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Abstract: In this paper Iterative Learning Control(ILC) algorithm is analysed for a linear-time
invariant SISO model with the effect of output noise and its properties derived. If the original
plant is positive, it is shown that by using a fixed learning gain algorithm, the tracking error
will converge and be predicted. Finally, through computational experiments, we confirm the
correctness of the proposed properties.

1. INTRODUCTION

Iterative Learning Control (ILC) is an open-loop control
technique to sequentially improve the control accuracy
by performing a given task iteratively. Examples of such
systems are robot manipulators that are required to repeat
a given task with high precision, chemical batch processes,
or, more generally, the class of repetitive systems. To
achieve high-quality feedforward controls, researchers are
focused on finding out the perfect control theory. Iterative
Learning Control (ILC), an iterative update scheme which
improves the quality of the feedforward signal from trial
to trial, is applied to reduce the tracking error in repeated
systems. As a means of controlling a class of uncertain dy-
namic systems, the method of Iterative Learning Control
has been widely studied and used since its introduction.

The original ideal of using the previous information was
introduced by Uchiyama (Uchiyama, 1978) in order to
improve the performance of robot systems. However, the
first step on to analyse the learning control and how the
learning control scheme makes progress or improves the
performance in repetition of the trials rigorous treatments
of learning control was made simultaneously and indepen-
dently by Arimoto et al. (1984), Casalino and Bartolini
(1984), and Craig (1984) in around 1984. After that the
ideal of ILC are developed in many papers, see [1-5].

This paper introduces the idea of ILC algorithm for
discrete-time systems with the effect output noise and
analyses the behaviour of this algorithm.

2. PROBLEM STATEMENT

As a starting point consider the following discrete-time,
linear, time-invariant SISO system described by:

x(t + 1) = Ax(t) + Bu(t)
y(t) = Cx(t)

}

(1)

where initial state x(0) = x0, x(t) ∈ Rn, u(t) ∈ R and
y(t) ∈ R denote the state, input and output respectively.
A, B and C in the state-space function (1) are the matrices

with appropriate dimensions and it is assumed that CB is
nonsingular and the system is controllable and observable.
The time interval is finite from 0 to N , t ∈ [0, N ] (in
order to simplify notation it is assumed that the sampling
interval, ts is unity). In addition, the reference signal is
necessary and given a priority over that time with duration
[0, N ].

The special feature of the ILC is that after the system has
run over the time interval [0, N ], the system (1) is reset
to its initial status. Then the system is required to repeat
the same motion again. This repetition is the significant
attribute of ILC. And it gives the system the possibilities
to modify the next trial input u(t) so that as the number of
repetitions increases, the output y(t) tracks the reference
signal r(t) more and more accurately. To be more precise,
the main idea of ILC design is to find a recursive control
law

uk+1 = F (ek+1(t), ek(t), uk(t)) (2)

So that

lim
k→∞

‖ ek ‖= 0 and lim
k→∞

‖ uk − u∗ ‖= 0 (3)

where u∗ is the input that results in perfect tracking.
In order to analyse the system more clearly, the system
can be represented in the matrix equation (4) equivalently
because it is defined over a finite time-interval.

yk = Geuk (4)

where

Ge =















0 0 . . . 0
CB 0 . . . 0

CAB CB . . . 0
. . . . . .
. . . . . .

CAN−1B CAN−2B . . . 0















(5)

yk = [yk(0), yk(1), yk(2), · · · , yk(N)]T

uk = [uk(0), uk(1), uk(2), · · · , uk(N)]T

}

(6)

and the dimension of Ge is (N + 1) × (N + 1).
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Assume the reference signal r(t) satisfies r(0) = Cx0. Then
for analysis, the matrix equation (4) is adjusted by the
lifting technique as (in a similar manner to [6])

yk,l = Ge,luk,l (7)

note that

Ge,l =















CB 0 . . . 0
CAB CB . . . 0
CA2B CAB . . . 0

. . . . . .

. . . . . .

CAN−1B CAN−2B . . . CB















(8)

yk,l = [yk(1), yk(2), yk(3), · · · , yk(N)]T

uk,l = [uk(0), uk(1), uk(2), · · · , uk(N − 1)]T

}

(9)

and the dimension of Ge,l is N × N .

Because it is assumed that CB is nonsingular, the matrix
Ge,l is invertible, there exists a u∗ which satisfies r =
Ge,lu

∗ for an arbitrary reference r(t). If CB = 0 and the
first non-zero Markov parameter CAm−1B is where m is
the relative degree of the plant, any matrix representation
of the dynamical system can be generated by the same
lifting technique.

3. THE ILC ALGORITHM WITH EFFECT OUTPUT
NOISE

3.1 Derivation of the ILC Algorithm

This paper concentrates on the system with the effect
output noise written in the form

yk = Geuk + Henk (10)

where nk is white noise which has the same variance in
each trial and He is a filter. Now consider the following
ILC control law suggested in Togai and Yamano (1985)

uk+1 = uk + βek (11)

where β is a learning gain introduced to add flexibility
and influence performance. In addition, assume that the
procedure is initiated with the choice of an arbitrary initial
control time series u0 leading to an initial error e0.

More precisely, computation of the tracking error gives

ek+1 = r − yk+1

e1,k+1 = ek+1 + Henk+1

}

(12)

where e1,k+1 is the noise free tracking error at the (k+1)th

iteration. Using the control law (11) and the tracking error
equation (12), the error evolution equations are given by

ek+1 = (I − βGe)ek + He(nk − nk+1)
e1,k+1 = (I − βGe)e1,k + βGeHenk

}

(13)

If the radius of (I −βGe) lies in the circle, then the radius
error converges to zero. In the follows, the effect of noise
is analysed.

3.2 Properties

Proposition 1: The expectation of ‖ e1,k+1 ‖2 at the

(k+1)th iteration satisfies

E(‖ e1,k+1 ‖2) =‖ (I − βGe)
k+1e1,0 ‖2 +δ2Ak (14)

where δ2 is the variance of the white noise and Ak is an
amplification factor.

Ak =β2

k
∑

j=0

Tr((I−βGe)
jGeHeH

T
e GT

e ((I−βGe)
j)T ) (15)

Note Tr(A) is the trace of an n×n square matrix A. It is
defined to be

Tr(A) ≡
n

∑

i=1

aii (16)

i.e. the sum of the diagonal elements.

Proof: Recall the error evolution equation

e1,k+1 = (I − βGe)e1,k + βGeHenk (17)

Applying induction on (17), it results in

e1,k+1 =(I−βGe)
k+1e1,0 + βGe(I−βGe)

kHen0

+βGe(I − βGe)
k−1Hen1 + · · · + βGeHenk

(18)

The norm of e1,k has the form

‖e1,k+1 ‖
2=‖(I−βGe)

k+1e1,0+βGe(I−βGe)
kHen0

+βGe(I − βGe)
k−1Hen1 + · · · + βGeHenk ‖2 (19)

Before taking the next step, we should understand the
following definitions

1) nT
i nj = 0 if i 6= j where n is white noise.

2) nin
T
i = δ2I where I is the identity matrix.

3) Tr(A) = Tr(AT )

Then we have the expectation of formula (20)

E(‖ e1,k+1 ‖2) =‖ (I − βGe)
k+1e1,0 ‖2 +

δ2β2

k
∑

j=0

Tr((I−βGe)
jGeHeH

T
e GT

e ((I−βGe)
j)T ) (20)

This completes the proof. The formula (14) gives the
information about the limit of E(‖ e1,k+1 ‖2). The details
are developed below.

Proposition 2: The expectation of ‖ e1,k+1 ‖2 goes to

δ2A∞ when k goes to infinity if the learning gain β satisfies
the inequality | 1 − βCB |< 1

lim
k→∞

E(‖ e1,k+1 ‖2) = δ2A∞ (21)

where A∞ is the amplification factor Ak when k goes to
infinity.

Proof: Proposition 1 shows that ‖ (I − βGe)
k+1e1,0 ‖2 in

the formula (14) is the normal ILC algorithm. It converges
to zero monotonically, i.e.

lim
k→∞

‖ (I − βGe)
k+1e1,0 ‖2= 0 (22)
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if the gain β satisfies the inequality | 1 − βCB |< 1.
Consequently limk→∞ E(‖ e1,k+1 ‖2) = δ2A∞ which
proves the proposition.

Remark: Several similar results hold for the control signal
sequence.

1. E(‖ uk+1 − u∗ ‖2) at (k +1)th iteration is equal to
‖ G−1

e (I − βGe)
k+1e0 ‖2 +δ2Bk.

2. limk→∞ E(‖ uk+1 − u∗ ‖2) = δ2B∞

where Bk is an amplification factor with the form

Bk = β2

k
∑

j=0

Tr((I − βGe)
jHeH

T
e ((I − βGe)

j)T ) (23)

4. NUMERICAL EXAMPLE

To demonstrate the correctness of ILC algorithm, consider
a plant having the transfer function

G(s) =
s + 1

s2 + 5s + 6
, H(z) = 1 (24)

Using the sample time 0.01 second and Zero-order hold
method for discretisation, the corresponding discrete-time
system becomes

G(z) =
0.0098z − 0.0097

z2 − 1.951z + 0.9512
(25)

Assume the reference signal r = sin(t), β = 0.5, the white
noise variance δ2 is 0.0052, and Noise-to-signal ratio is
10%.

The results in Figure 1 show the important facts starts as
Proposition 1 and 2.

a. The blue line and red line are log10 ‖ e1,k+1 ‖2 and
log10E(‖ e1,k+1 ‖2), respectively. The results confirm the
theoretical proposition that E(‖ e1,k+1 ‖2) is the good
prediction of ‖ e1,k+1 ‖2 for the given noise sequence.

b. In Proposition 2, δ2Ak (Green line) is the limit of
E(‖ e1,k+1 ‖2) when k goes to infinity. In this special case
it clearly shows after 100 iterations the red and green lines
have reached the same level, i.e.

lim
k→∞

E(‖ e1,k+1 ‖2) = δ2A∞ ≈ 0.023 (26)

c. The expression of E(‖ e1,k+1 ‖2) has two terms. Note
that the first term (Black line)is the normal ILC tracking
error evolution equation. In the normal ILC the tracking
error goes to zero monotonically when k goes to infinity if
| 1 − βCB |< 1. In Figure 1, the black line consists with
this point clearly. The second term of the expression (14) is
the prediction for the given noise sequence. Another fact in
this figure is that the blue line represented log10 ‖ e1,k+1 ‖2

diverge from the black line after 50 iterations and converge
with log10 δ2Ak.

The information form Figure 2 conform the correctness of
Proposition 2. In this simulation, the red line represented
log10 E(‖ uk+1 − u∗ ‖2) shows it is a good prediction of
log10 ‖ uk+1 − u∗ ‖2. The limit of E(‖ uk+1 − u∗ ‖2) is
equal to δ2B∞ which is about 90.5107.
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Figure 1: ‖ e1,k ‖2 and E(‖ e1,k+1 ‖2)
Blue: log10 ‖ e1,k ‖2

Red: log10 E(‖ e1,k ‖2)
Green: log10 δ2Ak

Black: log10 ‖ (I − βGe)
k+1e1,0 ‖2
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Figure 2: ‖ uk+1 − u∗ ‖2 and E(‖ uk+1 − u∗ ‖2)
Blue: log10 ‖ uk+1 − u∗ ‖2

Red: log10 E(‖ uk+1 − u∗ ‖2)
Green: log10 δ2Bk

5. CONCLUSION AND FUTURE WORK

In this paper the effect of noise at a single ILC algorithm
is analysed. The ideal applied with the ILC control law
uk+1 = uk +βek by requires the white noise at the output
is proposed. The theoretical analysis of the algorithm
shows that ‖ e1,k ‖2 has a good prediction with the form
E(‖ e1,k ‖2) and this prediction has the limit when k goes
to zero. Then we can predict the limit of ‖ e1,k ‖2 by
applied with the expectation.

Simulations were used to illustrate the theoretical findings
in this paper. In the simulation examples both norm of the
noise free tracking error and the expectation of ‖ e1,k ‖2

were tested, and at least with these simulation examples
the expectation seemed to result in better prediction.
The simulation results also suggested the limit of the
E(‖ e1,k ‖2).
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As a future work, POILC will be implemented as a new
paradigm to solve the ILC problem when the original
plant has the effect output noise. All the theories in this
paper are based on the system positivity condition. In the
future, the plant positivity condition will be removed and
the high-order version of the algorithm will be analysed.
Progress will be reported separately.
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