ−α, α is the angle of attack, δ is the elevator angle.
In this case the state and control vectors of the system (1)
are

x(t) = [ϑ ωz Θ]′, u(t) = δ(t),

Usually only ϑ and ωz are available for direct measurement
and we have

z(t) = [ϑ ωz]
′.

The considered aircraft has nine typical flight modes with
uncertainty of each mode given by

aα
mz0 − ∆aα

mz ≤ aα
mz ≤ aα

mz0 + ∆aα
mz, ∆aα

mz = 0.05aα
mz0,

aα0
y − ∆aα

y ≤ aα
y ≤ aα

y0 + ∆aα
y , ∆aα

y = 0.05aα
y0,

aωz0
mz − ∆aωz

mz ≤ aωz
mz ≤ aωz

mz0 + ∆aωz
mz ∆aωz

mz = 0.05aωz
mz0,

aδ0
mz − ∆aδ

mz ≤ aδ
mz ≤ aδ

mz0 + ∆aδ
mz, ∆aδ

mz = 0.05aδ
mz0.

The numerical values of the parameters are the following
Krasovskii (1973):

A0
1 =

[

0 1 0
−4.2 −1.5 4.2
0.77 0 −0.77

]

, B0
1 =

[

0
−7.4

0

]

,

A0
2 =

[

0 1 0
−7.1 −1.9 7.1

1 0 −1

]

, B0
2 =

[

0
−12.7

0

]

,

A0
3 =

[

0 1 0
−78 −4.1 78
2.8 0 −2.8

]

, B0
3 =

[

0
−57
0

]

,

A0
4 =

[

0 1 0
−4 −1.4 4
0.62 0 −0.62

]

, B0
4 =

[

0
−7.5

0

]

,

A0
5 =

[

0 1 0
−116 −2.36 116
2.3 0 −2.3

]

, B0
5 =

[

0
−42
0

]

,

A0
6 =

[

0 1 0
−7.9 −1.1 7.9
0.56 0 −0.56

]

, B0
6 =

[

0
−13.8

0

]

,
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A0
7 =

[

0 1 0
−55 −0.66 55
0.84 0 −0.84

]

, B0
7 =

[

0
−22.5

0

]

,

A0
8 =

[

0 1 0
−14.5 −0.43 14.5
0.33 0 −0.33

]

, B0
8 =

[

0
−8.6

0

]

,

A0
9 =

[

0 1 0
−18 −0.31 18
0.34 0 −0.34

]

, B0
9 =

[

0
−10
0

]

,

C0
i =

[

1 0 0
0 1 0

]

, i = 1, . . . , 9.

Suppose that the control law is formed using on-board
computer such that u(t) = u(nT ) = un, nT ≤ t < (n +
1)T, n = 0, 1, ..., where T is the sample period. The
problem is to stabilize the system (39) in all the modes
for given uncertain parameters of each mode by means of
constant static output feedback control ūn = −Fzn.

To find the gain matrix F of this control law we used
the proposed algorithm. As a result of computing with
the sample period t = 0.015 sec., we obtain the gain
matrix F = [−16.9 − 2.0]. Figure 1 shows the typical
step responses in all the modes with the obtained control
law. It is checked using (21) that this control law saves the
stabilizing properties under feedback uncertainty ũ = ϕ(z)
such that −0.05Fz ≤ ϕ(z) ≤ 0.05Fz.

0 100T 200T 300T 400T 500T 600T 700T

ϑ

Time (sec)

Fig. 1. The normalized step responses in different modes.

All LMI/LME programming was done within the frame-
work of the YALMIP interface to the SeDuMi solver for
MATLAB.
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