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Abstract: A robust version of the output controller design for discrete-time systems
is introduced. Instead of a single stable point a stable polytope is preselected in the
closed loop characteristic polynomial coefficient space. A constructive procedure for
generating stable polytopes is given starting from the unit hypercube of reflection
coefficients of monic polynomials. This procedure is quite straightforward because
for a special family of polynomials the linear cover of so-called reflection vectors is
stable. The roots placement of reflection vectors is studied. A stability measure in
a polytope is introduced in order to solve the problem by quadratic programming
approach.

Keywords: robust control, pole placement, stability, discrete-time systems.

1. INTRODUCTION

The modal control or pole placement method is a
common approach for designing closed-loop con-
trollers in order to meet desired control specifica-
tions. If the model uncertainty is large some robust
formulation of the problem is needed, such as mul-
timodel (Ackermann, 1993; Magni, 2002) , poly-
topic model (Jetto, 2003; Rotstein et al., 1991) or
LMI approach (Scherer et al., 1997).

In this paper a polytopic approach proposed in
(Nurges, 2006b) is further developed. First, the
methodology for generating stable polytopes via
so-called reflection vectors (Nurges, 2005; Nurges,
2006b) is developed in more details. The notion
of reflection axes of a polynomial is introduced
as straight lines in the space of polynomial coeffi-
cients in directions of variation of single reflection
coefficients. A necessary and sufficient stability
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condition is obtained as a polytope with vertices
on reflection axes of a class of stable polynomials.

Second, in order to choose the best polytope
for robust controller design the proposed family
of polytopes is studied in respect of their poles
placement.

Third, the robust output controller design task
for polytopic plant model is solved by quadratic
programming approach. It means, instead of a
simplex of reflection vectors (Nurges, 2006b) we
are using now a full polytope of reflection vectors.

The paper is organized as follows. In section 2
the problem of fixed order robust output control
with a preselected polytope is stated and solved
by quadratic programming approach. The third
section is devoted to the the stable reflection
axes polytopes building. In the fourth section
some thumb rules are given for possible choices
of reflection axes polytopes.
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2. FIXED ORDER POLE ASSIGNMENT

Assume that a plant with parametric uncertainties
is given. Our goal is to design an output controller
of a fixed order so that the closed-loop poles are
robustly assigned in a specific region.

For simplicity, let us first consider the problem
of output controller design for a SISO plant with
fixed parameters. Let the plant transfer function
G(z) of dynamic order m be given

G(z) =
g(z)

f(z)
=

=
gm−1z

m−1 + · · · + g1z + g0

zm + fm−1zm−1 + · · · + f1z + f0

and we are looking for a controller C(z) of dynamic
order l with the transfer function

C(z) =
q(z)

p(z)
=

qlz
l + · · · + q1z + q0

zl + · · · + p1z + p0
.

It means that the closed loop characteristic poly-
nomial

a(z) = f(z)p(z) + g(z)q(z)

is of degree n = m + l.

It is known in the literature (Keel and Bhat-
tacharyya, 1999) that when l = m − 1 the above
problem has a solution for arbitrary a(z) when-
ever the plant has no common pole-zero pairs. In
general for l < m − 1 exact attainment of the
desired polynomial is impossible. Here we suggest
the following approach.

Let us relax the requirement of attaining the
desired polynomial a(z) exactly and enlarge the
target to a polytope S in polynomial coefficient
space containing the point representing the de-
sired closed-loop characteristic polynomial. With-
out any restrictions we can assume that fm = pl =
1 and deal in the following with monic polynomials
a(z).

Let us now introduce a stability measure ρ in
accordance with the polytope S

ρ = cT c

where

Sc = a (1)

and S is the nx2n matrix of vertices of the target
polytope S. If all coefficients ci > 0 , i = 1, ..., 2n
and

2n
∑

i=1

ci = 1

then the point a is placed inside the polytope S.

It is easy to see that the minimum ρmin = 1
2n

is
obtained by

c1 = c2 = ... = c2n =
1

2n
.

Then the point a is placed in the center of the
polytope S. If some cj = 1 then ρmax = 1 is
obtained. Then the point a coincides with the
vertex sj of the polytope S. By minimizing the
measure ρ ,

1/2n ≪ ρ ≪ 1

we guarantee, first, that the point a is placed in
the polytope S and, second, as far as possible from
all the vertices sj , j = 1, ..., 2n.

Now we can formulate the following problem of
controller design : find a controller C(z) such that
the stability measure ρ is minimal. In other words,
we are looking for a controller which places the
closed-loop characteristic polynomial a(z) as close
as possible to the center of the target polytope S.

In matrix form we have

a = Gx (2)

where G is the plant Sylvester matrix

G =

























f0 0 ... 0 g0 0 ... 0
f1 f0 ... 0 g1 g0 ... 0
. . . . . . . .

fm−1 fm−2 ... fm−l−1 gm−1 gm−2 ... gm−l−1

1 fm−1 ... fm−l 0 gm−1 ... gm−l

0 1 . . . . . .
0 0 ... fm−1 0 0 ... gm−1

0 0 ... 1 0 0 ... 0

























of dimensions (m + l + 1) x (2l + 2) and x is
a (2l + 2)-vector of controller parameters x =
[p0, ..., pl−1, 1, q0, ..., ql]

T .

The above controller design problem is due to
relations (1) and (2) equivalent to the quadratic
programming problem: find x̃ such that the mini-
mum

J1 = min
x̃

x̃T x̃ (3)

is obtained subject to the linear restrictions








G
... −S

.. . ..

0T
... 1T









x̃ =

[

0
1

]

,

[0
...I2n]x̃ ≥ 0

where x̃T = [xT
...cT ] is a 2(n + l + 1)-vector.

Let us consider now the problem of fixed-order
output controller design where the plant is sub-
ject to parameter uncertainty. We represent this
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by supposing that the given plant transfer func-
tion coefficients f0, ..., fm−1 and g0, ..., gm−1 are
placed in a polytope W with vertices dj =
[f j

0 , ..., f j
m−1, g

j
0, ..., g

j
m−1], j = 1, ..., M

W = conv{dj , j = 1, ..., M}.

Because the relations (2) are linear in plant pa-
rameters we can claim that for an arbitrary fixed
controller x the vector a of closed-loop character-
istic polynomial coefficients is placed in a polytope
A with vertices a1, ..., aM

A = conv{aj, j = 1, ..., M}

where

aj = Djx

and Dj is a (m + l + 1)x(2l + 2) Sylvester matrix
composed by the vertex plant dj as in the case of
exact model (2).

The problem of robust controller design can be
formulated as follows : find a controller x such
that all vertices aj , j = 1, ..., M are placed inside
a stable target polytope S .

This problem can be solved by quadratic program-
ming task : find x̄ which minimizes

J = min
x̄

x̄T x̄ (4)

by linear restrictions









Ḡ1 −S̄ 0 0 ... 0
Ḡ2 0 −S̄ 0 ... 0
.. .. .. .. .. ..

ḠM 0 0 ... 0 −S̄









x̄ =









o
o
...
o









, (5)

[0
...I2nM ]x̄ ≥ 0 (6)

where Ḡj =

[

Gj

0T

]

, S̄ =

[

S

1T

]

, o =











0
...
0
1











.

Here

x̄T = [xT
...cT

1 ...cT
M ]

is a 2(nM + l)-vector.

In the following section a method for the con-
vex inner approximation of the stability region
will be developed via so-called reflection coeffi-
cients of polynomials (see also (Nurges, 2005)).
This method can be used to find a stable target
polytope in order to solve the robust output pole
assignment problem (4)-(6).

3. STABILITY REGION AND REFLECTION
AXES

Polynomials are usually defined in terms of their
coefficients or their roots. They can also be charac-
terized by their reflection coefficients using Schur-
Cohn type recursion (Diaz-Barrero et al., 2004).

Let a(n)(z) be a monic polynomial of degree n with
real coefficients ai ∈ R , i = 0, ..., n,

a(n)(z) = zn + ... + a1z + a0.

The reciprocal polynomial a(n)∗(z) of a(n)(z) is
defined by

a(n)∗(z) = a0z
n + ... + an−1z + 1.

The reflection coefficients ki , i = 1, ..., n can be
obtained from a(n)(z) by using backward Levin-
son’s recursion (Diaz-Barrero et al., 2004)

za(i−1)(z) =
1

1 − |k2
i |

[a(i)(z) − kia
(i)∗(z)] (7)

where ki = −a
(i)
0 and a

(i)
0 denotes the last coeffi-

cient of an i-degree polynomial a(i)(z). From (7)
the forward recursion can be obtained

a(i)(z) = za(i−1)(z) + kia
(i−1)∗(z). (8)

The stability criterion via reflection coefficient is
as follows (Diaz-Barrero et al., 2004).

Lemma 1. A polynomial a(z) has all its roots
inside the unit disk if and only if its reflection
coefficients are in the interval (−1, 1) , −1 < ki <
1, i = 1, ..., n .

According to relations (8) the coefficient vector
a = (a0, ..., an−1)

T depends multilinearly on the
reflection coefficients ki, i = 1, ..., n. So a straight
line parallel to a coordinate axis ki will be trans-
formed to a straight line Ai in the polynomial
coefficient space.

Let us call the straight lines

Ai = a(k| −∞ < ki < ∞, kj = const,
j 6= i, j = 1, ..., n)

reflection axes of the polynomial a(z). Reflection
axes of Schur polynomials will be useful for inner
approximation of the stability region in the poly-
nomial coefficient space.

The following assertions hold:

(1) Through an arbitrary point a ∈ Rn n reflec-
tion axes Ai, i = 1, ..., n can be drawn.

(2) Reflection axes Oi of the origin coincide with
the coordinate axes ai, i = 1, ..., n.
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(3) Every reflection axis Ai of a stable point
(Schur polynomial) cuts the stability bound-
ary in two points vi(1) = a(ki = 1) and
vi(−1) = a(ki = −1). These stability bound-
ary points vi(±1) are called reflection vectors
of the Schur polynomial a(z) (Nurges, 2005).

(4) Arbitrary line segments of a reflection axis
Ai will be stable if only its endpoints v+

i =
a(k̄i) ∈ Ai and v−i = a(ki) ∈ Ai , ki < k̄i

,i = 1, ..., n are stable.

In the following the linear cover of reflection vec-
tors vi(±1), i = 1, ..., n is called the reflection
vectors (RV) polytope and the linear cover of
reflection axes points v+

i and v−i , i = 1, ..., n is
called the reflection axes (RA) polytope.

Theorem 1(Nurges, 2006a). A reflection axes
polytope V(a) of a stable polynomial a(z) with
reflection coefficients k2(a) = ... = kn−1(a) = 0
will be stable if and only if all the vertices v+,−

i (a)
, i = 1, ..., n are stable and −1 < k1(a), kn(a) < 1.

4. POSSIBLE CHOICES OF POLYTOPES

In this section we study the stable reflection axes
(RA) polytopes as possible candidates for a target
polytope .

The following problems have to be solved:

1) choice of an initial polynomial a(z) for gen-
erating a stable reflection vectors polytope
V(a),

2) choice of vertices v+
i (a) and v−i (a) on reflec-

tion axes.

According to Theorem 1 the initial polynomial
a(z) belongs to the family of polynomials with
k1(a) ∈ (−1, 1), kn(a) ∈ (−1, 1) and k2(a) = ... =
kn−1(a) = 0. Let us study the roots placement of
such polynomials.

1. Let k1(a) ∈ (−1, 1) and k2(a) = ... = kn(a) =
0. Then a(z) = zn − k1z

n−1 and r1 = k1 ,
r2 = ... = rn = 0.

2. Let kn(a) ∈ (−1, 1) and k1(a) = ... =
kn−1(a) = 0. Then a(z) = zn − kn and the
roots of a(z) are placed symmetrically against
the origin whereas max|ri| > kn.

Thus, a reasonable choice of an initial polynomial
is following: 0 < k1(a) < 1, |kn(a)| << k1(a),
k2(a) = ... = kn−1(a) = 0.

In order to illustrate this statement let us calculate
the root loci of innerpoints of some RV polytopes
for n = 3. The robust root loci, obtained by
taking 50 uniformly distributed random points
within the RV polytopes around the initial points
with k1(a) = 0.8;−0.8 , k2(a) = k3(a) = 0 and

with k1(a) = k2(a) = 0 , k3(a) = 0.8;−0.8 are
represented in Figures 1 and 2 respectively.

Fig. 1. Robust root locus of the polytope of re-
flection vectors V(a) for k1(a) = 0.8 (a) and
k1(a) = −0.8 (b)

Fig. 2. Robust root locus of the polytope of re-
flection vectors V(a) for kn(a) = 0.8 (a) and
kn(a) = −0.8 (b)

Now, let us study the problem of possible im-
provement of the root loci of reflection axes (RA)
polytopes by moving the vertices of them nearer to
the initial point a along the reflection axes Ai(a)
,i = 1, ..., n.
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For performance purposes it is desirable to choose
the vertices v+,−

i (a) of an RA polytope with
|ki(v

+,−
i (a))| = ξ+,−

i < 1. The reasonable value
of ξ+,−

i depends on the reflection axis number i
and the sign of its direction.

Theorem 2. (Nurges, 2006b) Reflection vectors
vi(1) and vi(−1) , i = 1, ..., n of a monic Schur
polynomial a(z) have i roots rj , j = 1, .., i on
the stability boundary. The numbers of real and
complex roots are determined by the sign and the
parity of the reflection vector as follows:

1) the positive reflection vector vi(1) has
• for i even r1 = 1,

r2 = −1
and (i − 2)/2 pairs

of complex roots on the unit circle,
• for i odd r1 = 1,

and (i − 1)/2 pairs
of complex roots on the unit circle,

2) the negative reflection vector vi(−1) has
• for i even i/2 pairs

of complex roots on the unit circle,
• for i odd r1 = −1,

and (i − 1)/2 pairs
of complex roots on the unit circle.

Taking into account the fact that the best sta-
bility boundary root in context of performance
properties is r = 1 and a pair of complex stability
boundary roots with a positive real part is a good
one too, we can formulate the following thumb
rules for choosing constants ξi :

(1) ξ+
1 > |ξ−2 | > |ξ−1 | > ξ+

2 >> ξ+,−
i , i > 2,

(2) the greater the number i the smaller must be
the value |ξ+,−

i |,
(3) for i even |ξ+

i | ≤ |ξ−i |,
(4) for i odd |ξ+

i | ≥ |ξ−i |.

Let us consider now a very simple example to
explain the main ideas of robust fixed order output
controller design via the reflection vectors poly-
tope preselection and quadratic programming task
(4)-(6).

Example. Let us have the second order m = 2
uncertain plant with transfer function

G(z) =
z + (0.6 ± 0.1)

z2 − (0.8 ± 0.2)z − 0.4

and a proportional l = 0 output controller

C(z) = q.

Because l < m− 1 we can not choose an arbitrary
closed-loop characteristic polynomial. Indeed,

a(z) = z2 − [(0.8± 0.2) + q]z + [(0.6± 0.1)q − 0.4]

or in matrix form

a = Gx =





f0 g0

f1 g1

1 0





[

1
q

]

.

Let us choose according to the above ”thumb
rules” the reflection coefficients ka

1 = 0.2 and ka
2 =

0. Then the generating polynomial a(z) = z2−0.2z
has 4 reflection vectors (points C,D,F,A in Fig.4
respectively)

v+
1 (a) = [ −1 0 ],

v−1 (a) = [ 1 0 ],
v+
2 (a) = [ 0 −1 ],

v−2 (a) = [ −0.4 1 ].

and the 4 vertices of the target polytope S =
conv(A,C,D,F) are C = v+

1 (a), A = v−2 (a) and
f = v−1 (a) , D = v+

2 (a)). So the matrix S of vertex
polynomial coefficients is as follows

S =





0 1 0 −1
−1 −0.4 1 0
1 1 1 1



 .

-
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Fig. 3. Target polytopes for robust controller de-
sign.

Let us now solve the output controller design task
for the nominal plant with g0 = 0.6 and f1 = −0.8
(point P). Via quadratic programming with the
optimization criterion J1 we obtain the controller
gain

q1 = 0.6981

and the closed-loop characteristic polynomial (point
R)

a1(z) = z2 − 0.2595z − 0.0757.

For polytopic plant g0 = 0.6±0.1 and f1 = −0.8±
0.2 with the optimization criterion J we obtain the
controller gain

q2 = 0.6776,

and the vertices of the rectangle of closed-loop
characteristic polynomials (solid rectangle around
R)

a21(z) = z2 + 0.0776z + 0.0744
a22(z) = z2 + 0.0776z − 0.0612
a23(z) = z2 − 0.3224z + 0.0744
a24(z) = z2 − 0.3224z − 0.0612.
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To illustrate the effect of the choice of reflection
coefficients of the initial polynomial a(z) we have
solved the same task with ka

1 = −0.8. Then the
target polytope S is the quadrangle BCFD where
B = v−2 (a) = [ 1 1.6 1 ]T . The optimal controller
gain for the polytopic plant is

q3 = 1.0117,

and the closed loop polytope (dotted rectangle
around S)

a31(z) = z2 + 0.4117z + 0.3082
a32(z) = z2 + 0.4117z + 0.1058
a43(z) = z2 + 0.0117z + 0.3082
a34(z) = z2 + 0.0117z + 0.1058.

The root loci confirm that the initial polynomial
a1(z) with k1 = 0.2 is more suitable for generating
a target simplex than a2(z) with k1 = −0.8.

5. CONCLUSIONS

A novel procedure for robust output controller
design is presented. Instead of a single target point
a target polytope is preselected. The problem of
robust controller design is then formulated and
solved as an optimization task which guarantees
the robust stability (polytopic closed loop char-
acteristic polynomial is placed in a stable tar-
get polytope) and maximizes a stability margin
(closed loop polytope is placed as far as possible
from the vertices of this stable target polytope).

A constructive procedure for generating stable
polytopes in polynomial coefficients space is given.
In this paper instead of a simplex of reflection
vectors (see (Nurges, 2006b)) we are using a full
polytope of reflection vectors. This approach has
some advantages: first, we can deal with greater
uncertainty level (the volume of a full polytope
of reflection vectors is considerably greater than
the volume of a simplex), second, we have more
flexibility by robust controller design . But this
approach has a drawback too: the dimension of
the quadratic programming task is considerably
greater (2(l+1) for a simplex (Nurges, 2006b) and
2(n + l + 1) for a polytope of reflection vectors).
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