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Abstract: This paper explores the issues of feasibility and performance within predictive
control. Conventional thinking is that there is typically a trade off between performance and the
volume of the feasible region. However, this paper seeks to show that the trade off is often not as
stark as might be expected and in fact one can sometimes gain huge amounts in feasibility with
an almost negligible loss in performance while using a simple and conventional MPC algorithm.

Keywords: Constraints, Feasibility, Performance, Computational Efficiency, Contours

1. INTRODUCTION

Techniques for linear Model Predictive Control (MPC)
Camacho et al (2005); Rossiter (2003) are now fairly well
understood and widely applied with great success, espe-
cially in the large chemical and petro-chemical industries.
For cases where the underlying system is open-loop stable
and there are only input constraints, it is also obvious
using recent insights that a DMC Cutler et al (1980)
or GPC Clarke et al (1987) type of algorithm will give
reasonable performance for almost any input horizon, so
long as the output horizon is longer than the settling
time. Consequently, this paper considers problems where
a simplistic DMC or GPC implementation may not be so
effective; for instance problems with:

(1) Poor open-loop dynamics.
(2) State or output constraints.

In these cases, DMC or GPC with an input horizon of one
may produce closed-loop behaviour close to the open-loop
and therefore unsatisfactory. State constraints may also
severely restrict the operating region and have a strong
influence on the constrained control law.

A common objective is to guarantee asymptotic stability
and recursive constraint satisfaction for a set of initial
states that is as large as possible and with both a minimal
control cost and computational load and to minimize
control performance. In this paper it will be assumed
that asymptotic stability is taken for granted Mayne
et al (2000) if one uses a dual-mode prediction with
an appropriate performance index including the terminal
weight. Consequently, the main outstanding issues are:

(1) maximising the feasible region, that is the region in
the state space for which the control law is defined
and meets the terminal constraints 1 .

(2) maintains a sensible limit on the implied online com-
putational load.

1 Hereafter this region is assumed to be the maximal admissible set
(MAS) Kolmanovsky and Gilbert et al (1996); its shape and volume
depends upon both constraints and the closed-loop dynamics.

(3) obtaining good enough closed-loop performance.

One simplistic approach Tan et al (1992) simply defines a
large number of alternative linear control laws offline and
then selects online from the currently feasible laws (i.e. the
current state lies with the associated MAS), the one giving
best performance. This approach is also easily extended
to the robust case Kothare et al (2003). However, a major
weakness is that the optimum constrained control law is
known to be linear time varying Bemporad et al (1996);
Rossiter et al (2005) and thus this approach can given
suboptimal performance when feasible and may also give
significant restrictions to feasibility. Moreover, although
this is perhaps less of an issue for some processes, the
MAS definition, especially in the robust case, can require
a large number of linear inequalities, and thus storage
and set-membership tests may become non-trivial for more
than a few alternative control laws. The same issue is well
understood within parametric programming.

Other work has looked at alternative ways of formulating
the degrees of freedom for optimisation, for instance by
interpolation methods Bacic et al (2003); Rossiter et al
(2004). This paper will not pursue that angle as current
proposals do not extend well to large dimensional systems
and also by sticking with a conventional DMC or GPC
paradigm, the results have greater potential for take up
by colleagues and industry.

Hence, the main proposal in this paper is suprisingly
simple. Use a conventional dual-mode algorithm such
as in Rossiter et al (1998); Scokaert et al (1998), but
critically with one major difference; do not assume a
match between the underlying terminal control law and
what would arise from unconstrained minimisation of the
performance index. In fact, this idea is implicit in DMC
with large horizons which is equivalent to a dual mode
algorithm where the terminal law has a gain of zero and
thus clearly does not match the unconstrained control law.
Thus a main contribution of this paper is insight and to
demonstrate the potential in an algorithm that recently
has been somewhat neglected. Specifically it will be shown
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that using a detuned terminal control law in conjunction
with a performance index that should give a more highly
tuned control law in fact loses very little by performance,
even for minimal control horizons and can gain hugely by
way of feasible regions.

A further minor issue is how to present the results. Many
papers restrict themselves to two-state and perhaps three-
state systems because feasible regions can be plotted
clearly. For higher dimensions, projections can be used
but the number required grows rapidly with dimension
and give a restricted view anyway. Here we propose an
alternative and very simple approach that can be used for
any dimension of system if suitably combined with Monte
Carlo type approaches and gives very easy to interpret
figures.

Section 2 will give some background to MPC, the mod-
elling assumptions and then gives a detailed summary
of conventional predictive control algorithm. Section 3
introduces the proposed algorithm and associated informa-
tion and Section 4 gives some simple numerical examples.
Section 5 gives higher order examples and illustrates the
alternative method of comparing different control schemes
for feasibility and performance. The paper finishes with
conclusions and plans for future work.

2. BACKGROUND

This section introduces standard material from the exist-
ing literature on MPC and invariant sets and a conven-
tional dual mode optimal control OMPC is defined.

2.1 Model and performance objective

This paper considers linear systems of the form

x(k + 1) = Ax(k) + Bu(k), k = 0, . . . ,∞ (1)

and subject to constraints

u(k) ∈ U ≡ {u : u ≤ u ≤ u}, k = 0, . . . ,∞, (2a)

x(k) ∈ X ≡ {x : x ≤ x ≤ x}, k = 0, . . . ,∞. (2b)

x(k) ∈ R
nx and u(k) ∈ R

nu denote state and input
vectors at discrete time k with nx and nu respectively
denoting the number of states and inputs of the system.
More general linear state, input and mixed state/input
constraints can also be considered without significantly
complicating further sections.

A typical performance index is based on a 2-norm and
is computed over infinite horizons for both the input and
output predictions 2 . The cost is equivalent to one used
in optimal control with the main tuning parameters being
the matrix weights Q, R:

J =
∞
∑

k=0

(x(k)TQx(k) + u(k)TRu(k)) (3)

with Q ∈ R
nx×nx and R ∈ R

nu×nu positive definite state
and input cost weighting matrices.

The control law is defined as that which minimises the
predicted value of J using the allowed flexibility in the
future control moves u(k), k = 0, 1, ... and subject to
constraints (2).

2 In DMC and GPC the input stops changing after nu steps so this
is equivalent to an infinite horizon anyway.

Remark 2.1. As this paper is focusing on concepts, this
cost does not include integral action and tracking, however
inclusion is straightforward, e.g. Rossiter (2006) at the cost
of an increased state dimension.

2.2 OMPC

OMPC is the algorithm of Rossiter et al (1998); Scokaert
et al (1998) and is often taken as a standard benchmark
in the literature. The key idea here is to embed into
the predictions the unconstrained optimal behaviour and
optimise about this. Consequently, the algorithm will find
the global optimal, with respect to (3), whenever that is
feasible.

To allow for the case where the unconstrained optimal
predictions are infeasible, that is violate constraints (2),
some control perturbations c(k) are allowed over a control
horizon nc; these constitute the degrees of freedom (d.o.f.)
within the optimisation. Hence the input predictions are
defined as follows:

u(k + i) = −Kx(k + i) + c(k + i); i = 0, ..., nc − 1
u(k + nc + i) = −Kx(k + nc + i); i ≥ 0

(4)
with K the optimum state feedback which minimises J of
(3). The d.o.f. for optimisation are summarised in vector
C = [c(k)T , ..., c(k + nc − 1)T ]T .

Given that feedback K is defined as the optimal control
corresponding to J , it is easy to show Rossiter (2003) that
optimisation of J over input predictions (4) is equivalent
to minimising J = CT WC for a suitable positive definite
W (W = BT ΣB +R, Σ−ΦT ΣΦ = Q+KT RK, Φ = A−
BK) and thus, in the absence of constraints, the optimum
is C = 0. Where the unconstrained predictions would
violate constraints, non-zero C would be required to ensure
constraints are satisfied.

2.3 Constraint handling, MAS and MCAS

It is known that for suitable M, N, d (e.g. Rossiter (2003)),
the input predictions (4) and associated state predictions
for model (1) satisfy constraints (2) if:

Mx + NC ≤ d (5)

Remark 2.2. The MCAS (maximal controlled admissible
set) is defined as S = {x : ∃C s.t. Mx + NC ≤ d}. The
volume and shape of S depends on M, N, d which vary
with the state-feedback K within (4) and the model (1).
Critically we note here that S does not depend in any way
on J .

Remark 2.3. It is assumed throughout this paper that
any sets used are not only invariant Blanchini (1999),
but in general are the maximal admissible sets (MAS,
Gilbert et al (1991)) corresponding to any given prediction
class. It is known therefore that using such sets gives a
guarantee of recursive feasibility, which in combination
with a cost based on infinite horizons is sufficient to
establish a guarantee of convergence. There are some
nuances for the uncertain case (e.g. Pluymers et al (2005))
but these are not central to this paper.

Algorithm 2.1. The OMPC algorithm is summarised as:

C = arg min
C

CT WC s.t. Mx + NC ≤ d (6)

Use the first element of C in the control law of (4).
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2.4 Summary

There are two key observations we wish to emphasis at
this point.

(1) The feasible region S depends only on the prediction
class chosen. For conventional MPC algorithms this
class is defined by the choice of nc (number of free
moves) and by K, the terminal control.

(2) The performance measure J is actually distinct from
the prediction class. A well conditionned optimisation
problem and the desire for a global optimum would
suggest a synergy between J and K Scokaert et al
(1998).

This paper seeks to explore more carefully the potential
gains of not having a snyergy between the prediction
class and the performance index. Although it is intuitively
obvious that the optimisation is not as well-posed, this
paper will demonstrate through examples that one can
achieve significant feasibility gains (increases in the volume
of the MCAS) with very small loses in performance.

3. A MPC ALGORITHM EXPLOITING
NON-SYNERGY

This section develops some of the algebra required for an
dual-mode MPC control law that combines a prediction
class with good feasibility, but hence potentially detuned
performance, with a performance index that indicates a
desire for high performance.

Definition 3.1. (Performance). Assume that the optimal
performance and hence both predictions and simulations
are all assessed by the same cost function:

J =

∞
∑

k=0

x(k + 1)T Qx(k + 1) + u(k)T Ru(k) (7)

Definition 3.2. (Prediction classes). Assume that there are
two alternative prediction classes 3 . Let these prediction
classes be given as:

OMPC
u(k + i) = −K1x(k + i) + c(k + i); i = 0, ..., nc − 1
u(k + nc + i) = −K1x(k + nc + i); i ≥ 0
OMPCB
u(k + i) = −K2x(k + i) + c(k + i); i = 0, ..., nc − 1
u(k + nc + i) = −K2x(k + nc + i); i ≥ 0

(8)
where K1 is the feedback minimising J in the uncon-
strained case and K2 is a detuned feedback giving a large
feasible region. For the purposes of this paper, K2 is
selected by finding the optimal state feedback for a cost of
the same form as J but with a significantly larger input
weighting R. However, other methods of defining K2 to
give good feasibility are also viable.

3.1 Summary of OMPCB controller

The OMPCB algorithm has a more complicated perfor-
mance index than OMPC. Following substitution of the

3 Naturally one could have more, but two is enough to demonstrate
the concepts.

prediction class (8) and system model (1) into J (7) it is
apparent that this index takes the form:

J2 = CT W2C + CT W3x + xT W4x (9)

for suitable W2, W3 (see chaps 6,7 of Rossiter (2003)).
The key point for the reader to note is that unlike for
OMPC, W3 �= 0 and in fact W2 is also more complex in
structure than W in (6). The last term is ignored as not
being dependent on the d.o.f. C.

The constraint inequalities which ensure that the OMPCB
predictions meet system constraints are given as:

M2x + N2C ≤ d2 (10)

Algorithm 3.1. The OMPCB algorithm is summarised as:

C = arg min
C

CT W2C + CT W3x s.t. M2x + N2C ≤ d2

(11)
Use the first element of C in the OMPCB control law of
(8) to compute u(k).

4. USING CONTOUR PLOTS TO ILLUSTRATE THE
EFFICACY OF OMPCB

This section will give a simple illustration, using two-
state examples, of how to decide whether OMPC or
OMPCB is to be preferred, solely on the basis of closed-
loop performance. For now, we consider only points inside
the feasible region of all algorithms compared although it
will be clear that OMPCB, by design, has a far better
feasibility than OMPC and thus would automatically win
any feasibility comparison.

The initial idea (which is made more efficient later) is
to grid the entire feasible state space and for each point
compute the run-time cost for closed-loop simulations
beginning at that point. The run time cost is given by
computing the cost J for the actual closed-loop state and
input evolutions. The resultant function J(x) is known to
be piecewise quadratic and convex. Viewing of J(x) for
the two state case is made easier by drawing contours, on
the state-space, of initial points x which give the same
run-time cost.

Two different strategies are compared: (i) OMPC and
(ii) OMPCB. For both algorithms we use nc = 2 as it
is common industrial practise to minimise over just a
few control moves. Moreover, if nc is large then the two
algorithms will become equivalent, to within engineering
precision, anyway.

4.1 A two-state example

The model and constraints are given by :

A =

[

1 0.1
0 1

]

, B =

[

0 0.0787
0.0787 0

]

(12)

C =

[

1.7993 13.2160
0.8233 0

]

, D =

[

0 0
0 0

]

(13)

u = [1, 2]T, u = −[1, 2]T (14)

x = [100, 100]T, x = [−100,−100]T (15)

The LQR-optimal controller is derived with Q = diag(1, 0),

R =

[

1 0
0 1

]

. The controller 1 is K1 =

[

1.2896 11.6776
2.3865 1.5282

]

,

and the controller 2 is K2 =

[

1.0236 8.0573
0.7918 1.1028

]

has R=10.
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4.2 Run-time costs and interpretation

The contours for run-time costs of 1,10,20,50 are given in
figure 1 overlaid on the MCAS for OMPC and OMPCB.

−0.5 −0.4 −0.3 −0.2 −0.1

−0.2

−0.1

0

0.1

0.2

0.3
J=1

−1 −0.5 0
−0.5

0

0.5
J=10

−2 −1.5 −1 −0.5 0

−0.4

−0.2

0

0.2

0.4

0.6
J=20

−2.5 −2 −1.5 −1 −0.5 0

−0.4

−0.2

0

0.2

0.4

0.6
J=50

MCAS for OMPCB

MCAS for OMPC

J contour for OMPC

J contour for OMPCB

Fig. 1. Contour plot comparison of OMPC and OMPCB
different controllers at levels J = 1, 10, 20, 50

Two observations are clear:

• For states well within the MCAS, OMPC gives
slightly better performance than OMPCB. This is
clear as the contour for the same value of J(x) is
further out from the origin.

• As the initial state gets closer to the boundary of the
MCAS for OMPC, the OMPCB algorithm has better
performance, that is its contour for the same J(x) is
now further out.

Critically however, the performance loss for OMPCB is
relatively small whereas the feasibility gain is huge.

Remark 4.1. In principle the same algorithm as proposed
in Tan et al (1992) could be deployed: if the state is close
to the origin, use OMPC and if not use OMPCB. However,
given the complexity of J(x) one would be unlikely to
determine this explicity as in parametric solutions and
thus the potential and detailed implementation of such
an algorithm is left for future consideration.

5. EXTENSIONS OF COMPARISONS TO HIGHER
DIMENSIONS

Although the contour plots work well enough for systems
with two-states, there is no simple way of extending this
to large systems. Yet, of particular interest to a potential
user is a clear comparison of how OMPC and OMPCB
compare over the entire MCAS for higher dimensional
systems. This section proposes a novel yet very simple
way of displaying the relevant feasibility and performance
information that does extend to arbitrary dimensions,
does not require exhaustive computation over the entire
phase space, yet gives a very insightful summary. First we
illustrate the basic principle using the two state example
of the previous section and then apply this to three and
four state examples.

5.1 The two-state case

This section gives a proposal for how to compare feasibil-
ity and performance of different algorithms; although in
essence trivial, we believe this approach is novel within
the literature and potentially of great use. The procedure
is summarised as follows:

(1) Take the MCAS for OMPC, OMPCB (e.g. as given
in figure 1) and choose an arbitrary search direction,
for instance in figure 2, direction 1 is x = [1 0]T .

(2) Scale this direction until it intersects with the bound-
ary of the MCAS for OMPCB; hence define the
boundary point as w = µx. This is illustrated in figure
2 which shows w ≈ [3.5 0]T for direction 1.

(3) Compute J1(λw), J2(λw), ∀λ, 0 ≤ λ ≤ 1 which
captures all feasible states for OMPCB along the
chosen direction. If OMPC is infeasible for some λ, set
J1(λw) = 0. Plot J1, J2 against λ [see figure 3a]. This
figure clearly shows for what ranges of λ and hence
initial states x in the given direction, either OMPC or
OMPCB gives better performance and feasibility. [In
this case there is little difference in performance when
both are feasible but OMPC has far better feasibility.]

(4) Plot J2/J1 against λ where in this instance infea-
sibility is marked with J = ∞ [figure 3b]. In this
case values greater than one indicate the ranges of
λ such that OMPC is best, values less than 1 for
which OMPCB is best, values of zero indicate that
OMPC is infeasible but OMPCB is feasible. [In this
case we observe that OMPCB has near equivalent
performance to OMPC for small λ and better where
OMPC is near to its feasibility boundary.]

−4 −3 −2 −1 0 1 2 3 4

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x
1

x
2

OMPC infeasible point

OMPCB infeasible point

Direction 1

Direction 2

MCAS for OMPCB (n
c
=2)

MCAS for OMPC (n
c
=2)

Fig. 2. Search directions, MCAS and w for two state
example

Figure 2 gives an illustration for a single direction in
the state space. In reality a comparison is needed for
all possible directions, for example figure 2 demonstrates
an alternative, direction 2. Ideally one should compute
figures analogous to figure 3 for many different directions
which span the space. In this paper for instance, in the
interest of economy, twenty evenly spread directions will
be used hereafter; a more formal generalisation could use
some form of stochastic approach to capture sufficient
directions.

• The plots of (J1, J2) vs λ for several different
directions are overlaid on the same plot (e.g. figure
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lambda where OMPC
becomes infeasible
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Fig. 3. Performance and feasibility comparisons over a
single search direction for two-state system

4a) as this gives an excellent overview of both the cost
and feasibility comparison across the entire space.
Note that due to the large variance in values of J
for different directions, it was found beneficial to use
a log scale.

• The plots of J2/J1 are also overlaid (e.g. figure 4b)
as this gives an alternative but useful insight into the
same comparison. Notably:

· if a line drops to zero for small λ, then the
feasibility benefit of OMPCB is huge.

· the y-axis value of one is a clear marker of
whether OMPC (greater than 1) or OMPCB (less
than 1) is performing better.
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Fig. 4. Performance and feasibility comparisons over 20
search directions for two-state system

5.2 Three and four state examples

Figures 4, 5, 6 show the plots log(J1, J2) vs λ and
J2/J1 vs λ for 20 alternative directions for three different
examples. It is clear that these plots give a quick and easy
view of which strategy is to be preferred. In fact one could
argue that for each of these examples, OMPCB has similar
or better performance when OMPC is feasible in addition
to a markedly larger feasible region. In some directions
OMPCB has feasibility as much as five times further from
the origin while giving almost identical performance close
in.

Example 3 This model and constraints are given by:

A3 =

[

0.9146 0 0.0405
0.1665 0.1353 0.0058

0 0 0.1353]

]

, B3 =

[

0.0544 −0.0757
0.0053 0.1477
0.8647 0

]

(16)

C3 =

[

1.7993 13.2160 0
0.8233 0 0

]

, D3 =

[

0 0
0 0

]

(17)

u = [1, 2]T, u = −[1, 2]T (18)

x = [100, 100, 100]T, x = [−100,−100,−100]T (19)

The LQR-optimal controller is derived with Q = diag(1, 0)

and R =

[

1 0
0 1

]

. The feasible controller has R = 10I.
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 J

1

lambda
0 0.5 1
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 J
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0 0.2 0.4 0.6 0.8 1
0.2

0.4

0.6

0.8

1

1.2
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Fig. 5. Performance and feasibility comparisons over 20
search directions for three-state system

Example 4 This model and constraints are given by :

A4 =







0.9146 0 0.0405 0.1
0.1665 0.1353 0.0058 −0.2

0 0 0.1353 0.5
0 0 0.1353 0.8






, (20)

B4 =







0.0544 −0.0757
0.0053 0.1477
0.8647 0

0.5 0.2






(21)

C4 =

[

1.7993 13.2160 0 0.1
0.8233 0 0 −0.3

]

, D4 =

[

0 0
0 0

]

(22)

u = [1, 2]T, u = −[1, 2]T (23)

x = [100, 100, 100, 100]T, x = [−100,−100,−100,−100]T

(24)

The LQR-optimal controller is derived with Q = diag(1, 0)

and R =

[

1 0
0 1

]

abd the OMPCB has R = 10I.

6. CONCLUSION AND FUTURE WORK

This paper has given careful consideration and novel in-
sights into the tradeoffs between feasibility and perfor-
mance within dual mode MPC. Although it is unsurprising
that one can always achieve better performance near the
origin with a well tuned terminal control law, that is
one that has snyergy with the performance index, this
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Fig. 6. Performance and feasibility comparisons over 20
search directions for four-state system

paper has sought to give a better understanding of the
extent of the feasible region for which this might hold true.
Specifically it is shown that, especially as one nears the
feasibility boundary, that is constraints become active, the
choice of an optimal terminal feedback my be very little
better and indeed may even be worse than an alternative
more detuned choice.

The authors do not believe that a generic result exists,
however a novel means of presenting the feasibility versus
performance trade off has been proposed that can be
computed very quickly for any given example, notably
including examples of large state dimension, and thus
allow the designer to take informed decisions.

It is noted that the proposed graphic may serve as a useful
start point for combining the work of this paper with Tan
et al (1992) and this is one possible avenue of future work.
Also, although this paper has focussed on the LTI case, ex-
tensions to the robust case are necessary, but are expected
to be straightforward following the work of Pluymers et al
(2005). Finally, we should note that a formal comparison
with the recently proposed alternative of triple mode MPC
Imsland et al (2005) would be worthwhile.
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