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1. INTRODUCTION

In this paper we consider the tracking problem of nonneg-
ative constant reference signals for unknown stable SISO
positive linear systems with nonnegative constant unmea-
surable disturbances under strictly nonnegative switching
control inputs. In practice, the knowledge of the system’s
model is commonly unknown, particularly for industrial
systems, and therefore control design for unknown sys-
tems, which we adopt in this paper, is very advantageous.

A positive linear system is nothing else but a linear system
with the constraint that state, output and/or input vari-
ables are nonnegative for all time. A special class of posi-
tive systems that appears quite frequently in the literature
is the class of compartmental systems. In recent years, the
interest in positive systems and their counterparts, com-
partmental systems, has grown considerably and various
general results have been presented in the literature; we
direct the interested reader to Roszak and Davison (July,
2007) for numerous citations.

The problem of the servomechanism problem for posi-
tive systems has had limited consideration; Roszak and
Davison (September, 2007) solves a subclass of the ser-
vomechanism problem under measurable disturbances
with feedforward compensators and tuning regulators;
Roszak and Davison (July, 2007) takes into account the
tracking/regulation problem for SISO positive LTI sys-
tems with almost -positivity 1 . Other related papers in-
clude Haddad et al. (2003), Leenheer and Aeyels (2001)
and Kaczorek (1998). The first considers the tracking prob-
lem for positive linear systems with no disturbances under
a special class of input matrices. The second, solves the

⋆ This work was supported in part by the Natural Sciences and
Engineering Research Council of Canada (Canada Graduate Schol-
arship).
1 where the component of the state/output may exit the positive
orthant by a small perturbation

problem of stabilization to a strictly positive equilibrium
for SISO positive LTI known systems using techniques
of positive observers presented in Van den Hof (1998).
The third, provides quadratic programming techniques for
the stabilization of known positive LTI systems. In this
paper, we take into account unmeasurable disturbances
under strictly nonnegative control inputs, using clamping
control.

The paper is organized as follows. Preliminaries are given
first, where the terminology, positive systems and com-
partmental systems, tuning regulators, and singular per-
turbation theory are discussed. All assumptions on the
system plant treated in the paper and the Problem State-
ment are described in Section 3. Section 4 provides the
main results of the paper, while all concluding remarks
complete the paper.

2. BACKGROUND AND PRELIMINARIES

2.1 Terminology

Let the set R+ := {x ∈ R | x ≥ 0}, the set R
n
+ := {x =

(x1, x2, ..., xn) ∈ R
n | xi ∈ R+, ∀i = 1, ..., n}. If exclusion

of 0 from the sets will be necessary, then we will denote the
sets in the standard way R

n
+ \ {0}. The set of eigenvalues

of a matrix A will be denoted as σ(A). The ijth entry of
a matrix A will be denoted as aij . A nonnegative matrix
A has all of its entries greater or equal to 0, aij ∈ R+.
A Metzler matrix A is a matrix for which all off-diagonal
elements of A are nonnegative, i.e. aij ∈ R+ for all i 6= j. A
compartmental matrix A is a matrix that is Metzler, where
the sum of the components within a column is less than
or equal to zero, i.e.

∑n

i=1
aij ≤ 0 for all j = 1, 2, ..., n.

2.2 Positive Linear Systems

In this section we give an overview of positive linear
systems Luenberger (1979), Farina and Rinaldi (2000),
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Kaczorek (2002), and point out a key subset of positive
systems known as compartmental systems Farina and
Rinaldi (2000), Jacquez and Simon (1993).

We first define a positive linear system in the traditional
sense Farina and Rinaldi (2000).

Definition 1. A linear system

ẋ = Ax + Bu
y = Cx + Du

(1)

where A ∈ R
n×n, B ∈ R

n×m, C ∈ R
r×n, and D ∈ R

r×m

is considered to be a positive linear system if for every
nonnegative initial state and for every nonnegative input
the state of the system and the output remain nonnegative.

Notice that Definition 1 states that the input to the system
must be nonnegative, a restriction that we will abide to
throughout this paper.

It turns out that Definition 1 has a very nice interpretation
in terms of the matrix quadruple (A, B, C, D).

Theorem 2. (Farina and Rinaldi (2000)). A linear system
(1) is positive if and only if the matrix A is a Metzler
matrix, and B, C, and D are nonnegative matrices.

An interesting subset of positive systems is that of com-
partmental systems. The main mathematical distinction,
for LTI systems, between a positive system and a com-
partmental system is that a positive system’s A matrix
is Metzler, while a compartmental system’s A matrix is
compartmental. The inclusion of compartmental systems
is made because in general, compartmental systems are
stable, a property of great significance throughout the
paper. For a more complete study and interesting results
on compartmental systems see Jacquez and Simon (1993)
and references therein.

2.3 Tuning Regulators

In this section we describe a particular compensator,
known as the tuning controller or tuning regulator, which
solves the servomechanism tracking and regulation prob-
lem for unknown 2 stable linear systems under unknown
constant unmeasurable disturbances. Such unknown sys-
tems often occur in industrial application problems. The
results of this section can be found in their entirety and
in their general form in Davison (1976) and Miller and
Davison (1989).

Consider the plant

ẋ = Ax + Bu + Eω

y = Cx + Du + Fω (2)

e := yref − y

where x ∈ R
n, u ∈ R

m, y ∈ R
r, the unmeasurable

disturbance vector ω ∈ R
Ω̃, and yref ∈ R

r is a desired
tracking signal. Assume that the output y is measurable,
that the matrix A is Hurwitz, m = r, and that the
unmeasurable disturbance vector and tracking signals are
constants. Then, the tuning regulator

2 by unknown we mean that there is no knowledge of (A, B, C, D)

η̇ = ǫ(yref − y)
u = (D − CA−1B)−1η

(3)

where ǫ ∈ (0, ǫ∗], ǫ∗ ∈ R+ \ {0}, solves the robust
servomechanism problem 3 , i.e. (i) the closed loop system
is stable, (ii) e → 0 as t → ∞ for all tracking signals
and unmeasurable disturbances , and (iii), property (ii)
occurs for all plant perturbations which maintain closed
loop stability.

We summarize the above discussion by a Theorem for the
case of SISO linear systems.

Theorem 3. (Davison (1976)). Consider the system (2),
under the assumption that yref ∈ R and ω ∈ R are
constants. Then there exists an ǫ∗ such that the tuning
regulator (3) achieves robust tracking and regulation if
and only if rank(D − CA−1B) = 1.

We refer the interested reader to Davison (1976) for the
procedure of experimentally obtaining the gain matrix
(D − CA−1B)−1, for the case of unknown plant models
(2). It is to be noted that if rank(D − CA−1B) = r, then
”on-line tuning” Davison (1976) is used to find an optimal
value of ǫ in the controller (3).

2.4 Singular Perturbation

This section has been added for completeness and covers
singular perturbation results needed in order to prove the
main results of this paper. The following discussion has
been taken from Khalil (2002), Chapter 11.

The standard singular perturbation model can be de-
scribed as

q̇ = f(t, q, z, ǫ), q(t0) = q0

ǫż = g(t, q, z, ǫ), z(t0) = z0
(4)

where the functions f and g are continuously differentiable
in their arguments (t, q, z, ǫ) ∈ [0,∞) × Dq × Dz × [0, ǫ0],
with Dq ⊂ R

n and Dz ⊂ R
s being open and connected

sets. By setting ǫ = 0, we obtain

0 = g(t, q, z, 0), (5)

where we designate the real root 4 of (5) as

z = h(t, q). (6)

To obtain a reduced model, we substitute (6) into (4)
resulting in

q̇ = f(t, q, h(t, q), 0), q(t0) = q0. (7)

Now denote the solution of (7) by q(t) and define

z(t) = h(t, q(t)),

which describes the behavior of z when q = q.

In order to present a very important result on singular
perturbations, we need to perform a change of variables
first p = z−h(t, q), which shifts the state of z to the origin.

In the new variables (q, p) with ǫdp
dt

= dp
dτ

, hence dτ
dt

= 1

ǫ
,

3 Davison (1976) does not assume that m = r and that the tracking
and unmeasurable disturbance signals are constant, but for the
purpose of this paper this causes no loss of generality
4 without loss of generality, we assume there is only one root
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and using τ = 0 as the initial value at t = t0, we obtain,
in the new time scale:

q̇ = f(t, q, p + h(t, q), ǫ), q(t0) = q0

dp

dτ
= g(t, q, p + h(t, q), ǫ) − ǫ

∂h

∂t

−ǫ
∂h

∂q
f(t, q, p + h(t, q), ǫ),

p(t0) = z0 − h(t0, q0).

(8)

By setting ǫ = 0, the latter equation reduces to

dp

dτ
= g(t, q, p + h(t, q), 0), p(t0) = z0 − h(t0, q0), (9)

which is commonly referred to as the boundary-layer
model.

We will also make use of the autonomous system

dp

dτ
= g(t0, q0, p + h(t0, q0), 0), p(t0) = z0 − h(t0, q0)(10)

which has an equilibrium at p = 0, and has been derived
from (9) by setting t = t0 and q = q0. Define the solution
of (10) as p̂(τ).

The following theorem presents the singular perturbation
result of interest in this paper.

Theorem 4. (Khalil (2002) pg.439). Consider the singular
perturbation problem of (4). Assume that the following
conditions are satisfied for all

[t, q, z − h(t, q), ǫ] ∈ [0,∞) × Dq × Dp × [0, ǫ0]

for some domains Dx ⊂ R
n and Dy ⊂ R

s, which contain
their respective origins:

(1) On any compact subset of Dx × Dy, the func-
tions f , g, their first partial derivatives with re-
spect to (q, z, ǫ), and the first partial derivative of
g with respect to t are continuous and bounded,
h(t, q) and [∂g(t, q, z, 0)/∂z] have bounded first par-
tial derivatives with respect to their arguments, and
[∂f(t, q, h(t, q), 0)/∂q] is Lipschitz in q, uniformly in
t;

(2) the origin is an exponentially stable equilibrium point
of the reduced system (7);

(3) the origin is an exponentially stable equilibrium point
of the boundary-layer model (9), uniformly in (t, q).
Let Rp ⊂ Dp be the region of attraction of (10) and
Γy be a compact subset of Ry .

Then, for each compact set Γq ⊂ {W2(x) ≤ ξc, 0 < ξ < 1}
there is a positive constant ǫ1 such that for all t0 ≥ 0,
q0 ∈ Γq, z0 − h(t0, q0) ∈ Γp, and 0 < ǫ < ǫ1, the singular
perturbation problem has a unique solution q(t, ǫ), z(t, ǫ)
on [t0,∞), and

q(t, ǫ) − q(t, ǫ) = O(ǫ)

z(t, ǫ) − h(t, q(t)) − p̂(τ) = O(ǫ)

We are now ready to introduce the main problem of the
paper.

3. PROBLEM STATEMENT

In this section, we provide the details of the plant, all
accompanying assumptions made on the plant, and the
problem of interest.

Throughout this paper we consider the following LTI SISO
plant:

ẋ = Ax + bu + eωω
y = cx + du + fω
e := yref − y

(11)

where A is an n × n Metzler stable matrix, b ∈ R
n
+,

c ∈ R
1×n
+ , d ∈ R+, eωω ∈ Ω1 ⊂ R

n
+, fω ∈ Ω2 ⊂ R+,

yref ∈ Yref ⊂ R+.

Next, we provide an important assumption which will be
commonly used in the sequel. The assumption is needed
in order to ensure that the steady state values of the
closed loop system be nonnegative, under the choice of
the reference signals and the unmeasurable disturbances
of the plant. If this assumption was not true, then clearly
we cannot attempt to satisfy any sort of nonnegativity of
the states.

Assumption 1. Given (11) assume that the existence con-
dition rank(d − cA−1b) = 1 holds and that the sets Ω1,
Ω2, and Yref are chosen such that the steady state values
of the plant’s states and input are nonnegative, i.e. for all
tracking and disturbance signals in question, it is assumed
that the steady-state of the system (11) is given by

[

xss

uss

]

=−

[

A b
c d

]−1 [

eω 0
f −1

] [

ω
yref

]

(12)

and has the property that xss ∈ R
n
+ and uss ∈ R+. It is

to be noted that the indicated inverse exists if and only if
rank(d− cA−1b) = 1, which is the same condition as that
of Theorem 3.

Notice that because yref ∈ R+, then yss = cxss + duss +
fω ∈ R+.

Before we present the problem of interest, we would like
to point out that one can easily check if the existence
condition rank(d − cA−1b) = 1 holds true. We provide a
very simple algorithm to do this. The following algorithm
is a modification of the result given in Davison (1976).

Algorithm 1. It is assumed that the output of the system
is measurable and the input is excitable the disturbance
set to zero, i.e. ω = 0.

(1) Apply an input u = u to (11), with u having a non-
zero steady-state value.

(2) Measure the corresponding steady-state value of the
output y = y.

(3) If y 6= 0, then the existence condition holds true.

With the above plant and assumption given, we outline
the main problem of interest.

Problem 5. Consider the plant (11), with initial condition
x0 ∈ R

n
+, under Assumption 1. Find a nonnegative con-

troller u that

(a) guarantees closed loop stability;
(b) ensures the plant (11) is nonnegative, i.e. the states

x and the output y are nonnegative for all time; and
(c) ensures tracking of the reference signals, i.e. e = y −

yref → 0, as t → ∞, ∀yref ∈ Yref and ∀ω ∈ Ω. In
addition,

(d) assume that a controller has been found so that con-
ditions (a), (b), (c) are satisfied; then for all pertur-
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bations of the nominal plant modal which maintain
properties (a) and (b), it is desired that the controller
can still achieve asymptotic tracking and regulation,
i.e. property (c) still holds.

We present two more assumptions that will be used
throughout the paper.

Assumption 2. The control input will be of the form:

η̇ = ǫ(yref − y), η0 = 0
u = kη

, (13)

where

k =

{

0 η ≤ 0
1 η > 0

The above control law is called a clamping controller; it
incorporates the tuning regulator and saturation at zero.

Assumption 3. A necessary result for Assumption 1 to
hold is that

yref − fω ≥ 0;

thus, without loss of generality, we can assume that f = 0.

3.1 Breakdown of Assumption 1

Assumption 1 provides a nice algebraic expression for xss

and uss; however, equation (12) is only useful if we know
the value of ω and the matrices eω and f . It would be
of great interest to actually know how large or small
the disturbances can be in order for Assumption 1 to
hold, i.e. what are the feasible sets Eω ⊂ Ω1 ⊂ R

n
+,

Fω ⊂ Ω2 ⊂ R+ and Yref ⊂ R+, where eωω ∈ Eω,
fω ∈ Fω and yref ∈ Yref , such that (12) holds. In this
subsection, we consider the latter problem of finding the
feasible sets Eω, Fω, and Yref .

Solution to Assumption 1

First, recall where (12) comes from:

ẋ = 0 = Axss + buss + eωω (14)

η̇ = ǫ(yref − y) = 0 = cxss + duss + fω − yref (15)

Taking equation (14) and isolating it for xss we get:

xss = −A−1buss − A−1eωω. (16)

Now, substituting equation (16) into equation (15) and
isolating for uss we obtain:

uss =
cA−1eωω − fω + yref

d − cA−1b
. (17)

From above and the fact that we need uss ∈ R+, we obtain
the equation

cA−1eωω − fω + yref

d − cA−1b
≥ 0

cA−1eωω − fω + yref ≥ 0; (18)

however, K−1 = d − cA−1b > 0 by Roszak and Davison
(July, 2007), resulting in:

(eωω, fω, yref) ∈ S := {(ξ1, ξ2, ξ3) |

cA−1ξ1 − ξ2 + ξ3 ≥ 0, ξ1 ≥ 0, ξ2 ≥ 0, ξ3 ≥ 0} (19)

In the case of unmeasurable disturbances, we can see from
(18) that if the disturbances are small in comparison to
the tracking signal, i.e. yref ≥ (f − cA−1eω)ω, then the
assumption will hold true. However, if (18) does not hold,
Problem 5 is unsolvable.

Note that if the system matrices are known, then one can
use (19) directly to find S.

Remark 6. Notice that if uss ≥ 0, then

xss = −A−1buss − A−1eωω ≥ 0

as all matrices and vectors are nonnegative, i.e. −A−1

exists and is nonnegative Luenberger (1979) and b along
with eωω are nonnegative by assumption.

4. MAIN RESULTS

In this section, we present the main results of the paper.
First, we present a theorem that assumes a strictly positive
steady state value for the input, then we present a corollary
where the steady state of the input is allowed to be
nonnegative.

Theorem 7. Consider system (11) under Assumption 1
and Assumption 2. Further assume that x0 ∈ R

n
+ and

uss > 0. Then there exists an ǫ∗ such that for all ǫ ∈ (0, ǫ∗]
the controller (13) solves Problem 5.

Proof. We first concentrate on showing that tracking of
yref occurs. This is broken down into two steps:

(1) First, we will show that if initially η0 = 0 and
η̇(0) ≤ 0, then there exists a time t1 > 0 such that
η(t1) = 0 and η̇(t1) > 0, i.e. in (13) k 6= 0 for all time.

(2) Second, we will show that if there exists a time t2
such that η(t2) > 0, then there exists an ǫ∗ such that
for all time t ≥ t2 and all ǫ ∈ (0, ǫ∗] the controller
(13) maintains nonnegativity of the states, outputs,
and the input and solves Problem 5.

Thus, let us show (1). By contradiction, assume there does
not exist a time t1 such that η(t1) = 0 and η̇(t1) > 0,
i.e. k = 0 for all time. Therefore, the closed loop system
becomes

ẋ = Ax + eωω

η̇ = ǫ(yref − cx − fω)

and since A is stable

x → −A−1eωω = xss, t → ∞.

Recall,

0 = Axss + buss + eωω

−eωω = Axss + buss

−A−1eωω = xss + A−1buss

xss = xss + A−1buss,

i.e. if k = 0 for all time t > 0, then the system tends
toward xss as t → ∞, but this implies that
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η̇ = ǫ(yref − cxss − d(0) − fω)

= ǫ(yref − c(xss + A−1buss) − d(0) − fω)

= ǫ(yref − cxss − duss − fω) + ǫ(d − cA−1b)
K

K
uss)

= 0 +
ǫ

K
uss > 0;

(recall K = (d − cA−1b)−1 > 0 by Roszak and Davison
(July, 2007)) therefore, by continuity there exists a time
t1 such that η̇(t1) > 0, η(t1) = 0, and hence there exists a
t2 such that η(t2) > 0, a contradiction to the assumption
made that η ≤ 0 for all time.

Next, let us show (2); we proceed to illustrate that if for
some time t2 ≥ 0, η(t2) > 0, then there exists an ǫ∗ such
that for all time t ≥ t2 and all ǫ ∈ (0, ǫ∗] the controller
(13) maintains nonnegativity of the states, outputs, and
the input and thus solves Problem 5. In order to prove the
above, we use the results of singular perturbation. The
closed loop system with the tuning regulator for η > 0 is
of the form:

[

ẋ
η̇

]

=

[

A b
−ǫc −ǫd

] [

x
η

]

+

[

eω 0
−ǫf ǫ1

] [

ω
yref

]

. (20)

First, let us show that the equilibrium of the closed loop
system is independent of ǫ. This is easily seen by noticing

η̇ = ǫ(−cx − dη − fω + yref ) = 0

implies that −cx − dη − fω + yref = 0.

Now, since the equilibrium (xss, ηss) is independent of ǫ
and invariant, we can transform the system as needed, i.e.
let z = x − xss and q = η − ηss. in (20), resulting in the
new system

[

q̇
ż

]

=

[

−ǫd −ǫc
b A

] [

q
z

]

. (21)

Next, let us scale the derivatives (i.e. scaling of time) by
ǫdt = dτ resulting in the transformed system

[

⊙
q

ǫ
⊙
z

]

=

[

−d −c
b A

] [

q
z

]

, (22)

with ǫ
⊙
q = q̇ and ǫ

⊙
z = ż. We have now transformed our

model into that of the singular perturbation model (4). In
order to use Theorem 4, we must show that all assumptions
of Theorem 4 hold true. However, as (22) is linear and
time invariant and we are only interested in η it suffices to
show that the reduced model yields exponential stability;
all other assumptions clearly hold. By setting ǫ = 0 we
obtain z = h(q) = −A−1bq, as A is Hurwitz, h(q) exists

and is unique. Next by substituting h(q) into
⊙
q we obtain

the reduced model:

⊙
q =−dq + cA−1bq = −(d − cA−1b)

K

K
q = −

q

K
,

implying that
⊙
q = − q

K
⇒ q̇

ǫ
= − q

K
⇒ q̇ = − ǫq

K
clearly

exponentially stable. Thus, by Theorem 4 we have:

q − q = O(ǫ) or η − η = O(ǫ) ∀t ≥ t2;

where

η = q + ηss

= ηss + e−ǫ t

K (η(t2) − ηss)

and since η(t2) > 0, then for all time t ≥ t2, there exists
an ǫ∗ such that η > 0 for all ǫ ∈ (0, η∗] and t ≥ t2 since η is
monotonically approaching ηss. Thus, y → yref as t → ∞
if uss > 0.

Finally, nonnegativity holds since u ≥ 0 for all time, and
the fact that all other conditions of Problem 5 hold are also
satisfied by Roszak and Davison (July, 2007); we omit the
details.

We note that the above proof uses the method of con-
tradiction to prove the Theorem; we clearly do not need
to let ǫ → 0 to obtain the needed clamping controller.
We point the interested reader to Davison (1976) where
”on-line tuning” is used to find the ideal ǫ∗; although our
clamping controller is different, the procedure is the same.

Our next result presents a Corollary encapsulating the case
when uss ≥ 0, under the assumption that x0 = xss =
−A−1eωω. Intuitively this means that the control law (13)
with k = 0 is used until all the natural dynamics die off.

Corollary 8. Consider system (11) under Assumption 1.
Further assume that x0 = xss = −A−1eωω and uss ≥ 0.
Then there exists an ǫ∗ such that for all ǫ ∈ (0, ǫ∗] the
controller (13) solves Problem 5.

Proof. The result for the case uss > 0 follows from the
proof of Theorem 7; thus, let us concentrate on uss = 0.
However, since uss = 0, then xss = −A−1eωω = x0 and
yss = −cA−1eωω + fω = cx0 + fω = yref , completing the
result.

Lastly, the paper considers unmeasurable disturbances,
therefore, next we will introduce an algorithm that uses
controller (13) to solve the servomechanism problem if
the property of the steady-state existence conditions (As-
sumption 1 are satisfied. Otherwise, if the steady-state
existence conditions are not satisfied, then the contoller
(13) automatically shuts itself off so that in finite time
the control input is equal to zero, and remains at 0 for all
time. We note to the reader that this is the best which any
controller can do, given the limited information which we
have.

Algorithm 2.

(1) Check the existence condition rank(d − cA−1b) = 1
by Algorithm 1.
(a) If Algorithm 1 returns y = 0, then there does not

exist a solution to the servomechanism problem.
(b) Otherwise, go to Step 2.

(2) Apply the clamping controller (13) to the unknown
plant, by using ”on-line tuning” Davison (1976).
(a) If the clamping controller remains at zero for

t ∈ [t+,∞), where t+ ≥ 0, and no track-
ing/regulation occurs, then the servomechanism
problem is not solvable under any control law.

(b) Otherwise, the clamping controller (13) solves
Problem 5.
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5. EXAMPLE

In this section, we illustrate the results presented in this
paper via an example.

Example 9. The following plant, which is a stable com-
partmental system, has been taken from Farina and Ri-
naldi (2000) pg.105. Consider the reservoirs network of
Figure 1, with u as the input flow of water and ω an
input flow disturbance. The system is of dimension 6, as we
assume the pump dynamics can be neglected. As pointed
out in Farina and Rinaldi (2000), the dynamics of each
reservoir can be captured by a single differential equation:
ẋi = −αixi + v, αi > 0, i = 1, ..., 6, where xi represents
the depth of the water in each reservoir.

u + ω

γ 1 − γ

φ 1 − φ

1 2

3

4

5

6

pump

Fig. 1. System set up for Example 9.

Consider the case where γ = 0.5, φ = 0.9, α1 = 2,
α2 = 1.7, α3 = 1.5, α4 = 1, α5 = 2, and α6 = 2. This
results in the following system:

ẋ =













−2 0 0 0 2 0
0 −1.7 0 0 0 0
2 1.7 −1.5 0 0 0
0 0 0.15 −1 0 0
0 0 0 1 −2 0
0 0 1.35 0 0 −2













+













0.5
0.5
0
0
0
0













u +













0.5
0.5
0
0
0
0













ω

y = [0 0 0 0 0 1]x.

The existence condition rank(d − cA−1b) = 1 holds using
Algorithm 1. Assume now that we would like to track
the reference input yref = 1, subject to the disturbance
ω = 0.5. For simulation purposes we assume x0 =
[2 4 1 0.5 0.5 2]. In this case using Algorithm 2, the
application of controller (13) with ǫ = 0.5, solves the
tracking problem. Note that the condition (19) holds in
this case for the problem, although this information was
not used in order to implement the controller (13). Figure
2 illustrates both the output y and the input u. The plots
of the states x are omitted, however, it is easy to deduce
that they are nonnegative as u ≥ 0.

6. CONCLUSION

In this paper, we have used a switching controller, known
as the clamping controller, in order to solve the ser-
vomechanism problem for stable unknown SISO positive
LTI systems with nonnegative control inputs for the case
of constant tracking signals and constant unmeasurable
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Fig. 2. Output and input response for Example 9.

disturbance signals. We point out that the control law can
be implemented without any knowledge of the system’s
model.
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