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Abstract: In general, the first and the most important step in system analysis, prediction and control is the 
proper model of the system. In order to design the controller of nonlinear electrohydraulic system, several 
modeling techniques are proposed: the transfer function of the electrohydraulic system is identified using 
first-principle method, and the intelligent models are built by fuzzy modeling and neural networks. First, 
the Automatic Depth Control Electrohydraulic System (ADCES) of a certain type of weapon is introduced, 
and how to obtain the input-output data is proposed. Then, three modeling algorithms are detailed, 
including transfer function, fuzzy system and neural networks. Finally, five models are identified based on 
the ADCES; and the analysis of the obtained models lays the foundation of the controller design. 

 

1. INTRODUCTION 

The electrohydraulic system has many advantages of fast 
response, wide adjustable speed range, high power to weight 
ratio and high durability, so it has been widely used in 
industrial manufacture, agricultural machinery and weapon 
system (Merritt, 1967, Younkin, 2003). In order to analyze 
and control electrohydraulic system, a proper model is 
needed; however it is difficult to obtain an accurate model of 
electrohydraulic system due to its nonlinear characteristics, 
including saturation, nonlinear gain, fraction, fluid 
compressibility and nonlinear flow/pressure relation. 

Traditionally, the first principle method is the mostly used 
technique in electrohydraulic system modelling, which 
develops a group of linear mathematical equations based on 
physical principle, such as the continuity equation and the 
Newton second law. Ziaei (2000) established a fourth-order 
transfer function and a linear difference equation for an 
experimental hydraulic test station. Guanglin (2006) 
constructed a third-order transfer function for a pump-
cylinder velocity control system, and researched its dynamic 
characteristics. Qing-Hua (2006), Kemmetmuller (2007) and 
Garett (1999) built the mathematical models of the 
electrohydraulic systems, and designed nonlinear controllers 
based on the obtained models. However, these imprecise 
linear models can not fit the essential nonlinear 
characteristics of the electrohydraulic system, and are limited 
in practice. 

The nonlinear characteristics of the electrohydraulic system 
can not be presented directly by the above mentioned linear 
model, but the input-output data, which contain all the 
nonlinear information about the electrohydraulic system, can 

be gathered easily. So some researchers pay attention to data-
based intelligent modelling methods. Costa (2000) built 
Mamdani fuzzy model using grid partition for an 
electrohydraulic system, and the obtained model is much 
interpretable while inaccurate. He (1999) employed neural 
network to model the electrohydraulic system, and concluded 
that the neural network is more precise than linear models. 
Kang (2005) established the equivalent neural network for an 
electrohydraulic system and proposed its learning algorithm, 
and the obtained neural network was employed as emulator 
in the designed adaptive controller. 

This paper studies several modelling techniques, including 
first principle method and intelligent modelling method, 
based on the Automatic Depth Control Electrohydraulic 
System (ADCES) of a certain type of weapon. Firstly, the 
ADCES is introduced, and the technique to generate input 
signals is proposed. Then, the transfer function of the 
ADCES is built using first principle method; and the 
intelligent modelling approaches, including fuzzy modelling 
and neural network, are detailed. Finally, the above 
mentioned models of the ADCES are identified, and the 
results are analyzed. 

2. THE AUTOMATIC CONTROL DEPTH 
ELECTROHYDRAULIC SYSTEM 

The Automatic Depth Control Electrohydraulic System 
(ADCES) of a certain type of weapon is composed of servo 
valve, hydraulic cylinder, copying shoe, shaft position 
encoder, and plough, as illustrated in Fig.1. In the process of 
forward-marching, the copying shoe inducts the shape of 
ground surface, and the shaft position encoder measures the 
angle between the plough arm and level plane, thus the actual 
embedded depth of plough can be calculated. The automatic 
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depth control is accomplished by the telescopic movement of 
hydraulic cylinder, which is operated by the servo valve 
according to error between actual embedded depth and the set 
value of embedded depth. In ADCES, there are fixed specific 
single-input single-output mapping functions among the 
displacement of piston, the angle of shaft position encoder, 
and the actual embedded depth. So, without loss of generality, 
the input signal of the ADCES is the control voltage of servo 
valve, and the output of the ADCES is the displacement of 
piston. 

In order to motivate the ADCES sufficiently and obtain 
complete data containing all the dynamic characteristics of 
the ADCES, it is important to select an appropriate input 
signal. In the field of linear system identification, the Pseudo-
Random Binary Signal (PRBS) that only contains two 
amplitude levels is widely used. However, the identifiability 
will be lost for the nonlinear ADCES using PRBS. So an 
input signal that contains all interesting amplitudes and 
frequencies and all their combinations should be employed, 
such as Pseudo-Random Multi-Level Signals (PRMS), chirp 
signals, and independent sequences with a Gaussian or 
uniform distribution. Experience shows that the PRMS is the 
most suitable choice of input signal for identification of 
hydraulic system (Jelali, 2003, Senger, 1996). So in this 
paper the PRMS is selected as the input signal for the 
ADCES. 

 

Fig.1. The automatic depth electrohydraulic control system 

3. MODELLING AND IDENTIFICTION OF THE ADCES 

This section details three modelling algorithms, including 
transfer function based on first principle method, fuzzy 
system and neural network based on intelligent technique. 

3.1 Transfer function 

In order to establish transfer function (TF) of the ADCES, the 
functions of servo valve and hydraulic cylinder should be 
identified primarily according to several physical laws, 
including the dynamic equation of servo valve, the flow 
equation, the continuity equation and the force balance 
equation(Merritt, 1967, Martin, 1976,Younkin, 2003, Zeb, 
2003). 

The ADCES can be described by a third-order system: 
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where xp is displacement of piston, u is input voltage signal, 
Kq is valve flow gain, Kv is the gain of servo valve, Kce is the 
total coefficient of flow/pressure, K is the equivalent spring 
gradient of soil, Vt is the sum of two volume, Mt is total mass 
of piston and load referred to piston, Ap is the area of piston, 
�e is the effective bulk modulus, Bp is viscous damping 
coefficient of piston and soil. 

The parameters of the transfer function can be calculated 
according to the manuals provided by the manufacturers, 
however it is difficult to obtain the leakage coefficient, and it 
is impossible to determine the equivalent spring gradient of 
soil. So, in this paper, the parameters of the transfer function 
are identified based on the input-output data using MATLAB 
software.  

3.2 Fuzzy system  

Fuzzy sets theory, introduced by professor Zadeh thirty years 
ago (Zadeh, 1965), has been applied in a wide range of areas 
(Babuska, 1998). Fuzzy modelling is one of the most 
successful disciplines that are used in simulation and control. 
There are two types of fuzzy systems: the Mamdani fuzzy 
model with high interpretability and the TS fuzzy model with 
high accuracy (Takagi, 1985). In order to simulate dynamic 
characteristics of the ADCES precisely, the TS fuzzy system 
is used in this paper. There are several approaches which 
have been proposed to build fuzzy system from numerical 
data, including fuzzy clustering-based algorithms (Gomez-
Skarmeta, 1999), neuro-fuzzy systems (Jang, 1996) and 
genetic fuzzy systems (Cordon, 2000). This paper employs 
GK fuzzy clustering algorithm (Gustafson, 1979) to identify 
the antecedents of TS fuzzy system, and employs the least 
square method to identify the consequence of TS system; 
thus the TS fuzzy system of the ADCES can be obtained. 

In order to improve interpretability of TS fuzzy system of the 
ADCES, the membership functions of the fuzzy system is 
simplified. The detail simplification techniques can be found 
in the reference (Setnes, 1998).  

3.3 Neural network  

Neural network is a type of highly nonlinear dynamic system 
imitating neuron of human brain, and it also owns learning 
capability (Jinkun, 2005). The Radial Basis Function (RBF) 
and the multilayer forward neural network (NN) are the most 
used neural networks in modelling physical system. In 
general, the RBF can approximate system more accurately. 
However, when input space is large, the RBF becomes 
computationally intensive (He, 1999). So in this paper, a 
three-layer forward NN is chosen to model the ADCES. 

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

6447



 
 

     

 

In the three-layer forward NN, the function of the hidden 
layer is tan-sigmoid function, and the output layer adopts 
linear function. The number of node in input layer equals to 
the number of inputs, and the number of node in hidden layer 
is twice as the number of node in input layer. The Levenberg-
Marquardt algorithm (Priddy, 2005) is employed to train the 
neural network: 

EJIJJ TT 1)( −+=∆Θ λ ,                        (32) 

where Θ  is matrix of weights and bias of NN, E is error 
matrix, J is the Jacobian matrix, � is the control parameter to 
adjust convergence speed. 

4. EXPERIMENTS 

In the ADCES, the input signal is the control voltage of servo 
valve in the range of [-8 8] volt, and the output signal is the 
displacement of the piston in the range of [0 0.45] meter. 
Although the ADCES is a high-order nonlinear system, it will 
not be vibrated within the normal input allowed. So the 
experiment to gather data is conducted without any closed 
loop controller. With 100ms sampling time, 10000 data are 
collected. The first 600 data are used to train the model, 
while the other 400 data are employed to validate the 
obtained model. As illustrated in Fig.2: (a) presents the input 
data, and (b) shows the output data. 

In order to weigh the performance of different models of the 
ADCES, the Root Mean Square error (RMS) is applied to 
measure the precision of model: 

� = −= N
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where y is the actual output of displacement, ym is the output 
of the obtained model, N is the number of data. 

With small value of displacement, the RMS of the model is so 
small that it is difficult to indicate the similarity between the 
obtained model and the ADCES distinctly. So the Variance 
Accounted For (VAF) is adopted to assess the quality of the 
model by comparing the measured output and the output of 
the model: 
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Fig.2. Input-output data of the ADCES: (a) input voltage of 
valve, (b) output displacement of piston 
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where var () is the variance operation. A higher VAF means 
that the obtained model is more similar to the ADCES. 

4.1 Transfer function of the ADCES 

After identification, the transfer function (TF) of the ADCES 
is obtained as: 

117.180291.86346.8
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The outputs of the ADCES and outputs of the transfer 
function are depicted in Fig.3: (a) shows the training data and 
(b) shows the validation data. The RMS and the VAF of the 
obtained transfer function are 0.093, 48.514%, 0.150 and 
14.30% for training data and validation data, respectively. It 
is clearly that the identified transfer function can only 
describe the ADCES roughly, and the generalization of the 
model is poor. 
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Fig.3. Actual output and transfer function output: (a) training 
data, (b) validation data 
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Fig.4. Actual output and NARX output: (a) training data, (b) 
validation data 
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4.2 Nonlinear Auto-Regressive model of the ADCES 

To determine the nonlinearity of the ADCES, the second-
order Nonlinear Auto-Regressive with eXtra inputs (NARX) 
is also employed to model the ADCES. The comparison of 
outputs is illustrated in Fig.4, and the performance indices are 
listed in Table 1 which shows that the RMS and the VAF of 
the obtained NARX are 0.040, 90.847%, 0.043 and 91.654% 
for training data and validation data. The obtained results 
indicate that the ADCES is a typical nonlinear system which 
can be modelled using NARX quite well. 

4.3 TS fuzzy model of the ADCES 

The TS fuzzy model is build for the ADCES employing GK 
fuzzy clustering algorithm and the least square method. The 
number of clusters is determined according to cluster validity 
measures (Zong-yi, 2005). With the algorithm proposed in 
section 3.2, we have 

0093.0)1(3379.0)(3051.1)1(0034.0)(0038.0)1( THEN    

A is  )1(  A is )(  A is )1( A is )(  IF
0101.0)1(3359.0)(3013.1)1(0034.0)(0036.0)1( THEN    

A is  )1(  A is )(  A is )1( A is )(  IF
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where A11, A12, A21, A22, A3, A4 are membership functions 
illustrated in Fig.5, which can be assigned the linguistic 
labels of “middle-small”, ”middle-large”, ”middle-
small”, ”middle-large”, ”middle”, "middle” which can be 
interpreted easily. 

Fig.6 diagrams the outputs of the ADCES and the outputs of 
the TS model, and Table 1 shows the performance indices of 
the TS model. The RMS and the VAF of the obtained TS 
model are 0.0095, 99.572%, 0.0115 and 98.484% for training 
data and validation data, respectively. These obtained results 
prove that the TS model can fit the dynamics of the ADCES 
preferably, and that the obtained model has high 
generalization capacity. However, the TS model is built by 
fuzzy clustering algorithm, which can not express sparse data 
accurately, so the obtained TS model presents large errors 
near the limit range of the displacement values. 
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Fig.5. Membership of the obtained TS fuzzy model  
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Fig.6. Actual output and TS fuzzy model output: (a) training 
data, (b) validation data 

4.4 Adaptive Neuro Fuzzy Inference System of the ADCES 

To overcome the shortcoming of the TS fuzzy model, the 
Adaptive Neuro Fuzzy Inference System (ANFIS) is 
employed to identify the ADCES. The fuzzy-clustering-based 
ANFIS adopted in this paper has learning ability, so it must 
have higher precision than TS fuzzy model, as illustrated in 
Fig.7. The RMS and the VAF of the obtained ANFIS are 
0.0013, 99.990%, 0.0090 and 99.612% for training data and 
validation data, respectively. In order to show the 
performance visually, the training error and validation error 
of the ANFIS are diagrammed in Fig. 8. It is clearly that the 
training error is far less than validation error and that the 
higher validation errors also occur near the limit range of 
values as that of TS model. 

4.5 Neural network of the ADCES 

The three-layer feed forward neural network (NN) is 
established for the ADCES. The number of nodes in hidden 
layer is 8, and the training times are 1000. The NN is trained 
10 times, and average values of outputs, RMS and VAF are 
calculated to against uncertainty of NN initialization. The 
outputs and the indices are given in Fig.9 and Table1. The 
RMS and the VAF of the obtained ANFIS are 0.0037, 
99.920%, .0047 and 99.894% for training data and validation 
data, respectively. The results show that the NN can model 
the ADCES precisely with high generalization, and that the 
NN has smallest training and validation error and highest 
similarity, and that NN can describe the characteristics of the 
ADCES even near the limit range of values. 

To conclude the obtain model of ADCES, Fig. 10 depicts the 
training error and validation error of the obtained five models. 
Combined with Table 1, we can conclude as follows: the 
ADCES is a typical nonlinear system; the transfer function 
built with first principle method can only describe the 
ADCES roughly, while the intelligent model, including TS 
model, ANFIS and NN, can approximate the nonlinearity of 
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the ADCES preferably; in normal (not the limit range) 
working domain, the TS fuzzy model and the NN have nearly 
the same capacity to describe the ADCES; in the subsequent 
controller design, the intelligent model (TS model or NN) 
should be employed firstly. 
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Fig.7. Actual output and ANFIS output: (a) training data, (b) 
validation data 
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Fig.8. ANFIS output error: (a) training data, (b) validation 
data 
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Fig.9. Actual output and NN output: (a) training data, (b) 
validation data 

Table 1. Performance of five models for the ADCES 

Models  Training  
RMS 

Training 
VAF 

Validation 
RMS 

Validation 
VAF 

TF 0.093 48.514% 0.150 14.30% 

NARX 0.040 90.847% 0.043 91.654% 

TS 0.0095 99.572% 0.0115 98.484% 

ANFIS 0.0013 99.990% 0.0090 99.612% 

NN 0.0037 99.920% 0.0047 99.894% 
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Fig.10. Training error and validation error of the obtained 
five models for the ADCES 

5. CONCLUSION 

Electrohydraulic system is a type of typical nonlinear system. 
Based on the ADCES, five models, including transfer 
function, NARX, TS fuzzy model, ANFIS, and neural 
network are identified. The analysis of the obtained models 
lays the foundation of the consequent controller design. The 
continued works of the paper is precision control of the 
ADCES based on fuzzy model or neural network. 
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