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Abstract: In this paper, linear discrete-time systems with white stochastic parameters are considered. Most 
results on the optimal state estimation of linear discrete time systems with stochastic parameters rely 
strongly on the generalization of the one step prediction type Kalman filter to this type of systems. But it 
has been shown that the current output observer results in less estimation error as compared to the one step 
prediction Kalman Filter for the case of systems with deterministic parameters. In this work, the current 
output observer is generalized to stochastic-parameter systems and the estimation error performance 
improvement is mathematically shown. We have particularly directed our attention to the application to the 
sensor failure problem, which involves a stochastic model with non-Gaussian parameter distribution. 
Experimental results confirm our prediction and shows that the current output observer has a substantial 
benefit for the sensor failure problem over the one step prediction generalized Kalman filter solution. 

 

1. INTRODUCTION 

The focus of this paper is on state estimation of linear 
discrete-time systems and measurement models which 
contain white stochastic parameters. Because of the 
stochastic nature of the parameters, conventional Kalman 
filter (KF) (Kalman, 1960) does not work and therefore 
generalizations (Nahi, 1969; De Koning, 1984) have been 
proposed. These models are often called stochastic discrete-
time systems with state multiplicative noise. They  have 
applications in many areas such as target tracking in presence 
of failing sensors/missing data or delayed measurements 
(Nahi, 1969), communication network systems with missing 
or delayed measurements (Sinopoli et al, 2004), satellite 
attitude control (McLane, 1971), chemical reactor control 
(Rao, Ramakrishna, and Borwanker, 1974) population 
dynamics (Mohler and Kolodziej, 1980), macroeconomics (Aoki, 
1976), robustness studies (Yaz, 1990; Wang and Yang, 2002) 
to name a few.  
 
The typical method of estimation used to address this issue is 
by generalizing the Kalman filter (Kalman, 1960) to discrete-
time systems with stochastic parameters.  The first of these 
Kalman filter based generalization method was introduced in 
(Nahi, 1969) which considered the problem of uncertain 
observation by including a scalar stochastic variable in the 
measurement equation. Then the paper (De Koning, 1984) 
proposed the generalized Kalman filter (GKF) for the case 
where the elements of system and measurement matrices may 
be all stochastic white sequences. Several papers have used 
the same framework to address similar problems 
(Rajasekaran, Satyanarayana, and Srinath, 1971; Tugnait, 
1981; Yaz, 1992; Yaz and Ray, 1996; Wu, Yaz, and 
Olejniczak, 1997; NaNacara and Yaz, 1997; Sinopoli, et al, 
2004; Wang, Ho, and Liu, 2004; Hounkpevi and Yaz, 2007) 
to name a few.  

 

In all these generalizations, only the one step prediction KF 
has been studied. But it is known that the current output 
observer provides smaller estimation error covariance than 
the one step prediction KF for systems with deterministic 
matrices. Therefore in this paper, we advance these studies to 
systems with stochastic parameters. We study the stochastic 
current output observer (SCOO). Explicit expression of the 
observer is given, and we focus particularly on the 
application to the random sensor failure problem.  

 
In section 2, we present the general class of stochastic state 
space model under consideration. Then we present the 
existing generalized one step prediction solution. In section 4, 
formulae are provided for the new current output observer. 
Section 5 discusses the special case of the random sensor 
failure problem. Section 6 contains illustrative simulation 
examples.  Section 7 is the conclusion section.  

2. MODEL 

Consider the stochastic dynamical system and the 
measurement model 

1k k k k

k k k k

x A x v
y C x w

+ = +⎧
⎨ = +⎩

 (1) 

where n
kx R∈ , with 0x  having the expected 

value 0 0{ }E x x=  and covariance 

{ } ( )( ){ }0 0 0 0 0 0 0
TTE x x E x x x x P= − − = , kv is zero mean 

white noise vector uncorrelated with 0x  and having 
covariance V , kw  is zero mean white noise  that is 
uncorrelated with kv  and 0x  having covariance W , ky  is 
the measurement vector at time k , kA  and kC  are matrices 
of white noise (time-wise uncorrelated) sequences with 
known means ( kA  and kC ) and known covariances 
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( ( )( )T T
k k k k k kA A A A A A= − −  and 

( )( )T T
k k k k k kC C C C C C= − − ) which are mutually 

uncorrelated and uncorrelated with other noises.   
It is very important to point out here that this is different from 
the state space representation used in the regular KF where  

kA  and kC  are deterministic. 
The problem that we consider in this paper is to derive and 
study the current output observer solution to the problem of 
linear minimum variance estimation of the state based on the 
knowledge of measurements and statistics of the system 
parameters. But we will first introduce the existing GKF 
solution. 

3. THE GENERALIZED KALMAN FILTER SOLUTION 

The solution that has been used to estimate the states of 
system (1) is the linear minimum variance GKF which was 
presented in the general form in (De Koning, 1984). 
In this section, ˆkx  is the one step prediction estimate of the 
state of the system at time k given measurements up through 
time 1k − . 
The linear minimum variance estimator is given by: 
 

( )1ˆ ˆ ˆk k k k k k kx A x K y C x+ = + −  (2) 
 
The estimation gain is found as: 
 

( ) 1
T T T

k k k k k k k k k kK A P C C P C C Q C W
−

= + +  (3) 

 
and 
 

{ }T
k k kQ E x x  (4) 

1
T T T

k k k k k k k k k kQ A Q A V A Q A A Q A V+ = + = + +  (5) 
 

0 0 0 0
TQ P x x= +  (6) 

 
The estimation error covariance for this solution is given by 
the following recursive equation: 
 

( )
1

1

T
k k k k

T T T T
k k k k k k k k k k k k

T
k k k

P A P A

A P C C P C C Q C W C P A

A Q A V

+

−

= −

+ + +

+

 (7) 

 

4. STOCHASTIC CURRENT OUTPUT OBSERVER 

Let us now present the SCOO solution to the problem of 
linear minimum variance estimation of the state based on the 
measurements 1 0, , ,k ky y y− . 
 
THEOREM 1 
 
The SCOO estimate of the state in system (1) is given by: 

 
( )ˆ ˆ ˆc c

k k k k k kx x K y C x= + −  (8) 
 
where ˆkx  is obtained from (2) and the SCOO gain c

kK  is 
given as: 
 

( ) 1
c T T T
k k k k k k k k kK P C C P C C Q C W

−

= + +  (9) 

 
where kQ  is given by (5) and kP  is given by (7). 
The estimation error covariance of SCOO is bounded above 
by that of the GKF as follows: 
 

c
k kP P≤  (10) 

 
PROOF 
 
The system described by Equation (1) can be transformed 
into the following state and measurement equations by 
augmenting the state as follows: 
 

[ ]

1

1

1

0
0 0

0

k kk k

k k

k
k k k

k

x xA v
x xI

x
y C w

x

+

−

−

⎧⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤
= +⎪⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦⎪⎣ ⎦ ⎣ ⎦
⎨

⎡ ⎤⎪ = +⎢ ⎥⎪ ⎣ ⎦⎩

 (11) 

 
where I  and 0  are the identity matrix of dimension n  and 
the matrix of zeros with suitable dimensions, respectively. 
Model (11) can be put in the more compact form: 
 

1k k k k

k k k k

X X V
y M X w

+ = Φ +⎧
⎨ = +⎩

 (12) 

 

where 
1

k
k

k

x
X

x −

⎡ ⎤
= ⎢ ⎥

⎣ ⎦
, 0

0
k

k

A
I

⎡ ⎤
Φ = ⎢ ⎥

⎣ ⎦
, 

0
k

k

v
V ⎡ ⎤

= ⎢ ⎥
⎣ ⎦

is a zero 

mean white noise vector of covariance 
0

0 0g

V
V

⎡ ⎤
= ⎢ ⎥

⎣ ⎦
, and  

[ ]0k kM C= . 
 
The linear minimum variance estimator for this stochastic 
system is given by: 
 

( )1
ˆ ˆ ˆ

k k k k k k kX X G y M X+ = Φ + −  (13) 
 
The SCOO estimate is obtained by: 
 

[ ] 1
ˆˆ 0c

k kx I X +=  (14) 
 
which yields (8). 
  
The estimation gain for (13) is found as: 
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( ) 1
T T g T

k k k k k k k k k kG R M M R M M Q M W
−

= Φ + +  (15) 

 
where 
 

1

1 1

g k k k
k T

k k k

Q A Q
Q

Q A Q
−

− −

⎡ ⎤
= ⎢ ⎥

⎣ ⎦
 (16) 

 
and [ ]0c

k kK I G=  after simplification leads to (9). 
The optimal value of the estimation error covariance is given 
by the following recursive equation: 
 

( )
1

1

T
k k k k

T T g T T
k k k k k k k k k k k k

g T
k k k g

R R

R M M R M M Q M W M R M

Q V

+

−

= Φ Φ −

Φ + + +

Φ Φ +

 (17) 

 
and the estimation error covariance for the SCOO is obtained 
by:  
 

( )( ){ }
( )

( )( ){ }

1

0 0
ˆ ˆ

0

ˆ ˆ

Tc c c
k k k k k k

T T T
k k k k k k k

T
k k k k k

P E x x x x R
I

P P C CP C C Q C W CP

P E x x x x

−

⎡ ⎤
= − − = ⎢ ⎥

⎣ ⎦

= − + +

≤ = − −

 (18) 

 
Therefore, the SCOO solution may result in less mean square 
error (MSE) than the GKF solution. The above inequality 
does not imply that the error of the new proposed filter 
(SCOO) is uniformly smaller than the error of the GKF, 
however, the estimation error covariance of the SCOO is 
bounded above by that of the GKF. 

Note that the above ordering is in the sense of Loewner (Horn 
and Johnson, 1991) ( A B≥  means 0A B− ≥  or a positive 
semi-definite matrix). Note also that the improvement in 
estimation error performance is achieved by minimal 
additional computational load given by (8) and (9) and there 
is no increase in the dimension of the generalized Riccati 
equation (7) used in SCOO. 

5.  SPECIAL CASE: APPLICATION TO THE SENSOR 
FAILURE PROBLEM 

We will consider the special case of random sensor failure in 
this section. We will compare the SCOO method to the 
typical GKF method. The random sensor failure problem is 
defined by the following uncertain observation system. 

5.1  Problem Statement 

Consider the following stochastic dynamical system and the 
measurement model 

1k k k k

k k k k k

x A x v
y C x wβ

+ = +⎧
⎨ = +⎩

 (19) 

where kA  and kC  are real matrices with deterministic 
coefficients, kβ  are mutually independent scalar Bernoulli 
random variables whose outcomes are 1 or 0, having mean 
β , and variance  ( )1β β− . 
Model (19) describes the problem of missing measurement 
(when 0kβ = ), a situation in which there may be a nonzero 

probability ( )1 β− that the measurement contains only noise 
(Nahi, 1969). This corresponds in a discrete time system, to 
the signal at some sampling time being completely absent 
from the observation. In this work we have only considered 
the case where the signal is either present or absent in the 
measurement. Intermediate cases where the signal is partially 
present can be treated by similar techniques. 

5.2  The GKF Solution to the Problem 

The GKF solution to this problem is a special case of the 
general solution presented in section 3 and is given as: 
 

( )1ˆ ˆ ˆk k k k k k kx A x K y C xβ+ = + −  (20) 
 
The estimation gain is found as: 

( )
( )

12

1

T
k k kT

k k k k T
k k k

C P C
K A P C

C Q C W

β
β

β β

−
⎛ ⎞+⎜ ⎟=
⎜ ⎟− +⎝ ⎠

 (21) 

 
where 
 

1
T

k k k kQ A Q A V+ = +  (22) 
 
with 
 

0 0 0 0
TQ P x x= +  

 
The estimation error covariance for this solution is given by 
the following recursive equation: 
 

( ) ( )
( )

1
12

2

1

T
k k k k

T
k k kT T

k k k k k kT
k k k

P A P A

C P C
A P C C P A V

C Q C W

β
β

β β

+

−

= −

⎛ ⎞+⎜ ⎟ +
⎜ ⎟− +⎝ ⎠

 (23) 

. 

5.3  Solution using the SCOO 

The solution to the sensor failure problem using the SCOO 
solution in section 4 is specified as: 
 
Current output observer 
 

( )ˆ ˆ ˆc c
k k k k k kx x K y C xβ= + −  (24) 
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Current output gain  
 

( ) ( )( ) 12
1c T T T

k k k kK P C CP C CQ C Wβ β β β
−

= + − +  (25) 

 
where: ˆkx  is given by (20), kK  by (21), kQ  by (22) and kP  
by (23). 

6.  SIMULATION EXAMPLES 

In this section, we provide two simulation examples. In 
example 1, we consider the case where the stochastic 
parameters have Bernoulli distribution (random sensor failure 
model) and in example 2, the case where the stochastic 
parameters have Gaussian distribution. Example 1 provides 
the performance comparison of the SCOO with the GKF for a 
non-Gaussian distribution, and example 2 provides 
performance comparison between the two filters for Gaussian 
distribution. 

6.1  Example 1: Non-Gaussian Case 

In this example, we consider the problem of estimation for 
system with random sensor failure. We have applied the 
SCOO to the following system and compared the result with 
that obtained using the GKF method: 

1 0.2k k k

k k k k

x x v
y x wβ

+ = +⎧
⎨ = +⎩

 

with 0x  having 0 0{ } 1E x x= =  and covariance 0 0.01P = . 
The random variables kv and kw  are zero mean white noise 
sequences with variance 0.1V =  and 0.03W = respectively, 

kβ  is a random sequences having Bernoulli distribution with 

mean 0.7β = , and variance ( )1 0.21β β− = . Using the 
SCOO method, we have estimated the state from the 
measurements and compared it to the GKF method. The 
experiment is computer simulated. The (ensemble) average 
state estimation error and the average (over time) MSE 
(AMSE) over 50 runs are computed and are given in Figure 1 
and Table 1 (left portion) respectively. The AMSE of the 
SCOO is less than that of the GKF (0.0497 vs. 0.1037) as 
predicted by theory. The results show the effectiveness of the 
SCOO technique and illustrate what was stated in Theorem 1. 

6.2  Example 2: Gaussian Case 

We have applied the SCOO to the following system: 
1 0.2k k k k

k k k k

x x v
y x w

α
γ

+ = +⎧
⎨ = +⎩

 

with 0x  having 0 0{ } 1E x x= =  and covariance 0 0.01P = . 
The random variables kv and kw  are zero mean white noise 
sequences with variance 0.1V =  and 0.03W = respectively, 

kα  and kγ  are mutually uncorrelated white sequences having 
Gaussian distribution with (1,0.001)N .  Using the SCOO 
method, we have estimated the state from the measurements 
and compared it to the GKF method. The experiment is 
computer simulated. The (ensemble) average state estimation 

error and the AMSE over 50 runs are computed and are given 
in Figure 2 and Table 1 (right portion) respectively. The 
AMSE of the SCOO is much smaller than that of GKF 
(0.0239 vs. 0.0985). These observations are in line with what 
we have already seen in example 1 and what is predicted by 
theory. This clearly justifies the advantage of the SCOO. 

7. CONCLUSIONS 

In this work, linear discrete-time systems with white 
stochastic parameters are considered. A current output 
observer is developed for state estimation of such systems. It 
is theoretically proven and shown by simulation studies that 
the current output solution can lead to smaller estimation 
error covariance for such systems. Examples have been 
provided for Gaussian as well as non-Gaussian stochastic 
parameters. Since the improvement in the estimation error 
performance is obtained with slightly higher computational 
load, these results will potentially benefit estimation for 
systems with random sensor failures. 
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Figure 1: MSE Comparison between the GKF and the SCOO - Non-Gaussian parameters 
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Figure 2: MSE Comparison between the GKF and the SCOO – Gaussian parameters 
 
 
 
 
 
 
 
Example 1 Example 2 

Method AMSE 
GKF 0.1037 
SCOO 0.0497  

Method AMSE 
GKF 0.0985 
SCOO 0.0239  

 
Table 1: The comparison of the AMSE between the different methods used. Left: example 1 results, right: example 2 results  
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