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Abstract: Some problems on guidance and robust gyromoment attitude control of agile
spacecraft for remote sensing the Earth surface are considered. Elaborated methods for dynamic
research of the spacecraft programmed angular motion at principle modes under external and
parametric disturbances, partial discrete measurement of the state and digital control of the
gyro moment cluster by the few-excessive gyrodine schemes, are presented.

1. INTRODUCTION

The dynamic requirements to the attitude control systems
(ACSs) for remote sensing spacecraft (SC) are:
• guidance the telescope’s line-of-sight to a predeter-

mined part of the Earth surface with the scan in
designated direction;

• stabilization of an image motion at the onboard
optical telescope focal plane.

Moreover, these requirements are expressed by rapid angu-
lar manoeuvering and spatial compensative motion with a
variable vector of angular rate. Increased requirements to
such information satellites (lifetime up to 10 years, exact-
ness of spatial rotation manoeuvers with effective damping
the SC flexible structure oscillations, robustness, fault-
tolerance as well as to reasonable mass, size and energy
characteristics) have motivated intensive development the
gyro moment clusters (GMCs) based on excessive number
of gyrodines (GDs) — single-gimbal control moment gyros.
Mathematical aspects of the SC nonlinear gyromoment
control were represented in a number of research works,
see Junkins and Turner [1986], Hoelscher and Vadali [1994]
et al. including authors’ papers. The paper suggests new
results on guidance and nonlinear robust gyromoment
attitude control of the agile observation spacecraft.

2. MATHEMATICAL MODELS

Let us introduce the inertial reference frame (IRF) I⊕
(O⊕XI

eY
I
eZ

I
e), the geodesic Greenwich reference frame

(GRF) Ee (O⊕XeYeZe) which is rotated with respect
to the IRF by angular rate vector ω⊕ ≡ ωe and the
geodesic horizon reference frame (HRF) Eh

e (C Xh
cYh

c Zh
c )

with origin in a point C and ellipsoidal geodesic coordi-
nates altitude Hc, longitude Lc and latitude Bc. There
? The work was supported by Presidium of Russian Academy of
Sciences (RAS) (Pr. 22), Division on EMMCP of the RAS (Pr. 15,
18) and the RFBR (Grants 05-08-18175, 07-08-97611, 08-08-99101)

are standard defined the body reference frame (BRF) B
(Oxyz) with origin in the SC mass center O, the orbit
reference frame (ORF) O (Oxoyozo), the optical telescope
(sensor) reference frame (SRF) S (Oxsyszs) and the image
field reference frame (FRF) F (Oix

iyizi) with origin in
center Oi of the telescope focal plane yiOiz

i. The BRF
attitude with respect to the IRF is defined by quaternion
Λb

I≡Λ = (λ0,λ),λ=(λ1, λ2, λ3). Let us vectors ω(t), r(t)
and v(t) are standard denotations of the SC body vector
angular rate, the SC mass center’s position and progressive
velocity with respect to the IRF. Further the symbols 〈·, ·〉,
×, { · }, [ · ] for vectors and [a×], (·)t for matrixes are
conventional denotations. The GMC’s angular momentum
(AM) vector H have the form H(β) = hg

∑
hp(βp), there

hg is constant own AM value for each GD p=1, . . . m ≡ 1÷
m with the GD’s AM unit hp(βp) and vector-column
β={βp}. Within precession theory of the control moment
gyros, for a fixed position of the SC flexible structures with
some simplifying assumptions and for t ∈ Tt0 =[t0,+∞) a
SC angular motion model is appeared as

Λ̇ = Λ◦ω/2; Ao {ω̇, q̈} = {Fω,Fq}, (1)
where ω={ωi, i = x, y, z ≡ 1÷ 3}, q={qj , j = 1÷ nq},

Fω = Mg − ω×G + Mo
d(t,Λ,ω) + Qo(ω, q̇,q);

Fq ={−((δq/π)Ωq
j q̇j + (Ωq

j)
2qj)+Qq

j(ω, q̇j , qj)};

Ao=
[

J Dq

Dt
q I

]
; G = Go + Dqq̇; Mg =−Ḣ=−Ah(β)β̇;

Go = J ω + H(β); Ah(β) = ∂h(β)/∂β,

vector-column Mo
d(·) presents an external torque distur-

bance, and Qo(·),Qq
j(·) are nonlinear continuous functions.

The GMC torque vector Mg is presented as follows:

Mg = Mg(β, β̇) = −Ḣ = −hgAh(β)ug; β̇ = ug. (2)
Here ug = {ug

p}, ug
p(t) = ag Zh[Sat(Qntr(ug

pk, dg), ūm
g ), Tu]

with constants ag, dg, ūm
g and a control period Tu = tk+1−

tk, k ∈ N0 ≡ [0, 1, 2, ...); discrete functions ug
pk ≡ ug

p(tk)
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are outputs of digital nonlinear control law (CL), and
functions Sat(x, a) and Qntr(x, a) are general-usage ones,
while the holder model with the period Tu is such: y(t) =
Zh[xk, Tu] = xk ∀t ∈ [tk, tk+1).

At given the SC body angular programmed motion Λp(t),
ωp(t), εp(t) = ω̇p(t) with respect to the IRF I⊕ during
time interval t ∈ T ≡ [ti, tf ] ⊂ Tt0 , tf ≡ ti + T, and
for forming the vector of corresponding continuous control
torque Mg(β(t), β̇(t)) (2), the vector-columns β̇ = {β̇p}
and β̈ = {β̈p} must be component-wise module restricted:

|β̇p(t)| ≤ ūg < ūm
g , |β̈p(t)| ≤ v̄g, ∀t ∈ T, p = 1÷m, (3)

where values ūg and v̄g are constant.

Collinear pair of two stop-

Fig. 1. The scheme 3-SPE

less GDs was named as
Scissored Pair Ensemble
(SPE ) in well-known orig-
inal work J.W. Crenshaw
(1973). Redundant mul-
tiply scheme, based on
six gyrodines in the form
of three collinear GD’s
pairs, was named as 3-
SPE . Fig. 1 presents a
simplest arrangement of
this scheme into a cano-
nical orthogonal gyroscopic basis Oxg

cy
g
c zg

c . By a slope of
the GD pairs suspension axes in this basis it is possible
to change essentially a form of the AM variation domain
S at any direction. Based on four gyrodines the minimal
redundant scheme 2-SPE is easily obtained from the 3-
SPE scheme – without third pair (GD #5 and GD #6).
In park state of above schemes one can have a vector of
summary normed GMC’s AM h(β) ≡

∑
hp(βp) = 0.

3. THE PROBLEM STATEMENT

Principle problem gets up on the SC angular guidance
at a spatial course motion (SCM) when a space opto-
electronic observation is executed at given time interval
t ∈ Tn ≡ [tni , tnf ]. This problem consists in determination
of quaternion Λ(t) by the SC BRF B attitude with respect
to the IRF I⊕, angular rate vector ω(t), vectors of angular
acceleration ε(t) and its derivative ε̇(t)=ε∗(t)+ω(t)×ε(t)
in the form of explicit functions, proceed from principle
requirement: optical image of the Earth given part must to
move by desired way at focal plane yiOiz

i of the telescope.

Into IRF the SC’s spatial rotation maneuver (SRM) is
described by kinematic relations

Λ̇(t) =
1
2
Λ ◦ ω(t); ω̇(t) = ε(t); ε̇(t) = v (4)

during given time interval t ∈ Tp ≡ [tpi , t
p
f ], tpf ≡ tpi + Tp.

The optimization problem consists in determination of
time functions Λ(t), ω(t), ε(t) for the boundary conditions
on left (t = tpi ) and right (t = tpf ) trajectory ends

Λ(tpi ) = Λi; ω(tpi ) = ωi; ε(tpi )=εi; (5)
Λ(tpf ) = Λf ; ω(tpf ) = ωf ; ε(tpf ) = εf (6)

with optimization of the integral quadratic index

Io =
1
2

∫ tp
f

tp
i

〈v(τ),v(τ)〉 dτ ⇒ min . (7)

Onboard algorithms are needed for the SC guidance at a
SRM taking into account the restrictions (3) to vectors
β̇(t) and β̈(t). Here for given time interval Tp a problem
consists in determination the explicit time functions Λ(t),
ω(t), ε(t) and ε̇(t) for the boundary conditions (5), (6)
and also for given condition

ε̇(tpf ) = ε̇f ≡ ε∗f + ωf × εf , (8)
which presents requirements to a smooth conjugation of
guidance by a SRM with guidance at next the SC SCM.

Applied onboard measuring subsystem is based on iner-
tial gyro unit corrected by the fine fixed-head star track-
ers. Contemporary filtering & alignment calibration algo-
rithms give finally a fine discrete estimating the SC angu-
lar motion coordinates by the quaternion Λm

s = Λs◦Λn
s ,

s ∈ N0, where Λs ≡ Λ(ts), Λn
s is a ”noise-drift” digital

quaternion and a measurement period Tq = ts+1 − ts ≤ Tu

is multiply with respect to a control period Tu.

At a land-survey SC lifetime up to 5 years its structure
inertial and flexible characteristics are slowly changed in
wide boundaries, the solar array panels are rotated with
respect to the SC body and the communication antennas
are pointing for information service. Therefore inertial ma-
trix Ao (1) and partial frequencies Ωq

j of the SC structure
are not complete certain. Problems consist in synthesis of
the SC guidance laws at its both the SCM and the SRM,
and also in dynamical designing the GMC’s robust digital
control law ug

k = {ug
pk} on the quaternion values Λm

s

when the SC structure characteristics are uncertain and
its damping is very weak, decrement of the SC structure
oscillations δq

j ≈5 · 10−3 in (1).

4. SYNTHESIS OF FEEDBACK CONTROL

Applied general approach to synthesis of nonlinear control
system (NCS) is presented, moreover the method of vector
Lyapunov functions (VLF) is used in cooperation with the
exact feedback linearization (EFL) technique. Let there be
given a nonlinear controlled object

D+x(t)=F(x(t),u); x(t0)=x0; t ∈ Tt0 ,

where x(t) ∈ H ⊂ Rn is a state vector with an initial
condition x0∈H0⊆H and vector-column u={uj}∈U⊂Rr

is a control vector. Let some vector norms ρ(x) ∈ R l

+

and ρ0(x0)∈R l0
+ also be given. For any control law (CL)

u=U(x) the closed-loop system has the form
D+x(t) = X (t, x); x(t0) = x0, (9)

where X (t, x)=F(x,U(x)),X : Tt0 ×H→H is a discontin-
uous operator. Assuming the existence and the non-local
continuability of the right-sided solution x(t) ≡ x(t0, x0; t)
of the system (9) for its extended definition, there is
obtained the property of ρρ0-exponential invariance by the
solution x(t)=0 under the desired γ ∈ R l

+:

(∃α ∈ R+) (∃B∈B
l×l0
+ ) (∃δ ∈ Rl0

+) (∀ρ0(x0) < δ)

ρ(x(t)) ≤ γ + B ρ0(x0) exp(−α(t− t0)) ∀t ∈ Tt0 .

The basis of this inequality for vector norm ρ (x(t)) is
attained by the comparison principle, using the maximum
right-sided solution of a comparison system for the VLF,
see Theorem 1 in Somov et al. [1999].
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There is such an important problem: by what approach
is it possible to create constructive techniques for con-
structing the VLF υ(x) and simultaneous synthesis of a
nonlinear control law u = U(x) for the close-loop system
(9) with given vector norms ρ(x) and ρ0(x0) ? Recently, a
pithy technique have been elaborated, which is based on
a nonlinear transformation of the NCS model and solving
the problem in two stages. In stage 1, the right side F(·)
in (9) is transformed as F(·)=f(x)+G(x) u+ F̃(t, x(t),u),
some principal variables in a state vector x∈H̃⊂Rñ ⊆Rn

with ñ ≤ n, x0 ∈ H̃0 ⊆ H̃ are selected and a simplified
nonlinear model of the object (9) is presented in the form
of an affine quite smooth nonlinear control system

ẋ=F(x,u)≡ f(x)+G(x)u≡ f(x)+
∑

gj(x)uj ,

which is structurally synthesized by the EFL tech-
nique. In this aspect, based on the structural analy-
sis of given vector norms ρ(x) and ρ0(x), and also
vector-functions f(x) and gj(x), the output vector-function
h(x)={hi(x)} is carefully selected. Furthermore, the non-
linear invertible (one-to-one) coordinate transformation
z = Φ(x) ∀x ∈ Sh ⊆ H̃ with Φ(0) = 0 is analytically
obtained with simultaneous constructing the VLF. Fi-
nally, bilateral component-wise inequalities for the vectors
x, z, υ(x), ρ(x), ρ0(x0) are derived, it is most desirable to
obtain the explicit form for the nonlinear transforma-
tion x = Ψ(z), inverse with respect to z = Φ(x), and the
VLF aggregation procedure is carried out with analysis
of proximity for a singular directions in the Jacobian
[∂F(x, U(x))/∂x]. In stage 2, the problem of nonlinear CL
synthesis for complete model of the NCS (9) is solved by
the VLF-method, taking into account rejected coordinates,
nonlinearities and restrictions on control. If a forming
control is digital, a measurement of the state is discrete and
incomplete, then a simplified nonlinear discrete object’s
model is obtained by Teylor-Lie series, a nonlinear digital
CL is formed and its parametric synthesis is carried out
with a simultaneously constructing a discrete VLF.

5. GUIDANCE AT A COURSE MOTION

Analytic matching solution have been obtained for prob-
lem of the SC angular guidance at the SCM at given
time interval t ∈ Tn. The solution is based on a vector
composition of all elemental motions in the GRF Ee using
next reference frames: the HRF Eh

e , the SRF S and the
FRF F . Vectors r(t) and v(t) are presented in the GRF
Ee as re =Te

I r and ve =Te
I (v − [ω⊕i3×]ro), Te

I =[ρe(t)] 3
and ρe(t)=ρi

e+ω⊕(t−ti). Vectors ωs
e and vs

e are defined as
ωs

e ={ωs
ei}=Ts

b(ω − Λ̃◦ω⊕i3◦Λ); vs
e =Λ̃

s

e◦ve
o◦Λ

s
e,

where Λ = Λb
I ;Λ

s
e = ΛI

e◦Λ
b
I◦Λ

s
b, Λ̇

s

e = Λs
e◦ωs

e/2, and
constant matrix Ts

b represents the telescope fixation on
the SC body. For any observed point C the oblique range
D is analytically calculated as D= |re

c − re|. If orthogonal
matrix Cs

h ≡ C̃ = ‖c̃ij‖ defines the SRF S attitude with
respect to the HRF Eh

e , then for any point M(ỹi, z̃i) at the
telescope focal plane yiOiz

i the components Ṽ i
y and Ṽ i

z of
normed vector by an image motion velocity is appeared as[

Ṽ i
y

Ṽ i
z

]
≡

[ ˙̃yi

˙̃zi

]
=

[
ỹi 1 0
z̃i 0 1

]qiṽs
e1 − ỹi ωs

e3 + z̃i ωs
e2

qiṽs
e2 − ωs

e3 − z̃i ωs
e1

qiṽs
e3 + ωs

e2 + ỹi ωs
e1

. (10)

Here normed focal coordinates ỹi = yi/fe and z̃i = zi/fe,
where fe is the telescope equivalent focal distance; function
qi≡1−(c̃21ỹ

i+c̃31z̃
i)/c̃11, and vector of normed SC’s mass

center velocity have the components ṽs
ei = vs

ei/D, i = 1÷3.

For given image velocity W̃s
y =const and conditions

Ṽ i
y (0, 0) = W̃i

y = −W̃s
y; Ṽ i

z (0, 0) = 0; ∂Ṽ i
y (0, 0)/∂z̃i = 0

calculation of vector ωs
e is carried out by the relations

ωs
e1 =−ṽs

e2c̃31/c̃11; ωs
e2 =−ṽs

e3; ωs
e3 =−W̃ i

y + ṽs
e2. (11)

By numerical solution of the quaternion differential equa-
tion Λ̇

s

e = Λs
e◦ωs

e/2 with regard to (11) one can obtain
values λs

es ≡ λs
e(ts) for the discrete time moments ts ∈ Tn

with period Tq, s= 0÷ nq, nq = Tn/Tq when initial value
Λs

e(t
n
i ) is given. Further solution is based on the elegant

extrapolation of values σs
es = λs

es/(1+λs
0 es) by the vector

of modified Rodrigues parameters and values ωs
es by the

angular rate vector. The extrapolation is carried out by
two sets of nq coordinated 3-degree vector splines with
analytical obtaining a high-precise approximation of the
SRF S guidance motion with respect to the GRF Ee both
on vector of angular acceleration and on vector of its local
derivative. At last stage, required functions Λ(t), ω(t), ε(t)
and ε̇(t) = ε∗(t) + ω(t) × ε(t) is calculated by explicit
formulas. These functions are applied at onboard computer
for the time moments ts ∈ Tn, and also for calculation
(10) of the image velocity at any point M(ỹi, z̃i) into the
telescope focal plane for any t ∈ Tn.

6. A ROTATION MANEUVER OPTIMIZATION

Optimal one-axis problem is very simple, the SC optimal
motion with respect to any k axis is presented by the ana-
lytic function ϕk(t) in a class of the five degree polynomials
(splines) by normed time τ = (t− tpi )/Tp ⊂ [0, 1].

Developed analytical approach to the problem is based
on necessary and sufficient condition for solvability of
Darboux problem. At general case the solution is presented
as result of composition by three (k=1÷3) simultaneously
derived elementary rotations of embedded bases Ek about
units ek of Euler axes, which positions are defined from the
boundary conditions (6) and (7) for initial spatial problem.
For all 3 elementary rotations with respect to units ek

the boundary conditions are analytically assigned. Into the
IRF I⊕ the quaternion Λ(t) is defined by the production

Λ(t) = Λi◦Λ1(t)◦Λ2(t)◦Λ3(t), (12)
where Λk(t) = (cos(ϕk(t)/2), sin(ϕk(t)/2)ek), and func-
tions ϕk(t) analytically present the elementary rotation
angles. Let the quaternion Λ∗≡(λ∗0,λ

∗)=Λ̃i◦Λf 6= 1 have
the Euler axis unit e3 = λ∗/ sin(ϕ∗/2) by 3-rd elementary
rotation, where angle ϕ∗ = 2 arccos(λ∗0). For elementary
rotations there are applied the boundary quaternions:

Λ1(t
p
i ) = Λ1(t

p
f ) = Λ2(t

p
i ) = Λ2(t

p
f ) = Λ3(t

p
i ) = 1;

Λ3(t
p
f ) = (cos(ϕf

3/2), e3 sin(ϕf
3/2)),

(13)

where ϕf
3 = ϕ∗ and 1 is a single quaternion. Unit e1 of

1-st elementary rotation’s Euler axis is selected by simple
algorithm [Somov, 2007] and then unit e2 is defined as
e2 = e3 × e1. All vectors ωk(t), εk(t) and ε̇k(t) have
analytic form which is optimal on index (7) for each
elementary rotation. Vectors ω(t), ε(t) and ε̇(t) ≡ v(t) are
analytically defined by recurrent algorithm [Somov et al.,
2007] using functions ϕk(t) and their derivatives.
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For nonlinear problem (4) – (7) Hamilton function

H = −1
2
〈v,v〉+

1
2
〈vect(Λ̃ ◦Ψ),ω〉+ 〈µ, ε〉+ 〈ν,v〉

have associated variables – vectors µ,ν and quaternion
Ψ = Cϕ ◦ Λ, where Cϕ = (cϕ0, cϕ) is the normed
quaternion [Branetz and Shmyglevsky, 1973] with a vector
part cϕ = {cϕk}. The associated differential system

Ψ̇ =
1
2
Ψ ◦ ω; µ̇ = −1

2
Λ̃ ◦ cϕ ◦Λ; ν̇ = −µ (14)

and the optimality condition ∂H/∂v = −v + ν = 0 give
the optimal ” control ”

v(t)=ν(t)=cε−cω(t−tpi )+
1
2

∫ t

tp
i

(
∫ τ

tp
i

Λ̃(s)◦cϕ◦Λ(s)ds) dτ,

where vectors cϕ, cω = {cωk} and cε = {cεk} must be
numerically defined using known analytical structure of
solution for direct system (4) and taking into account
the boundary conditions (5) and (6). Standard Newton
iteration method was applied for numerical obtaining a
strict optimal ”control” v(t), moreover analytical solution
(initial point) was applied in the form of approximate opti-
mal motion (12) and (13). Difference between approximate
optimal motion and strict optimal motion is very light for
the SC practical rotational maneuvers.

7. GUIDANCE AT A ROTATION MANEUVER

Fast onboard algorithms for the SC guidance at a SRM
with restrictions to ω(t), ε(t), ε̇(t), corresponding restric-
tions to h(β(t)), β̇(t) and β̈(t) in a class of the SC angular
motions, were elaborated. Developed analytical approach
to the problem is based on approximate optimal motion
(12), (12) with boundary conditions (5), (6) and (8). Here
functions ϕk(t) are selected in a class of splines by five
and six degree, moreover a module of a angular rate
ϕ̇3(t) in a position transfer (k = 3) may be limited when
functions ϕ̇1(t) = ϕ̇2(t) ≡ 0. The technique is based on
the generalized integral’s properties for the AM of the
mechanical system ”SC+GMC” and allows to evaluate
vectors β(t), β̇(t), β̈(t) in analytical form for a preassigned
SC motion Λ(t), ω(t), ε(t), ε̇(t)∀t ∈ Tp.

Into orthogonal canonical basis Oxyz, see fig. 1, the GD’s
AM units have next projections:
x1 = C1; x2 = C2; y1 = S1; y2 = S2; x3 = S3; x4 = S4;
z3 = C3; z4 = C4; y5 = C5; y6 = C6; z5 = S5; z6 = S6,

where Sp ≡ sinβp and Cp ≡ cos βp. Then vector-column
h(β) = {x, y, z} of normed GMC’s summary AM vector
and matrix Ah(β) = ∂h/∂β have the form

h(β)=

[ Σxp

Σyp

Σzp

]
;Ah(β)=

[−y1 −y2 z3 z4 0 0
x1 x2 0 0 −z5 −z6

0 0 −x3 −x4 y5 y6

]
.

For 3-SPE scheme singular state is appeared when the ma-
trix Gramme G(β) = Ah(β)At

h(β) loses its full rang, e.g.
when G ≡ detG(β) = 0. At introducing the denotations

x12 = x1 + x2; x34 = x3 + x4; y12 = y1 + y2;
y56 = y5 + y6; z34 = z3 + z4; z56 = z5 + z6;
x̃12 = x12/

√
4− y2

12 ; x̃34 = x34/
√

4− z2
34;

ỹ12 = y12/
√

4− x2
12 ; ỹ56 = y56/

√
4− z2

56;

z̃34 = z34/
√

4− x2
34 ; z̃56 = z56/

√
4− y2

56

components of the GMC explicit vector tuning law
fρ(β) ≡ {fρ1(β), fρ2(β), fρ3(β)} = 0 (15)

are applied in the form
fρ1(β) ≡ x̃12 − x̃34 + ρ (x̃12 x̃34 − 1);
fρ2(β) ≡ ỹ56 − ỹ12 + ρ (ỹ56 ỹ12 − 1);
fρ3(β) ≡ z̃34 − z̃56 + ρ (z̃34 z̃56 − 1).

The analytical proof have been elaborated that vector tun-
ing law (15) ensures absent of singular states by this GMC
scheme for all values of the GMC AM vector h(t) ∈ S\S∗,
i.e. inside all its variation domain. For the representation

x12 = (x + ∆x)/2; x34 = (x−∆x)/2;
y56 = (y + ∆y)/2; y12 = (y −∆y)/2;
z34 = (z + ∆z)/2; z56 = (z−∆z)/2

and the denotation ∆ = {∆x,∆y,∆z} one can obtain
the nonlinear vector equation ∆(t) = Φ(h(t),∆(t)). At
a known vector h(t) this equation have single solution
∆(t), which is readily computed by method of a simple
iteration. Further the units hp(βp(t)) and vector-columns
β(t), β̇(t), β̈(t) are calculated by the explicit analytical
relations ∀t ∈ Tp. For the 2-SPE scheme such evaluation
is carried out by the explicit analytical formulas only.

8. FILTERING AND ROBUST DIGITAL CONTROL

In stage 1, for continuous forming the control torque
Mg(β(t), β̇(t)) (2) and the SC model as a free rigid body
the simplified controlled object is such:

Λ̇ = Λ ◦ω/2; Jω̇ + [ω×]Go = Mg; β̇ = ug(t). (16)

The error quaternion is E = (e0, e) = Λ̃p(t)◦Λ, Euler
parameters’ vector is E = {e0, e}, and the attitude error’s
matrix is Ce≡C(E) = I3− 2[e×]Qe, where Qe ≡ Q(E) =
I3e0 + [e×] with det(Qe)=e0. If error δω ≡ ω̃ in the rate
vector ω is defined as ω̃ = ω−Ceω

p(t), and the GMC’s
required control torque vector Mg is formed as

Mg = ω×Go + J(Ceω̇
p(t)− [ω×]Ceω

p(t) + m̃),
then the simplest nonlinear model of the SC’s attitude
error is as follows:

ė0 = −〈e, ω̃〉/2; ė = Qeω̃/2; ˙̃ω = m̃. (17)
For model (17) a non-local nonlinear coordinate transfor-
mation is defined and applied at analytical synthesis by
the EFL technique. This results in the nonlinear CL

m̃(E, ω̃) = −A0 e sgn(e0)−A1 ω̃, (18)
where A0 = ((2a∗0 − ω̃2/2)/e0)I3; A1 = a∗1I3 − Reω,
sgn(e0) = (1, if e0 ≥ 0)∨ (−1, if e0 < 0), matrix Reω =
〈e, ω̃〉Qt

e[e×]/(2e0), and parameters a∗0,a
∗
1 are analytically

calculated on spectrum S∗ci = −αc ± jωc. Simultaneously
the VFL υ(E, ω̃) is analytically constructed for close-loop
system (17) and (18).

Discrete measured error quaternion and Euler parameters’
vector are Es = (e0s, es) = Λ̃p(ts)◦Λm

s and Es = {e0s, es},
and the attitude error filtering is executed by the relations

x̃s+1 = Ãx̃s + B̃es; ef
s = C̃x̃s + D̃es, (19)

where matrices Ã, B̃, C̃ and D̃ have conforming dimen-
sions and some general turning parameters. Attitude fil-
tered error vector ef

k is applied for forming the digital con-
trol m̃k = uk taking into account a time delay at incom-
plete measurement of state and onboard signal processing:

vk = −(Kx
d x̂k + Ku

d uk); uk+1 = vk, k ∈ N0; (20)
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Fig. 2. The SC’s SPM: a — without a limit on module of the SC angular rate vector; b — with such limit.

Fig. 3. The GMC 3-SPE scheme coordinates the same SC’s SPM: a — without a limit; b — with such limit.
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Fig. 4. Rate errors for consequence of the SRM and SCM

x̂k+1 = Aod x̂k + Bu
od uk + Bv

od vk

+Gd(ef
k − (Cod x̂k + Du

od uk + Dv
od vk)),

where x̂k = {êk, ˆ̃ωk}, matrices have conforming dimen-
sions and also general turning parameters.

In stage 2, the problems of synthesising digital nonlinear
CL were solved for model of the flexible spacecraft (1) with
incomplete discrete measurement of state. Furthermore,
the selection of parameters in the structure of the GMC
nonlinear robust CL (which optimizes the main quality
criterion for given restrictions, including coupling and
damping the SC structure oscillations, see Somov et al.
[2005a]) is fulfilled by a parametric optimization of the
comparison system for the VLF and multistage numerical
simulation. Thereto, the VLF has the structure derived
above for the error coordinates E, ω̃ and the structure of
other VLF components in the form of sublinear norms for
vector variables q(t), q̇(t), β̇(t) using the vector β(t).

9. COMPUTER SIMULATION

Fig. 2 and fig. 3 present dynamic characteristics of the
SC’s SRM and the GMC by 3-SPE scheme during time
t ∈ Tp = [0, Tp] with Tp = 45 sec and next boundary
conditions:
Λi = (0.06255029449,−0.35479160599,

−0.67663869314,−0.64216077108);
Λf = (0.04168181290,−0.35479620846,

−0.89901121936,−0.25330042320);
ωi = {0.060345, 0.355995, 0.071572}◦/s;
ωf = {−0.084455,−0.333483, 0.060107}◦/s;
εi = 10−2 · {0.2960,−0.0643, 0.0303}◦/s2;
εf = 10−2 · {−0.2784; 0.1417;−0.0074}◦/s2;
ε̇f = 10−5 · {0.05, 0.38, 0.01}◦/s3.

Fig. 4 and Fig. 5 present some results on computer
simulation of a gyromoment ACS for Russian remote
sensing SC by the Resource-DK type. Here the rate errors
are represented at consequence of the SC spatial rotational
maneuver for time t ∈ [0, 45) sec and the SC spatial
course motion for time t ∈ [45, 90] sec. Applied digital
robust nonlinear control law is flexible switched at the
time moment t = 45 sec on astatic ones with respect to
the acceleration.

10. CONCLUSIONS

In progress of Somov et al. [2005b] and Somov et al. [2007]
new results were presented on optimizing the SC spatial

Fig. 5. The rate errors at the spatial course motion

rotational maneuvers, on precise onboard computing the
spatial course motion at a space opto-electronic observa-
tion. Principle results were connected with onboard sig-
nal processing by multiple discrete filtering and nonlinear
digital robust gyromoment control by the 3-SPE scheme,
applied for the agile observation SC.

These results were also successfully applied for a space
free-flying robot at transportation the flexible large-scale
mechanical payload, see Somov [2006, 2007].
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