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Abstract: Variable speed wind turbines maximize the energy capture by operating the turbine
at the peak of the power coefficient, however parametric uncertainties and disturbances may
limit the efficiency of a variable speed turbine. In this study, we present a robust backstepping
approach for the variable speed control of wind turbines. Specifically, to overcome the undesirable
effects of parametric uncertainties and disturbance effects a nonlinear robust controller have been
proposed. The proposed method achieves globally uniformly ultimately bounded rotor speed
tracking, despite the parametric uncertainty on both mechanical and electrical subsystems.
Extensive simulation studies are presented to illustrate the feasibility and efficiency of the
method proposed

1. INTRODUCTION

Wind power generation is a growing sector in the elec-
tricity production industry owing to its renewable energy
characteristics and reduced environmental problems. Most
wind turbines used for power generation are operated at
constant speed, however, there is considerable interest in
variable speed wind turbines due to their increased energy
capture and reduced drive train loads. In variable speed
wind turbines, it is possible to control the rotor speed of
turbine. This allows the wind turbine system to operate
constantly near to its optimum tip-speed ratio. Mainly, it is
aimed to follow wind-speed variations in low and moderate
velocities to maximize aerodynamic efficiency. Therefore,
variable speed wind turbines have potential to maximize
energy generation.

The behavior of the variable speed turbine is significantly
affected by the control strategy employed in their op-
erationMuldali et al. [1998]. Effectiveness and reliability
of the wind power generation is changing depending on
the control techniques, that is to make wind power truly
cost-effective and reliable for variable speed turbines, ad-
vanced control techniques are imperative. To increase the
efficiency model based control design approaches can be
applied. One drawback however is that mechanical and
electrical parameter values of wind turbines are not truly
available. Especially in practical applications, uncertain-
ties limit the efficient energy capture of a variable speed
turbine. In literature different control strategies have been
proposed for variable speed wind turbines Muldali et al.
[1998]-Song et al. [2000]. In Muldali et al. [1998], the
authors evaluated a variable-speed, stall-regulated strat-
egy which eliminates the need for ancillary aerodynamic
control systems. In Boukhezzar and Siguerdidjane [2005] a
cascade structure nonlinear controller has been proposed,
however the proposed mechanism did not account for the

parametric uncertainties of the system. In Song et al.
[2000] authors presented two nonlinear controllers, one ex-
act model knowledge and the other adaptive for the rotor
velocity tracking however the proposed adaptive controller
scheme could only compensate for the uncertainties in the
mechanical subsystem and required the exact knowledge
of electrical subsystem parameters. In this study, a robust
backstepping control that can compensate for the uncer-
tainties of both the mechanical and electrical subsystems
is proposed. Compared to the previously introduced non-
linear control methods, the proposed controller can not
only compensate for the parametric uncertainty through
out the entire system, but also is robust to external dis-
turbances and modelling errors.

The remaining of the paper is organized as follows: In
Section II the model of the wind turbine used in this study
and the problem statement is given. The error system de-
velopment and the backstepping controller design scheme
is presented in Section III. The stability and boundedness
of the closed loop system are investigated in Section IV.
While the simulation studies and some concluding remarks
are given in Section V and Section VI respectively.

2. SYSTEM MODEL AND PROBLEM STATEMENT

The mathematical model governing the power extraction
dynamics of a wind turbine is assumed to be in the
following form Song et al. [2000]:

Jω̇ +Bω +K

tZ
0

ω (τ) dτ + Td =
Pm
ω
− γ

Pe
ωe

(1)

where J = Jm+ γ2Je is the total moment of inertia of the
generator-turbine couple, with Jm, Je being the inertia of
the turbine, the inertia of the generator respectively and
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γ being the gear ratio. Similarly B = Bm + γ2Be is the
total friction related, K = Km+γKe is the torsion related
constant parameters of the turbine and the generator
couple and Td represents uncertain but bounded modelling
errors and the disturbance, ω, and ω̇ are the angular
velocity of the shaft at turbine end and its time derivative
respectively, ωe is the angular velocity at the generator
end, Pm is the wind power, and Pe is the electrical power
generated by the system. It is well known that Song et al.
[2000], Bergen [1996] the wind power Pm, is related to the
angular velocity term and the electrical power generated
by the system, Pe, is related excitation current of the
generator via the following relationships

Pm = kw · ω3
Pe = ωeKφ · c (If ) (2)

where kw is a wind speed to power transfer parameter
depending on factors like air density, radius of the rotor,
the wind speed and the pitch angle, Kφ is a machine-
related constant, c(If ) is the flux in the generating system
function, and If is the field current. Inserting for Pm, Pe
from equation (2) back into (1) we obtained generator end
angular velocity free model of the system as

Jω̇ +Bω +K

tZ
0

ω (τ) dτ + Td = kwω
2 − γKφc (If ) . (3)

The exciter (electrical subsystem) dynamics of a wind
turbine system is assumed to be governed by

Lİf +RfIf = uf (4)

where L is the constant inductance of the circuit, Rf is
the resistance of the rotor field, If was defined in (2)
and uf is the field voltage (a synchronous generator).
Our control objective is to design the field voltage which
ensures that the angular velocity of the shaft at turbine
end, ω, would follow a smooth reference trajectory, ωd
, generated according to the operational modes of the
turbine, despite the lack of exact knowledge of both
the mechanical system parameters of (3) and electrical
system parameters of (4). It is also assumed that the
generated desired reference trajectory, its integral along
time and the first two derivatives are bounded functions
(i.e. ωd,

R
ωd (τ) dτ, ω̇d, ω̈d ∈ L∞)

3. CONTROL DESIGN

To quantify the control objective, the angular velocity
tracking error signal e (t) is defined in the following form

e = ωd − ω. (5)

Taking the the time derivative of (5), multiplying both
sides of the equation by the total moment of inertia of the
generator-turbine couple we obtain

Jė = f + γKφc (If ) (6)

where (3) was utilized for the Jω̇ term and the auxiliary
term f (ω̇d,ω) contains the mechanical system dynamic
parameters and is explicitly defined as

f (ω̇d,ω) = Jω̇d +Bω +K

tZ
0

ω (τ) dτ − kwω2 + Td (7)

at this point of the analysis we define two more auxiliary
terms which will aid our stability analysis, the first one is
the so called ”desired version” of f (ω̇d,ω), fd (ω̇d,ωd) that
is

fd = f (·)|ω=ωd (8)

and the second is the difference between the desired and
actual system parameters f̃ (·) specifically defined as
f̃ = f − fd
= B(ω − ωd) +

Z
K (ω − ωd) dτ − kω

¡
ω2 − ω2d

¢ (9)

Remark 1. Note that the auxiliary terms defined in (7)
and (8) can be written as a multiple of a known regression
matrix and unknown parameter vector plus the disturbance
term as

f =Wθ + Td, fd =Wdθ + Td (10)

where the regression matrix W ∈ <1×4 contains known
and measurable signals, and the desired regression matrix
Wd ∈ <1×4, and the unknown parameter vector θ ∈ <4×1
are defined as

W =

⎡⎣ ω̇d ω

tZ
0

ω (τ) dτ −ω2
⎤⎦

Wd =

⎡⎣ ω̇d ωd

tZ
0

ωd (τ) dτ −ω2d

⎤⎦
θ = [ J B K kw ]

T

(11)

Remark 2. Due to the structure of the auxiliary function
f defined in (7) and the boundedness assumption of the

reference signal given in Section 2 we can show that f̃ can
be upper bounded in the following manner:°°°f̃°°° ≤ ρ (kyk) (12)

where k·k denotes the standard Euclidean norm, y (t) is
the vector function defined as

y =

∙
e

Z
e

¸T
(13)

and ρ (·) is a positive definite non-decreasing bounding
function

Adding and subtracting the newly defined auxiliary term,
fd from the right side of (6) we obtain the following open
loop dynamics for the error signal

Jė = f̃ + fd + γKφ · c (If ) (14)

now applying a backsteppingKrstic et al. [1995] argument
on (14) we can rearrange the equation to have the following
form

Jė = f̃ + fd + z + α (15)

where the α (t) is an auxiliary control design variable yet
to be designed and z (t) is backstepping variable explicitly
defined as

z = γKφ · c (If )− α. (16)
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From the open loop error system dynamics the auxiliary
control signal α(t) can be designed as

α = −koe−Wdθ̂ − knρ2e− vR1 (17)

where the desired regression matrix for the mechanical
terms, Wd, was defined in (10), θ̂ ∈ <4×1 contains the
constant best guest estimates (nominal values) of the un-
known parameter vector θ, the bounding function ρ was
defined in (12), vR1 is an additional robust control term
and ko and kn are positive constant control gains. The ro-
bust term vR1 has been introduced to compensate for the
mismatch between the actual and estimated parameters
and is explicitly defined as follows

vR1 =
e [(ρ1)s]

2

kekm (ρ1)m + ²1
(18)

where ²1 is a positive, scalar constant and the positive
scalar bounding functions (ρ

1
)j for j = s,m is defined by

(ρ1)j ≥
°°°Wdθ̃

°°°
j
+ kTdkj , j = s,m (19)

with the notation k·kj for j = s,m being used to define
the following functions

kpks =
p
pTp+ σ kpkm =

p
pT p+ σ −√σ ∀p ∈ <n(20)

where σ is a small, positive constant.

Remark 3. The backstepping procedure requires that the
auxiliary control defined by (17) be differentiable; hence,
the robust control terms defined in (18) have been defined
with the functions given by (20) to ensure differentiability.
In addition, the stability proof requires that the functions
defined in (20) be constructed to satisfy the following
inequality

kpks ≥ kpk ≥ kpkm ∀p ∈ <n. (21)

After substituting (17) into (15) we obtain the closed-loop
dynamics for e(t) as

Jė = −koe+Wdθ̃ + Td − vR1 + f̃ − knρ2e+ z (22)

where θ̃ = θ − θ̂ is the parameter estimation error. The
backstepping design procedure also requires the dynamics
of the auxiliary term z (t). To this end, we take the time
derivative of (16) and multiply by the positive generator
inductance term L to obtain

Lż = γKφ
∂c (If )

∂If
Lİf − Lα̇ (23)

substituting for Lİf and the time derivative of α from (4)
and (17) respectively, (23) can be reconstructed to have
the following form

Lż = γKφ
∂c (If )

∂If
(uf −RfIf )

+L
³¡
ko + knρ

2
¢
ė+ Ẇdθ̂ + v̇R1

´ (24)

inserting for the ė term form (6) and rearranging the terms
we have

Lż = γKφ
∂c (If )

∂If
uf + Y φ (25)

where Y (ω̇d,ω, If ) ∈ <1×7 is a regression matrix which
contains the known and measurable signals while φ ∈

<7×1 is the unknown parameter vector containing the
combination of both mechanical and electrical uncertain
parameters. The explicit definitions of Y (ω̇d,ω, If ) and φ
terms are given in Appendix A.

From the structure of (25), (22) and the subsequent
stability analysis the field voltage uf is designed in the
following form

uf =
1

γKφ
∂c(If )
∂If

³
−kzz − e− Y φ̂− vR2

´
(26)

where the regression matrix, Y , was defined in (25), φ̂ ∈
<6×1 contains the constant best guest estimates of the
unknown parameter vector φ, vR2 is an additional robust
control term and kz is a positive constant control gain.
The robust term vR2 has been introduced to compensate
for the mismatch between the actual and estimated para-
meters and is explicitly defined as follows

vR2 =
z (ρ2)

2

kzk ρ2 + ²2 (27)

where ²2 is a positive, scalar constant and the positive
scalar bounding functions ρ2 defined by

ρ2 ≥
°°°Y eφ°°° . (28)

Substituting (26) into (25), the closed-loop dynamics for
the backstepping variable z is obtained to have the follow-
ing form

Lż = −kzz + Y eφ− e− vR2 (29)

where eφ = φ− φ̂ is the parameter estimation error.

4. ANALYSIS

Forming the closed loop error dynamics for the signals e (t)
and z (t), we are now ready to state the following Theorem

Theorem 1. The robust controller given by (26) and the
auxiliary control input (17) with the robust terms (18)
and (27) guarantees uniformly ultimately boundedness of
the angular velocity tracking error signal e (t) in the sense
that

ke(t)k ≤
r
a

b
kx(0)k2 exp (−βt) + 2²

bβ
(1− exp (−βt)) (30)

where

x =
£
eT zT

¤T
, (31)

a = max {J,L} , b = min {J,L} ,

β =
2min {ko, kz}
max {J,L} , ² = ²1 + ²2 +

1

4kn
,

(32)

y ∈ <2×1 was defined in (13), ²1, ²2, , ko, kn, and kz were
defined in (18), (27), (17), and (26), respectively.

Proof 1. We start our proof by defining the following non-
negative scalar function

V =
1

2
Je2 +

1

2
Lz2 (33)
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which can be lower and upper bounded in the following
from

1

2
min (J, L) kxk2 ≤ V ≤ 1

2
max (J, L) kxk2 (34)

where x ∈ <2×1 was defined in (31). Taking the time
derivative of (33) along (22) and (29) and cancelling
common terms, we obtain

V̇ = −koe2 − kzz2 +
h
f̃ − knρ2e

i
e

+

"
Wdθ̃ + Td − e [(ρ1)s]

2

kekm (ρ1)m + ²1

#
e

+

"
Y eφ− z (ρ2)

2

kzk ρ2 + ²2

#
z.

(35)

After using (19), (12) and (28) , we can upper bound the
right-hand side of (35) as follows

V̇ ≤ −min {ko, kz} kxk2

+
£
ρ kek− knρ2e2

¤
+

"
ρ1 kek− e2 [ρ1]

2

kek ρ1 + ²1

#

+

"
ρ2 kzk− z2 (ρ2)

2

kzk ρ2 + ²2

# (36)

adding and subtracting 1
4kn
, and then completing the

squares of the first bracketed term of (36), we can further
upper bound (36) as

V̇ ≤ −min {ko, kz} kxk2 + 1

4kn

+

"
ρ
1
kek− e2 [ρ1]

2

kek ρ1 + ²1

#

+

"
ρ2 kzk− z2 (ρ2)

2

kzk ρ2 + ²2

#
.

(37)

The bracketed terms of (37) can be manipulated as follows

ρi krk− ρ2i krk2
ρi krk+ ²i = ρi krk

µ
1− ρi krk

ρi krk+ ²i

¶
= ²i

ρi krk
ρi krk+ ²i ≤ ²i,

(38)

where r(t) is an arbitrary vector and i ∈ {1,2,}. Hence, we
can use (38) to place an upper bound on the right-hand
side of (37) as shown below

V̇ ≤ −min {ko, kz} kxk2 + ² (39)

where ² was defined in (32). From the upper bound on

V (t) given in (34), we can further upper bound V̇ (t) in
(39) as shown below

V̇ ≤ −βV + ² (40)

where β was defined in (32). The differential inequality of
(40) can now be solved to yield (Dawson et al. [1995])

V (t) ≤ V (0) exp (−βt) + ²

β
(1− exp (−βt)) . (41)

After applying the bounds of (34) to (41), we obtain the
following upper bound for x(t)

kx(t)k ≤
r
a

b
kx(0)k2 exp (−βt) + 2²

bβ
(1− exp (−βt)) (42)

where a, b were defined in (32). Based on (42) and the
definition of (31), we can show that the angular velocity
tracking error e(t) can be bounded as given by (30)
(Dawson et al. [1998]). Due to the boundedness of e (t)
and z (t) following standard signal chasing arguments, we
can shows that all the signals in the closed loop systems
(22) and (29) are bounded

5. SIMULATION RESULTS

To verify the performance of the proposed robust con-
troller, two different sets of simulation studies were per-
formed using same system parameters as in Song et al.
[2000]. On the first simulation the reference angular veloc-
ity signal ωd (t) selected as

ωd (t) = 2 + sin (t) (43)

and on the second one a more realistic reference rotor
velocity signal of the form

ωd (t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, u (k) < uc,
Xm (1 + S1) , u (k) < ur,
Xm, u (k) < uF ,
Xm (1 + S2) , u (k) < us,
0, u (k) > us

(44)

have been applied where

S1 = sin

µ
π

2

(u (k)− s1)
d1

¶
(45)

S2 = sin

µ
π

2

(u (k)− s2)
d2

¶
with

s1 =
uc + ur
2

, d1 =
ur − uc
2

,

s2 =
uF + ur
2

, d2 =
ur − uF
2

,

us = 21.3 m/ sec,Xm = 4.1rad/ sec,
uc = 4.3m/ secur = 7.7m/ secuF = 17.9m/ sec .

(46)

Note that the parameter Xm is specified according to
the allowable rotor speed. The system parameters for both
simulations are considered as

Rf = 0.02Ω, L = 0.001H,
J = 24490, B = 52, K = 52, kw = 3Kφ = 1.7

c (If ) = 1000If
(47)

and the controller gains are selected as

ko = 100, kz = 0.1, kn = 500
ρ = 275, ρ1 = ρ2 = 200

ε1 = ε2 = 0.4
(48)

In simulation studies the term , Td, representing the
disturbance and modelling errors is set to

Td = 1000 (2 + sin (t)) (49)

and for both simulations the best guess estimates of the
system parameters were set to 50% of the actual parame-
ters. The results of the first simulation (with sinusoidal
reference trajectory )are shown in Figures 1-3. Figure 1
illustrates the reference and actual rotor velocities during
the simulation and Figure 2 presents the angular velocity
tracking error while the control effort (field voltage) is
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presented in Figure 3 . As can be seen from the figures, the
robust controller achieves good performance. Figures 4-6
are presented to illustrate the performance of the second
simulation. Similar to Simulation #1, the reference and
actual rotor velocities are presented in Figure 4 with the
velocity tracking error graphed in Figure 5 and Figure 6
gives the applied control input to the system.

6. CONCLUSION

In this paper, we have presented a robust backstep-
ping controller scheme for the variable velocity control
of wind turbines. The proposed method achieves globally
uniformly ultimately boundedness of the tracking error
despite the parametric uncertainty on both mechanical
and electrical subsystems. We have also theoretically have
shown that modelling errors and external disturbance can
also be compensated. Simulation studies have been pre-
sented to illustrate the performance and feasibility of the
proposed method. However in this form our controller
requires the integral of the desired rotor velocity profile
to be bounded which practically does not impose any
weakness Future work will concentrate on removing this
theoretical drawback.
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Appendix A

The regression matrix Y (ω̇d,ω, If ) ∈ <1×7 and the un-
known parameter vector φ ∈ <7×1 of (25) are explicitly
defined as follows

Y =

∙
−γKφ

∂c (If )

∂If
If χω̇d + Ẇdθ̂ + v̇R1 χγKφc (If )

χω χ

tZ
0

ω (τ) dτ −χω2 χ

⎤⎦ (50)

φ =

∙
Rf L

L

J

LB

J

LK

J

Lkw
J

LTd
J

¸T
(51)

where the auxiliary term χ of (50) is

χ = ko + knρ
2 (52)
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Fig. 1. Reference and Actual Rotor Velocities for Simula-
tion 1
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Fig. 2. Angular Tracking Error for Simulation 1
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Fig. 3. Control Input (Field Voltage) for Simulation 1

0 5 10 15 20 25 30
−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Time [sec]

R
ot

or
 V

el
oc

iti
es

 [r
ad

/s
ec

]

Reference Rotor Velocity
Actual Rotor Velocity

Fig. 4. Desired and Actual Rotor Velocities for Simulation
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Fig. 5. Angular Velocity Tracking Error for Simulation 2
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Fig. 6. Control Input (Field Voltage) for Simulation 2
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