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Abstract: This paper proposes an adaptive control method for an underactuated overhead
crane system. To improve the transferring efficiency and enhance the security of the crane
system, the trolley is required to reach the desired position as fast as possible, while the swing
of payload needs to be within an acceptable domain. To achieve these objectives, a novel two-
step design strategy consisting of a trajectory planning stage and an adaptive tracking control
design stage, is proposed to attack such an underactuated system as overhead crane. In the
first step this paper proposes a new S curve as the desired trajectory for trolley tracking, and
in the second step, it constructs an adaptive control law to make the trolley track the planned
trajectory. As shown by Lyapunov Techniques, the proposed adaptive controller guarantees an
asymptotical tracking result even in the presence of uncertainties including system parameters
and various disturbances. Simulation results demonstrate that the new S trajectory and the
tracking controller achieves a superior performance for the underactuated cranes.

1. INTRODUCTION

Due to great load capacity and high transferring efficiency,
overhead crane systems have been widely used in building
sites, product lines, ports, and so on. However, at present
most of the crane systems in practice are manually op-
erated by experienced workers. Obviously, this kind of
manual operation presents such drawbacks as low effi-
ciency and safety, long time training for operators, and
so on. For this reason, some researchers have started to
address the control problem of overhead crane systems.
On one hand, the trolley is required to arrive at the de-
sired position within a short time to increase transferring
efficiency; while on the other hand, the payload swing
should be suppressed within a given domain for safety
concern. To make the problem even worse, overhead crane
is an underactuated system. It is usually difficult, if not
completely impossible, to reach the aforementioned two
control objectives simultaneously.

Recently, the automatic control problem for an under-
actuated crane system has become a focus of the con-
trol community and many ambitious control laws have
been proposed to improve the performance of an overhead
crane. In Khalid (2004), Khalid etc. utilized an input
shaping method, which is implemented in real time by con-
volving the human-generated signal with a chosen impulse
sequence, to reduce the swing of overhead crane systems.
The key of input shaping method is the requirement of
a priori regarding the system’s natural frequencies and

⋆ This work was supported by Chinese National Science Foundation
(60574027) and Natural Science Foundation of Tianjin.

damping ratios. Unfortunately, it often meets great diffi-
culty when trying to obtain these system coefficients which
vary with the changes of the payload or the rope length. In
Fang (2001, 2003, 2001, 2005), Fang etc. proposed a series
of energy-based controllers to regulate the trolley to a
desired position while constrain the swing of payload at the
same time. Noting that it is difficult to fulfill two objectives
with a single control law, some researchers have recently
brought up the fuzzy sliding-mode control strategies for an
overhead crane system Chang (2004); Cho (2000); Wang
(2004, 2006); Liu (2005). The basic idea of this design is
to construct two fuzzy controllers with different objects.
Usually, one controller aims to reduce the swing by slowing
down the trolley when a large swing is detected, while the
other intends to fasten the trolley to ensure high efficiency
provided that the swing is within an acceptable range. The
two controllers are switched between each other based on
different situations. Though fuzzy sliding-mode control is
able to reach a satisfactory performance for crane systems,
it often involves a tedious and time-consuming work to
collect proper fuzzy rules. Besides, it should be pointed
out that, when transferring payloads, an overhead crane
is unavoidably affected by various kinds of disturbance,
such as the frictions between the trolley and the rail. Yet,
most of the currently proposed controllers do not take
these uncertainties of disturbance into account Fang (2001,
2003, 2001, 2005); Chang (2004); Cho (2000); Wang (2004,
2006); Liu (2005). For this reason, Aschemann and Ma
etc. analyzed some major disturbances in the overhead
crane systems and designed different controllers to reject
these disturbances Aschemann (2000); Ma (2005). Yet
these controllers require the prior knowledge of the system
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parameters including the mass of trolley and payload and
the length of the rope. However, there is great difficulty in
practice to accurately obtain these parameters, and some
of the parameters, such as the rope length and the payload
mass, vary for different transferring processes.

In this paper, we propose a novel control method for an
underactuated crane system. Specifically, a two-step strat-
egy is proposed to attack such an underactuated system
as overhead crane, to ensure that the trolley is pushed to
a given position and the swing is always within acceptable
range. In the first step, a path planning mechanism is
employed based on the system dynamics and operators’
experience, with the goal of selecting a suitable trajectory
for the trolley along which the swing of payload will be
constrained within an acceptable area. The second step is
to construct a control law to guarantee that the trolley
will track the planned trajectory. By decomposing the
control of a crane into a two-stage design, this method
exhibits some advantages including that it gets around the
theoretical problem of attacking underactuated systems,
and it enables the utilization of working experience when
choosing proper trajectory for the trolley. Particularly,
in this paper, a new S trajectory is proposed and an
adaptive tracking controller is constructed to guarantee
that the trolley will move along the selected trajectory.
Specifically, an adaptive tracking controller is proposed for
overhead crane systems to push the trolley along the de-
sired trajectory, wherein an on-line estimation mechanism
is introduced to address the uncertainties with system
parameters and unknown disturbances. Due to this merit,
the controller demonstrates great feasibility for utilization
on an overhead crane in practice. The stability of the
closed-loop system is proven by Lyapunov Stability Theory
and Barbalat’s Lemma. Simulation results are included
to demonstrate the performance of the control method
proposed in this paper.

The rest part of the paper is organized as follows: In section
2 the system model is introduced and some theoretical
analysis is given. Section 3 describes the control design
process for an overhead crane, including both trajectory
planning and an adaptive tracking controller construction.
Section 4 provides the stability analysis for the closed-
loop system and simulation results are shown in section 5.
Section 6 gives conclusions of the paper.

2. SYSTEM MODEL

Consider the 2D crane system described in Ma (2005):

M(q)q̈ + Vm(q, q̇)q̇ + G(q) = u + Fd (1)

where q(t) = [ x θ ]
T

represents the system state vector.
M(q) ∈ R

2×2 is the system’s inertia matrix. Vm(q, q̇) ∈
R

2×2 represents the Centripetal-Coriolis matrix, G(q) ∈
R

2×1 denotes the gravity effects, u(t) ∈ R
2×1 is the control

input vector. The aforementioned variables are defined in
detail as follows:

M(q) =

[

mc + mp −mpl cos θ
−mpl cos θ mpl

2

]

,

Vm(q, q̇) =

[

0 mpl sin θθ̇
0 0

]

,

G(q) = [ 0 mpgl sin θ ]
T

,

u(t) = [ F 0 ]
T

,

Fd(t) =

[

−Fr − 2kdiẋ + kdil cos θθ̇

kdil cos θẋ − kdil
2θ̇

]

.

where mc, mp ∈ R
+ are trolley and payload mass respec-

tively, and l ∈ R
+ represents the length of rope. These

three parameters are assumed constant but unknown in
a transferring process. The system includes two degrees
of freedom x(t) ∈ R

1 and θ(t) ∈ R
1, which denote the

trolley position and the swing angle (the angle between
the rope and the vertical direction), respectively. g ∈ R

+

is the gravity acceleration. F (t) ∈ R
1 is the control input

exerted on the trolley. Fr +kdiẋ denotes the friction acting
on the trolley where kdi ∈ R

+ stands for the unknown air
friction coefficient, and Fr(t) ∈ R

1 is the friction between
the trolley and the rail, including both dynamical and
static fraction. In the paper, the friction Fr(t) is assumed
of the following form Aschemann (2000):

Fr(t) = fr0 tanh(ẋ/ǫ) − kr|ẋ|ẋ (2)

where fr0, kr ∈ R
1 are unknown friction-related param-

eters, ǫ ∈ R
1 is a static friction coefficient which can be

obtained via an offline data analysis Aschemann (2000).

After some mathematical analysis for the system dynam-
ics, it can be shown that the inertia matrix M(q) is
symmetric, positive definite, and satisfies the following
property:

m1 ‖ξ‖
2
≤ ξT Mξ ≤ m2 ‖ξ‖

2
∀ξ ∈ R

2 (3)

where m1, m2 ∈ R
+ are positive constants. Besides, a

skew symmetric relationship exists between the inertia
matrix M(q) and the Centripetal-Coriolis matrix Vm(q, q̇)
as follows:

ξT (
1

2
Ṁ − Vm)ξ = 0 ∀ξ ∈ R

2. (4)

During the transferring process for payloads, for safety
reason, the rope length should be kept invariable and the
swing angle should be within a small range. Based on this
observation, we make the following assumptions:

Assumption 1. The connection between the trolley and
payload is a mass-less and rigid link.

Assumption 2. During the transferring process, the swing
angle of payload always remains in the interval between
−π and π:

−π < θ(t) < π.

Remark 1. This paper considers the control problem for
a 2D overhead crane system, yet it should be pointed
out that the proposed design method can also be applied
to a higher dimension overhead crane by decoupling it
into several 2D crane systems with similar structure Cho
(2000); Liu (2005).

3. ADAPTIVE TRACKING CONTROLLER DESIGN

As stated previously, the overhead crane is an underac-
tuated system. Subsequently, it is impossible to maximize
the speed of trolley and minimize the payload swing at
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the same time. Therefore, it is required to make com-
prises between these two indexes to achieve an optimal
performance for the overall system. To reach this target, a
common method utilized in practice is to adjust the speed
of the trolley based on the observations for payload swing.
That is, when the swing is small, the trolley is sped up to
increase working efficiency; on the contrary, the trolley is
slowed down if the swing intends to overstep the acceptable
domain. Yet this empirical practice often leads to such
drawbacks including low efficiency and high possibility of
operation failure. Based on this reason, we propose a two-
step control strategy for an underactuated overhead crane
by utilizing both theoretical analysis and operation experi-
ence. Specifically, the strategy includes two stages of path
planning and adaptive tracking controller design, which
will be introduced in detail in the following subsections.

3.1 Trajectory Design

According to operation experience, it is known that to
achieve a superior performance, the desired trajectory
should be a S curve or a series of shaped impulses. Selecting
the initial position as zero, then the trolley is required to
reach the desired position with positive constant coordi-
nate. Usually, to obtain satisfactory transferring efficiency,
the trolley should always move toward the desired position.
Based on this fact, the following assumption about xd(t)
is made:

Assumption 3. The desired trajectory xd(t) ∈ R
1 takes a

limit of a positive constant pd ∈ R
+:

lim
t→∞

xd(t) = pd

where pd denotes the desired position, and xd(t) has third

time derivatives with xd(t), ẋd(t), ẍd(t), x
(3)
d (t) ∈ L∞, and

ẋd(t) ≥ 0.

Although any trajectory satisfying Assumption 3 can
be tracked using the controller constructed in the next
subsection, different selections of trajectory will often lead
to distinct performance. In this paper a new S trajectory
is proposed for trolley tracking:

xd(t) =
pd

2
+

pd

2ǫ2
ln

(

ekt−ǫ1 + e−(kt−ǫ1)

ekt−ǫ1−ǫ2 + e−(kt−ǫ1−ǫ2)

)

(5)

where pd denotes the desired trolley position defined in
Assumption 3, k ∈ R

+ is a coefficient to adjust the
rising rate of the trajectory (a larger k will lead to a
faster moving of the trolley, and subsequently a bigger
swing of payload), ǫ1, ǫ2 ∈ R

+ are two control parameters
introduced to optimize the swing performance of payload.

The S trajectory proposed in the paper leads to less
payload oscillation than other curves, which could be
illustrated in the subsequent Simulation Results. Besides,
this trajectory can be adjusted easily by changing the
parameters k, ǫ1, ǫ2 to satisfy different requirements.

3.2 Adaptive Tracking Controller Design

Recently, a series of energy-based control methods have
been reported to address underactuated mechanism of
pendubot Fantoni (2000) Lozano (2000). In the paper,

we utilize this idea of energy analysis and define a non-
negative function E(t) ∈ R

1 as follows:

E(q̄, q̄) =
1

2
q̄T M(q̄)q̄ + mpgl(1 − cos θ) (6)

where q̄(t) ∈ R
2 is defined as follows:

q̄(t) = [ r(t) θ(t) ]T (7)

with r(t) ∈ R
1 representing the following defined tracking

error:

r(t) = x(t) − xd(t). (8)

After taking the time derivative of (6), substituting (2)
- (4) into the resulting expression, and then canceling
common terms, we obtain the following expression:

Ė(t) = ṙ(F + g(t)) + l cos θθ̇(kdiẋd + mpẍd)

−kdil
2θ̇2 (9)

where g(t) ∈ R
1 represents the following nonlinear func-

tion containing unknown parameters:

g(t) =−fr0 tanh(ẋ/ǫ) + kr|ẋ|ẋ − 2kdiẋ + 2kdilcosθθ̇

−(mc + mp)ẍd. (10)

To accomplish the control goal, we have to attack the
uncertainty within the nonlinear item g(t). It is noted that
although unknown parameters are involved in g(t), they
enter the dynamics of g(t) only via a linear manner as
follows:

g(t) = Y T ω (11)

where Y (t) ∈ R
5×1 denotes the regress vector which can be

measured online, and ω ∈ R
5×1 is an unknown parameter

vector. The detailed expressions for Y (t) and ω are given
as follows:

Y (t) = [ 2 cos θθ̇ − tanh(ẋ/ε) |ẋ|ẋ −2ẋ −ẍd ]T ,

ω = [ kdil fr0 kr kdi mc + mp ]T . (12)

According to the structure of (9) and the subsequent
stability analysis, we design an adaptive tracking controller
as follows:

F (t) = −Y T ω̂ − kpr − kdṙ (13)

where kp, kd ∈ R
+ are positive control gains, and ω̂(t) ∈

R
5×1 is the on-line estimation of ω, which is generated by

the following update law:

˙̂ω(t) = ΓY ṙ (14)

with Γ ∈ R
5×5 being a diagonal, positive definite, update

gain matrix.

4. STABILITY ANALYSIS

Theorem 1. The controller given in (13) ensures that the
position/velocity of the trolley tracks the desired tra-
jectory/velocity asymptotically fast, and the swing an-
gle/velocity is regulated to zero in the sense that:

lim
t→∞

( x(t) ẋ(t) θ(t) θ̇(t) ) = ( xd(t) ẋd(t) 0 0 ).
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Proof: To prove Theorem 1, we first define a non-negative
function denoted by V (t) ∈ R

1 as follows:

V (t) = E +
1

2
kpr

2 +
1

2
ω̃T Γ−1ω̃ (15)

where ω̃(t) ∈ R
5×1 denotes the parameter estimation

error:

ω̃(t) = ω − ω̂(t).

After taking the time derivative of (15) and then substi-
tuting the formulas of (9) - (14) into it, we obtain the

following expression of V̇ (t):

V̇ (t) = −kdṙ
2 − kdil

2θ̇2 + l cos θθ̇(kdiẋd + mpẍd). (16)

After noting the following fact:

l cos θθ̇(kdiẋd + mpẍd) ≤
1

4
kdil

2θ̇2 +
(kdiẋd + mpẍd)

2

kdi

,

an upper bound of V̇ (t) can be obtained as:

V̇ (t) ≤ −kdṙ
2 −

3

4
kdil

2θ̇2 +
(kdiẋd + mpẍd)

2

kdi

. (17)

Integrating both sides of (17) yields:

V (t)≤ V (0) +

t
∫

0

(kdiẋd + mpẍd)
2

kdi

dt

−kd

t
∫

0

ṙ2dt −
3

4
kdil

2

t
∫

0

θ̇2dt. (18)

According to Assumption 3, it can be proven that (kdiẋd+
mpẍd) ∈ L2, hence:

t
∫

0

(kdiẋd + mpẍd)
2

4kdi

dt ∈ L∞. (19)

Therefore, equation (18) can then be utilized to show that
V (t) ∈ L∞. Based on this fact, the following conclusion
can be obtained by utilizing (15), (6) and the property of
(3):

ṙ(t), θ̇(t), r(t), ω̃(t) ∈ L∞. (20)

According to the definition of ω̃(t), equations (1), (12),
(13) and (20), it is easy to see that:

ω̂(t), Y (t), F (t), ẍ(t), θ̈(t), r̈(t) ∈ L∞. (21)

On the other hand, after making some mathematical ar-
rangement, (18) can be rewritten in the following manner:

kd

t
∫

0

ṙ2dt +
3

4
kdil

2

t
∫

0

θ̇2dt≤

t
∫

0

(kdiẋd + mpẍd)
2

kdi

dt

+V (0) − V (t). (22)

Based on the previous facts of (kdiẋd + mpẍd) ∈ L2 and
V (t) ∈ L∞, (22) can then be employed to conclude that:

ṙ(t), θ̇(t) ∈ L2. (23)

Based on the previous facts of ṙ(t), θ̇(t) ∈ L2 ∩ L∞ and

r̈(t), θ̈(t) ∈ L∞, Barbalat’s Lemma Khalil (2002) can then
be directly utilized to show that:

lim
t→∞

ṙ(t) = 0, lim
t→∞

θ̇(t) = 0. (24)

According to Assumption 3, we know that (see Appendix
for detail):

lim
t→∞

ẋd(t) = 0, lim
t→∞

ẍd(t) = 0,

hence, it is easy to see by (8) and (12) that:

lim
t→∞

ẋ(t) = 0, lim
t→∞

Y (t) = 0. (25)

After substituting (2) and (13) into (1), and then mak-
ing some mathematical manipulation, we can obtain the
following equation about ẍ(t):

ẍ(t) = faux1(t) + faux2(t) (26)

where faux1(t), faux2(t) ∈ R
1 denote the following auxil-

iary functions:

faux1(t) = (−mpl sin θθ̇2 + kdi cos2 θẋ − kdil cos θθ̇

−kdṙ − fr0 tanh(ẋ/ǫ) + kr|ẋ|ẋ − 2kdiẋ

+kdil cos θθ̇ − Y T ω̂)/(mc + mp sin2 θ),

faux2(t) = (−mpg sin θ cos θ − kpr)/(mc + mp sin2 θ).

(27)

It can be concluded that:

lim
t→∞

faux1(t) = 0, ḟaux2(t) ∈ L∞

by utilizing (20), (24) and (25). Therefore, the Extended
Barbalat’s Lemma Khalil (2002) can be directly employed
on equation (26) to show that:

lim
t→∞

ẍ(t) = 0. (28)

On the other hand, after some calculation for (1), the

expression of θ̈(t) can be obtained as follows:

θ̈(t) =
1

l
cos θẍ −

g

l
sin θ +

kdi

mpl
cos θẋ −

kdi

mp

θ̇. (29)

We can then go through a similar analysis on θ̈(t) to show
that:

lim
t→∞

θ̈(t) = 0, lim
t→∞

sin θ(t) = 0. (30)

Assumption 2 can then be employed to show that:

lim
t→∞

θ(t) = 0.

Substitute (24), (25), (28) and (30) into the system dy-
namics of (1) yields:

lim
t→∞

F (t) = 0.

Based on this fact, it is straightforward to see from (13),
(24) and (25) that:

lim
t→∞

r(t) = 0. (31)
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Fig. 1. Control performance

5. SIMULATION RESULTS

To illustrate the controller performance, we simulate the
constructed adaptive tracking controller of (13) in a crane
testbed with the following parameters Fang (2001):

mc = 3.5, mp = 0.5, l = 0.9, g = 9.8.

And the friction parameters are chosen as follows:

fr0 = 50, kr = −0.05, kdi = 0.02, ǫ = 0.1.

The desired location of the trolley is selected as pd = 1,
and an S curve defined in (5) with the following parameters
is selected as the desired trajectory:

k = 1, ǫ1 = 3, ǫ2 = 6.

The initial state of the system is chosen as:

x(0) = 0, ẋ(0) = 0, θ(0) = 0, θ̇(0) = 0.

The control law is tuned until a best performance is
achieved, which yields the following control gains:

kp = 200, kd = 10, Γ = 5I5

where I5 is a fifth-order identity matrix. Fig. 1 plots the
tracking error of the trolley and the swing angle of payload,
while the parameter estimation results are presented in
Fig. 2, and control input is depicted in Fig. 3.

It can be seen that the tracking error of the trolley position
reaches zero after 20 seconds and the swing angle goes to
zero asymptotically fast. In the transferring process, the
swing angle is less than 0.4 degree, which implies that the
swing distance of payload in horizontal direction is less
than 0.9 [m]× sin(0.4 [deg]) = 0.0063 [m].

To demonstrate that the new S trajectory (5) proposed
in this paper leads to a better performance, the adaptive
controller (13) is used to tracking the following trajectories
separately:

xd1(t) = pd(1 − e−0.5t) (32)

xd2(t) = pd

tanh 0.3(t − 1) + 1

2
(33)

where pd denotes the desired trolley position defined
in Assumption 3. Fig. 4 and Fig. 5 are the tracking
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Fig. 2. Parameters estimation performance
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Fig. 3. Control input

performances for the two trajectories defined in (32) and
(33). From these two figures, it is easy to see that although
the transfer efficiencies of the trolley are identical, the anti-
swing performance of tracking (32) or (33) is not as good as
that of tracking the trajectory (5) proposed in this paper.

6. CONCLUSION

In this paper, an energy-based adaptive tracking control
strategy is proposed for an underactuated crane system
which ensures trajectory tracking of the trolley as well
as the regulation for the swing of payload. Specifically,
two steps are involved in the design to achieve a superior
performance: firstly, this paper proposes a new S trajectory
for trolley tracking; secondly, it constructs an adaptive
controller to ensure that the trolley tracks a properly
selected trajectory to reduce payload swing. As proven
by Lyapunov techniques, the proposed adaptive control
law guarantees an asymptotical tracking result even in the
presence of uncertainties involved with system parameters
and various disturbances. Simulation results are provided
to show that the proposed control law not only achieves
excellent steady-state tracking result, but also exhibits
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Fig. 4. Performance of tracking trajectory defined in (32)
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Fig. 5. Performance of tracking trajectory defined in (33)

superior transient performance for the swing of payload.
Future work will attack the path planning problem for the
crane system based on a rigorous theoretical analysis. Be-
sides, future work will also target to extend the proposed
design process to a class of general underactuated systems.
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