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Abstract: The speed-gradient variational principle (SG-principle) is formulated and applied to ther-
modynamical systems. It is shown that Ziegler’s Maximum Entropy Generation Principle as well
as Prigogine’s principle of minimum entropy production and Onsager’s symmetry relations can be
interpreted in terms of the SG-principle. For an SG thermodynamic system its negative entropy plays a
role of the goal functional. The speed-gradient formulation of thermodynamic principles provides their
extended versions, describing transient dynamics of nonstationary systems far from equilibrium. As an
example an SG-model of transient (relaxation) dynamics for systems of a finite number of particles based
on maximum entropy principle is derived. It has the form dN(t)/dt = A lnN(t), where N(t) is the vector
of the cell populations, A is a symmetric matrix with two zero eigenvalues corresponding to mass and
energy conservation laws.
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1. INTRODUCTION

Variational principles are often used for building dynamical
models both in physics and in engineering. In engineering
variational principles are used to design equations of optimal
control systems (Young, 1980). The equations of motion for
physical systems are also frequently derived from variational
principles: principle of least action, maximum entropy prin-
ciple, etc. (Lanczos, 1964; Gyarmati, 1970). Although appli-
cation of control methods in physics is a huge area of active
recent research (Fradkov, 2007), there are only a few attempts
to apply results of control theory to model physical systems
(Rosenbrock, 2000).

In this paper the previous results (Fradkov, 2003) on using
speed-gradient method of nonlinear and adaptive control for
modeling physical systems are extended to nonequilibrium
thermodynamics.

Variational principles are based on specification of a functional
(usually, integral functional) and determination of real motions
as points in an appropriate functional space providing extrema
of the specified functional. The principle is called integral if the
functional to be extremized has an integral form.

In addition to integral principles, differential (local) ones were
proposed: Gauss principle of least constraint, principle of min-
imum energy dissipation and others. It has been pointed out
by Plank (1914) that the local principles have some preference
with respect to integral ones because they do not fix dependence
of the current states and motions of the system on its later
states and motions. In thermodynamics two of such principles
have become most popular during last century: I. Prigogine’s

⋆ The work was supported by the Research Program 22 of Presidium of RAS

(project 1.8). The author thanks Prof. Tatiana Khantuleva for useful comments.

principle of minimum entropy production and L. Onsager’s
symmetry principle for kinetic coefficients. Authors of both
results were awarded with Nobel prizes. In the 1950s the so
called Maximum Entropy Generation Principle (MEGP) was
proposed by H. Ziegler (Ziegler, 1958, 1983) who also showed
that Prigogine’s and Onsager’s principles in the near equilib-
rium case can be derived from MEGP under some conditions
and that they are equivalent to each other. In 1957 E.T. Jaynes
formulated the Maximum Entropy Principle (MEP): the en-
tropy of any physical system tends to increase until it achieves
its maximum value under constraints imposed by other physical
laws (Jaynes, 1957). In fact such a prediction (implicit) can be
found in the works of W. Gibbs.

In (Fradkov, 1990, 2003) a new local evolution principle, so
called speed-gradient (SG) principle originated from the SG-
design method of nonlinear control theory (Fradkov, 1979;
Fradkov and Pogromsky, 1998) was proposed and illustrated by
a number of examples from mechanics. In (Fradkov, 2007) SG-
principle was extended to the case of systems with constraints.

This paper is devoted to application of the SG-principle to
thermodynamics. First, the formulation of the SG-principle is
recalled and some illustrating examples are presented. Then
it is shown that Ziegler’s MEGP as well as Prigogine’s and
Onsager’s principles can be interpreted in terms of the SG-
principle. In all cases the entropy of the system plays a role
of the goal functional. The speed-gradient formulation of ther-
modynamic principles provide their extended versions, suitable
for the systems far from equilibrium. Moreover, it may describe
their nonstationary, transient dynamics. In the paper the SG-
principle is applied to derivation of transient (relaxation) dy-
namics for a system driven by maximum entropy principle.
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2. SPEED-GRADIENT VARIATIONAL PRINCIPLE

Consider a class of physical systems described by systems of
differential equations

ẋ = f (x,u,t), (1)

where x = (x1, . . . ,xn)
T

is n-dimensional column vector of the

system state (
T

is the transposition sign), u = (u1, . . . ,um)
T

is m-dimensional column vector of free (input) variables, ẋ =
dx/dt, t ≥ 0. The problem of modelling system dynamics can
be posed as the search of a law of change of u(t) meeting some
criterion of “natural”, or “reasonable” behavior of the system.
Let such a behavior be specified as a tendency to achieve a goal,
specified as decreasing the value of the goal functional Q(x),
where Q(x) is given apriori. The choice of Q(x) should reflect
physical essence of the problem and it is critical for the result.
An ultimate goal may be also introduced as achievement of the
minimum value of Q(x):

Q(x(t)) → 0 as t → ∞, (2)

if a nonnegative Q(x) is chosen: Q(x) ≥ 0.

The first step of the speed-gradient procedure is to calculate the

speed Q̇ = dQ
dt

= ω(x,u,t), where ω(x,u,t) = ∂Q(x)
∂x

f (x,u,t).

The second step is to evaluate the gradient of the speed ∇uQ̇
with respect to input vector u (speed-gradient vector). Finally
the law of dynamics is formed as the feedback law in the finite
form

u = −γ∇uQ̇(x,u,t). (3)

or in the differential form

du

dt
= −γ∇uQ̇(x,u,t), (4)

where γ > 0 is a positive scalar or a positive definite symmetric
matrix gain (positivity of a matrix is understood as positive def-
initeness of associated quadratic form). The underlying idea of
the choices (3) or (4) is that the motion along the anti-gradient
of the speed Q̇ provides decrease of Q̇. It may eventually lead to
negativity of Q̇ which, in turn, yields decrease of Q. Under some
natural assumptions achievement of the ultimate goal (2) can be
derived as a mathematical statement (Fradkov, 1990; Fradkov
and Pogromsky, 1998) which is, however, beyond the theme of
this paper. Now the speed-gradient principle can be formulated
as follows.

Speed-gradient principle: Among all possible motions of the
system only those are realized for which the input variables
change proportionally to the speed gradient ∇uQ̇(x,u) of an
appropriate goal functional Q(x). If there are constraints im-
posed on the system motion, then the speed-gradient vector
should be projected onto the set of admissible (compatible with
constraints) directions.

According to the SG-principle, to describe a system dynamics
one needs to introduce the goal function Q(x). The choice of
Q(x) should reflect the tendency of natural behavior to decrease
the current value Q(x(t)). Systems obeying the SG-principle
will be called SG-systems. In this paper only the models (1) in
a special form are considered:

ẋ = u, (5)

i.e. a law of change of the state velocities is sought.

Since gradient of a function is the direction of it maximum
growth, the SG-direction is the direction of maximum growth

for Q̇(x,u,t), i.e. direction of maximum production rate for
Q. Respectively, the opposite direction corresponds to mini-
mum production rate for Q. In the presence of constraints SG-
principle suggests that production rate for Q is maximum under
imposed constraints. The laws of dynamics under constraints
can be found using the method of Lagrange multipliers.

The SG-laws with non-diagonal gain matrices γ can be inter-
preted by introducing a non-Euclidean metric in the space of
inputs is by means of the matrix γ−1. The matrix γ can be
used to describe spatial anisotropy. Admitting dependence of
the matrix γ on x one can recover dynamics law for complex
mechanical systems described by Lagrangian or Hamiltonian
formalism.

3. EXAMPLES OF SPEED-GRADIENT LAWS OF
DYNAMICS

According to the speed-gradient principle, at first one needs to
introduce the goal function Q(x). The choice of Q(x) should
reflect the tendency of natural behavior to decrease the current
value Q(x(t)). Let us consider a few illustrating examples.

Example 1. Motion of a particle in the potential field. In
this case the vector x = (x1,x2,x3)

T consists of coordinates
x1,x2,x3 of a particle. Choose smooth Q(x) as the poten-
tial energy of a particle and derive the speed-gradient law in
the differential form. To this end, calculate the speed Q̇ =
∂Q/∂x = [∇xQ(x)]T

u and the speed-gradient ∇uQ̇ = ∇xQ(x).
Then, choosing the diagonal positive definite gain matrix Γ =
m−1I3, where m > 0 is a parameter, I3 is the 3 × 3 identity
matrix, we arrive at the Newton’s law u̇ = −m−1∇xQ(x) or

mẍ = −∇xQ(x). (6)

Note that the speed-gradient laws with nondiagonal gain ma-
trices Γ can be incorporated if a non-Euclidean metric in the
space of inputs is introduced by the matrix Γ−1. Admitting
dependence of the metric matrix Γ on x one can obtain evolution
laws for complex mechanical systems described by Lagrangian
or Hamiltonian formalism.

The SG-principle applies not only to finite dimensional sys-
tems, but also to infinite dimensional (distributed) ones. Partic-
ularly, x may be a vector of a functional space X and f (x,u,t)
may be a nonlinear differential operator (in such a case the
solutions of (1) should be understood as generalized ones). We
will omit mathematical details for simplicity.

Example 2. Wave, diffusion and heat transfer equations.
Let x = x(r), r = col(r1,r2,r3) ∈ Ω be the temperature field
or the concentration of a substance field defined in the domain
Ω ⊂ R

3. Choose the goal functional evaluating nonuniformity
of the field as follows

Qt(x) =
1

2

∫

Ω

|∇rx(r, t)|2 dr, (7)

where ∇rx(r, t) is the spatial gradient of the field and boundary
conditions are assumed zero for simplicity. Calculation of the
speed Q̇t and then speed-gradient of Qt , yields

Q̇t = −

∫

Ω

∆x(r,t)u(r,t)dr, ∇uQ̇t = −∆x(r,t),

where ∆ =
3

∑
i=1

∂ 2

∂ r2
i

is the Laplace operator. Therefore the speed-

gradient law in differential form (4) is
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∂ 2

∂ t2
x(r,t) = −γ∆x(r,t), (8)

which corresponds to the D’Alembert wave equation. The SG-
law in finite form (3) reads

∂x

∂ t
(t) = −γ∆x(r,t) (9)

and coincides with the diffusion or heat transfer equation.

Note that the differential form of the speed-gradient laws cor-
responds to reversible processes while the finite form generates
irreversible ones. For modeling more complex dynamics a com-
bination of finite and differential SG-laws may be useful.

In a similar way dynamical equations for many other mechan-
ical, electrical and thermodynamic systems can be recovered.
The SG-principle applies to a broad class of physical systems
subjected to potential and/or dissipative forces.

4. GENERALIZED ONSAGER RELATIONS

The speed-gradient approach provides a new insight for vari-
ous physical facts and phenomena. For example, we will give
evidence for an extended version of the symmetry principle
for kinetic coefficients (Onsager principle) in thermodynamics
(Glansdorff and Prigogine, 1971) (it is also called the Maxwell-
Betti theorem in elasticity theory). Consider an isolated phys-
ical system whose state is characterized by a set of variables
(thermodynamic parameters) ξ1,ξ2, . . . ,ξn. Let xi = ξi − ξ ∗

i

be deviations of the variables from their equilibrium values
ξ ∗

1 ,ξ ∗
2 , . . . ,ξ ∗

n . Let the dynamics of the vector x1,x2, . . . ,xn be
described by the differential equations

ẋi = ui(x1,x2, . . . ,xn), i = 1,2, . . . ,n. (10)

Traditionally in the thermodynamical analysis the variables are
split into two groups according to decomposition of the entropy
production σ = ∑i XiJi, where Xi are thermodynamic forces,
Ji are thermodynamic flows (conjugate variables). Then the

relations ∂σ
∂Ji

= Xi,
∂σ
∂Xi

= Ji may significantly simplify further

analysis. For our purposes such a decomposition is not needed
and we will not use it in the paper.

Linearize equations (10) near equilibrium

ẋi = −
n

∑
k=1

λikxk, i = 1,2, . . . ,n. (11)

The Onsager’s principle (Glansdorff and Prigogine, 1971)
claims that the values λik (kinetic coefficients) satisfy the equa-
tions

λik = λki, i,k = 1,2, . . . ,n. (12)

Recall that, initially Onsager was dealing only with the vari-
ables which are even with respect to the microscopic change
of time (α-variables in the terminology of De Groot and Ma-
sur (1962). Later it was extended to more general case which
however will not be considered here for the sake of simplicity.

In general, the Onsager principle is not valid for all systems e.g.
for systems far from equilibrium. Its existing proofs (Landau
and Lifshitz, 1980) require additional postulates. Below a sim-
ple new proof is given, showing that it is valid for irreversible
speed-gradient systems without exceptions.

First of all, the classical formulation of the Onsager principle
(12) should be extended to nonlinear systems. A natural exten-
sion is the following set of identities:

∂ui

∂xk

(x1,x2, . . . ,xn) =
∂uk

∂xi

(x1,x2, . . . ,xn). (13)

Obviously, for the case when the system equations (10) have
linear form (11) the identities (13) coincide with (12). However,
since linearization is not used in the formulation (13) there is a
hope that the extended version of the Onsager law holds for
some nonlinear systems far from equilibrium. The following
statement specifies a class of systems for which this hope comes
true.

There exists a smooth function Q(x) such that equations (10)
represent the speed-gradient law in finite form for the goal
function Q(x) if and only if the identities (13) hold for all
x1,x2, . . . ,xn.

The proof is very simple. Since (10) is the speed-gradient law
for Q(x), its right-hand sides can be represented in the form

ui = −γ ∂ Q̇
∂ui

, i = 1,2, . . . ,n. Therefore ui = −γ(∂Q/∂xi) (in

view of Q̇ = (∇xQ)T u). Hence ∂ui

∂xk
= −γ ∂ 2Q

∂xi∂xk
= ∂uk

∂xi
, and

identities (13) are valid. According to the standard result from
the calculus, the condition (13) is necessary and sufficient for
potentiality of the vector-field of the right-hand sides of (10),
i.e. for existence of a scalar function Q̄ such that ui = γ∇xQ̄ =

γ∇u
˙̄Q.

Thus, for SG-systems the extended form of the Onsager equa-
tions (13) hold without linearization, i.e., they are valid not only
near the equilibrium state. In a special case the condition (13)
was proposed in (Farkas and Noszticzius, 1971). The theorem
means that generalized Onsager relations (13) are necessary
and sufficient for the thermodynamics system to obey the SG-
principle for some Q̄. On the other hand, it is known that
different potential functions for the same potential vector-field
can differ only by a constant: Q̄ = Q+const and their stationary
sets coincide. In the formulation of the SG-principle in Sec. II
the goal was introduced as minimization of Q. Since the entropy
of the thermodynamical system increases according to the 2nd
Law, the natural goal function for thermodynamical systems
is negative entropy (−S). Therefore, if the system tends to
maximize its entropy and the negative entropy serves as the goal
function for the SG-evolution law, then at every time instant the
direction of parameter change (e.g. change of thermodynamical
flows for fixed thermodynamical forces) coincides with the
direction maximizing the rate of entropy change. In turn, it
coincides with the gradient of the entropy rate, i.e. we recover
Ziegler’s MEGP. It follows from MEGP (Ziegler, 1983; (Mar-
tyushev and Seleznev, 2006) that for system in a weakly non-
equilibrium state (some of the thermodynamical forces become
free), the system will be adjusting them in order to minimize
entropy production (rate). That is, if Prigogine principle holds
then the generalized Onsager principle (13) holds and vice
versa. Note that for special case the relation between Prigogine
principle and Onsager principle was established by Gyarmati
(1970).

For the SG-systems some additional properties can be derived.
Let for example a system be governed by SG-law with a convex
entropy goal function −S. Then the decrease of the entropy
production Ṡ readily follows from the identities S̈ = dṠ/dt =

(∇xṠ)
T

ẋ = γ(∇x||∇xS||2)
T

∇xS = 2γ(∇xS)
T
[∇2

xS](∇xS).
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Since the entropy S(x) is concave, its Hessian matrix ∇2
xS is

negative semidefinite: ∇2
xS ≤ 0. Hence S̈(x) ≤ 0 and Ṡ cannot

increase.

5. SPEED-GRADIENT ENTROPY MAXIMIZATION

Let us underly that the speed-gradient principle provides an
answer to the question: how the system will evolve? It differs
from the principles of maximum entropy, maximum Fisher in-
formation, etc. providing and answer to the questions: where?
and how far? Particularly, it means that SG-principle generates
equations for the transient (nonstationary) mode rather than the
equations for the steady-state mode of the system. It allows one
to study nonequilibrium and nonstationary situations, stability
of the transient modes, maximum deviations from the limit
mode, etc. Let us illustrate this feature by example of entropy
maximization problem.

According to the 2nd thermodynamics law and to the Maximum
Entropy Principle of Gibbs-Jaynes the entropy of any physical
system tends to increase until it achieves its maximum value
under constraints imposed by other physical laws. Such a
statement provides knowledge about the final distribution of
the system states, i.e. about asymptotic behavior of the system
when t → ∞. However it does not provide information about the
way how the system moves to achieve its limit (steady) state.

In order to provide motion equations for the transient mode
employ the SG-principle. Assume for simplicity that the system
consists of N identical particles distributed over m cells. Let
Ni be the number of particles in the ith cell and the mass
conservation law holds:

m

∑
i=1

Ni = N. (14)

Assume that the particles can move from one cell to another and
we are interested in the system behavior both in the steady-state
and in the transient modes. The answer for the steady-state case
is given by the Maximum Entropy Principle: if nothing else is
known about the system, then its limit behavior will maximize
its entropy Jaynes (1957). Let the entropy of the system be
defined as logarithm of the number of possible states:

S = ln
N!

N1! · · · · ·Nm!
. (15)

If there are no other constraints except normalization condition
(14) it achieves maximum when N ∗

i = N/m. For large N an
approximate expression is of use. Namely, if the number of par-
ticles N is large enough, one may use the Stirling approximation
Ni! ≈ (Ni/e)Ni . Then

S ≈ N ln
N

e
−

m

∑
i=1

Ni ln
Ni

e
= −

m

∑
i=1

Ni ln
Ni

N

which coincides with the standard definition for the entropy
S = −∑m

i=1 pi ln pi, modulo a constant multiplier N, if the
probabilities pi are understood as frequencies Ni/N.

To get an answer for transient mode apply the SG-principle
choosing the entropy S(X)=−∑m

i=1 Ni lnNi as the goal function
to be maximized, where X = col(N1, . . . ,Nm) is the state vector
of the system. Assume for simplicity that the motion is con-
tinuous in time and the numbers Ni are changing continuously,
i.e. Ni are not necessarily integer (for large Ni it is not a strong
restriction). Then the sought law of motion can be represented
in the form

Ṅi = ui, i = 1, . . . ,m, (16)

where ui = ui(t), i = 1, . . . ,m are controls – auxiliary functions
to be determined. According to the SG-principle one needs
to evaluate first the speed of change of the entropy (15) with
respect to the system (16), then evaluate the gradient of the
speed with respect to the vector of controls u i considered as
frozen parameters and finally define actual controls proportion-
ally to the projection of the speed-gradient to the surface of
constraints (14). In our case the goal function is the entropy
S and its speed coincides with the entropy production Ṡ. In
order to evaluate Ṡ let us again approximate S from the Stirling
formula Ni! ≈ (Ni/e)Ni :

Ŝ = N lnN−N−
m

∑
i=1

(Ni lnNi −Ni) = N lnN−
m

∑
i=1

Ni lnNi. (17)

Evaluation of ˙̂S yields

˙̂S = −
m

∑
i=1

((ui lnNi + Ni
ui

Ni

) = −
m

∑
i=1

ui(lnNi + 1).

It follows from (14) that ∑m
i=1 ui = 0. Hence ˙̂S = −∑m

i=1 ui lnNi.

Evaluation of the speed-gradient yields ∂ ˙̂S
∂ui

= − lnNi and the

SG-law ui = γ(− lnNi + λ ), i = 1, . . . ,m, where Lagrange
multiplier λ is chosen in order to fulfill the constraint ∑m

i=1 ui =

0, i.e. λ = 1
m ∑m

i=1 lnNi. The final form of the system dynamics
law is as follows:

Ṅi =
γ

m

m

∑
i=1

lnNi − γ lnNi, i = 1, . . . ,m. (18)

According to the SG-principle the equation (18) determines
transient dynamics of the system. To confirm consistency of
the choice (18) let us find the steady-state mode, i.e. evaluate
asymptotic behavior of the variables Ni. To this end note that in
the steady-state Ṅi = 0 and ∑m

i=1 lnNi = lnNi. Hence all Ni are
equal: Ni = N/m which corresponds to the maximum entropy
state and agrees with thermodynamics.

The next step is to examine stability of the steady-state mode.
It can be done by means of the entropy Lyapunov function
V (X) = Smax − S(X) ≥ 0, where Smax = N lnm. Evaluation of
V̇ yields

V̇ = −Ṡ =
m

∑
i=1

ui lnNi =
γ

m

[

(
m

∑
i=1

lnNi)
2 −m

m

∑
i=1

(lnNi)
2
]

.

It follows from the Cauchy-Bunyakovsky-Schwarz inequality
that V̇ (X) ≤ 0 and the equality V̇ (X) = 0 holds if and only if
all the values Ni are equal, i.e. only at the maximum entropy
state. Thus the law (18) provides global asymptotic stability
of the maximum entropy state. The physical meaning of the
law (18) is moving along the direction of the maximum entropy
production rate (direction of the fastest entropy growth).

The case of more than one constraint can be treated in the
same fashion. Let in addition to the mass conservation law (14)
the energy conservation law hold. Let E i be the energy of the
particle in the ith cell and the total energy E = ∑m

i=1 NiEi be
conserved. The energy conservation law

E =
m

∑
i=1

NiEi (19)

appears as an additional constraint. Acting in a similar way,
we arrive at the law (18) which needs modification to ensure
conservation of the energy (19). According to the SG-principle
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one should form the projection onto the surface (in our case –
subspace of dimension m−2) defined by the relations

m

∑
i=1

uiEi = 0,
m

∑
i=1

ui = 0. (20)

It means that the evolution law should have the form

ui = γ(− lnNi)+ λ1Ei + λ2, i = 1, . . . ,m, (21)

where λ1,λ2 are determined by substitution of (21) into (20).
The obtained equations are linear in λ1,λ2 and their solution is
given by formulas











λ1 =
γm(∑m

i=1 Ei lnNi)−γ(∑m
i=1 Ei)(∑

m
i=1 lnNi)

m∑m
i=1 E2

i −(∑m
i=1 Ei)2 ,

λ2 = γ
m ∑m

i=1 lnNi −
λ1
m ∑m

i=1 Ei.

(22)

The solution of (22) is well defined if m ∑m
i=1 E2

i − (∑m
i=1 Ei)

2 	=
0 which holds unless all the Ei are equal (degenerate case).

Let us evaluate the equilibrium point of the system (16), (21)
and analyze its stability. At the equilibrium point of the system
the following equalities hold: γ(− lnNi)+ λ1Ei + λ2 = 0, i =
1, . . . ,m. Hence

Ni = C exp(−µEi), i = 1, . . . ,m, (23)

where µ = λ1/γ and C = exp(−λ2/γ).

The value of C can also be chosen from the normalization
condition C = N(∑m

i=1 exp(−µEi)). We see that equilibrium of
the system with conserved energy corresponds to the Gibbs dis-
tribution which agrees with classical thermodynamics. Again it
is worth to note that the direction of change of the numbers
Ni coincides with the direction of the fastest growth of the
local entropy production subject to constraints. As before, it
can be shown that V (X) = Smax − S(X) is Lyapunov function
for the system and that the Gibbs distribution is the only stable
equilibrium of the system in nongenerate cases. Substitution
of λ1,λ2 from (22) into equation (21) yields general form of
evolution law for the frequencies in the form

d

dt
N̄(t) = A ln N̄(t), (24)

where symmetric m×m matrix A is defined as follows:

ai j = −δi j +
1

m
+ ẼiẼ j, i, j = 1, . . . ,m

δi j = 1, if i = j, δi j = 0, if i 	= j, Ẽi = Ei−
1
m ∑m

i=1 Ei. It depends

on the vector of energies Ē = (E1, . . . ,Em)
T
). According to its

structure the matrix A is symmetric and has two zero eigenval-
ues. Eq. (24) has a unique relative equilibrium corresponding
to Gibbs distribution. Similar results are valid for continuous
(distributed) systems even for more general problem of min-
imization of relative entropy (Kullback divergence) (Fradkov,
2007).

CONCLUSIONS

Speed-gradient variational principle provides a useful yet sim-
ple addition to classical results in thermodynamics. Whereas
the classical results allow researcher to answer the question
“Where it goes to?”, the speed-gradient approach provides an
answer to Fradkov and Pogromsky (1998) the question: “How
it goes and how it reaches its steady-state mode?” SG-principle
suggests that the transient behavior is potential with respect
to the rate of some goal function. This idea may be applied
to evaluation of nonequilibrium stationary states and study of

system internal structure evolution (Khantuleva, 2005), descrip-
tion of transient dynamics of complex networks (Rangan and
Cai, 2006; Boccaletti et al., 2006; Barabasi, 2007), description
of transient slow motions in vibrational mechanics, etc. Other
physical applications of techniques and ideas developed in con-
trol theory (cybernetics) can be found in (Sieniutycz, 1994;
Gorban and Karlin, 2004; Fradkov, 2005, 2007).

REFERENCES

A. L. Barabasi. The architecture of complexity. IEEE Control
Syst. Mag., pages 33–42, August 2007. (Special Section on
Complex Networked Control Systems.

S. Boccaletti, V. Latora, Y. Morenod, M. Chavez, and D.-
U. Hwanga. Complex networks: Structure and dynamics.
Physics Reports, 424:175–308, 2006.

S. R De Groot and P. Masur. Non-equilibrium Thermodynam-
ics. North-Holland, Amsterdam, 1962.

H. Farkas and Z. Noszticzius. On the non-linear generalization
of the gyarmati principle and theorem. Annalen der Physik,
27:341–348, 1971.

A. L. Fradkov. Speed-gradient scheme and its applications in
adaptive control. Autom. Remote Control, 40(9):1333–1342,
1979.

A. L. Fradkov. Adaptive Control in Complex Systems. Nauka,
Moscow, 1990. (in Russian).

A. L. Fradkov. Speed-gradient approach to modeling dynamics
of physical systems. In Proc. Europ. Contr. Conf. (ECC’03),
Cambridge, UK, September 1–4, 2003.

A. L. Fradkov. Application of cybernetical methods in physics.
Physics-Uspekhi, 48(2):103–127, 2005.

A. L. Fradkov. Cybernetical physics: from control of chaos
to quantum control. Springer-Verlag, Berlin – Heidelberg,
2007. 242 p.

A. L. Fradkov and A. Yu. Pogromsky. Introduction to control
of oscillations and chaos. World Scientific, Singapore, 1998.

P. Glansdorff and I. Prigogine. Thermodynamics of Structure,
Stability and Fluctuations. Wiley, New York, 1971.

A. N. Gorban and I. V. Karlin. Invariant manifolds for chemical
and physical systems. In LN Physics, volume 600. Springer-
Verlag, Berlin, Heidelberg, 2004.

I. Gyarmati. Non-equilibrium Thermodynamics. Field Theory
and Variational Principles. Springer-Verlag, Berlin, 1970.

E. T. Jaynes. Information theory and statistical mechanics, I, II.
Phys. Rev., 106, 108, 1957.

T. A. Khantuleva. Internal control in nonequilibrium transport.
In Proc. 2nd IEEE-EPS Intern. Conf. Physics and Control,
pages 41–46, St. Petersburg, 2005.

C. Lanczos. The Variational Principles of Mechanics. Univer-
sity Press, Toronto, 1964.

L. D. Landau and E. M. Lifshitz. Statistical Physics, Part 1.
Pergamon Press, Oxford, 1980.

L. M. Martyushev and V. D. Seleznev. Maximum entropy pro-
duction principle in physics, chemistry and biology. Physics
Reports, 426(1):1–45, 2006.

M. Plank. Das prinzip der kleinsten wirkung. Die Kultur der
Gegenwart, 3:692–702, 1914. Abt. 3, Bd. 1 (Also in: Phys-
icalishe Abhandlungen und Vortrage, Bd.3, Braunshweig,
1958, ss. 91–101).

A. V. Rangan and D. Cai. Maximum-entropy closures for
kinetic theories of neuronal network dynamics. Phys. Rev.
Lett., 96:178101, 2006.

H. H. Rosenbrock. Doing quantum mechanics with control
theory. IEEE Trans. Automat. Contr., 45(1):73–77, 2000.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

5555



S. Sieniutycz. Conservation laws in variational thermo-
hydrodynamics. Kluwer, Dordrecht, 1994.

L. C. Young. Lectures on the Calculus of Variations and
Optimal Control Theory. Chelsea, New York, 1980. 2nd
ed.

H. Z. Ziegler. Ang. Math. Phys., 9b:748, 1958.
H. Z. Ziegler. Introduction to Thermomechanics. North-

Holland, Amsterdam, 1983. 2nd ed.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

5556


