
Reliable and Safe Operation of Distributed

Discrete-Event Controllers: A Networked

Implementation with Real-time Guarantees

Klaus Schmidt ∗ Ece G. Schmidt ∗∗ Jorgos Zaddach ∗∗∗

∗ Lehrstuhl für Regelungstechnik, Universität Erlangen-Nürnberg, Germany
(e-mail: klaus.schmidt@rt.eei.uni-erlangen.de).

∗∗ Department of Electrical and Electronics Engineering, Middle East
Technical University Ankara, Turkey (e-mail: eguran@metu.edu.tr)
∗∗∗Siemens AG, Industrial Solutions and Services, Germany (e-mail:

jorgos-johannes.zaddach@siemens.com)

Abstract: Efficient controller synthesis approaches for discrete-event systems mostly provide a set
of interacting distributed controllers that are potentially implemented in networked controller devices.
Although the fulfillment of specified requirements and the absence of deadlocks is guaranteed by such
methods on a logical level, timing issues due to controller communication are not incorporated. Recently,
a formal communication model including real-time requirements for the reliable and safe operation
of distributed discrete-event controllers has been proposed by the authors. In this paper, the real-time
communication operation of such distributed controllers is discussed, and a sufficient condition for the
network bandwidth in order to meet the specified real-time requirements is derived. A simulation study
of a manufacturing system model with 50 distributed controllers supplements the theoretical result.

1. INTRODUCTION

The efficient controller synthesis for discrete event systems
(DES) has been an area of intensive study in recent years.
Approaches such as Barett and Lafortune (2000); de Queiroz
and Cury (2000); Leduc et al. (2005); Komenda et al. (2005);
Schmidt et al. (2007a); Hill and Tilbury (2006); Su and Thistle
(2006); Feng and Wonham (2006) result in interacting modular
and decentralized controllers, where controllers interact via
shared events that have to be synchronized. However, since the
above approaches focus on controller synthesis, the realization
of this interaction remains an open question.

As long as the controllers are implemented on a single device
(PC, PLC, etc.), the interaction can take place internally, e.g.,
via shared memory. In contrast, if each controller is placed in
a different physical location, communication is required. This
issue is addressed in Schmidt et al. (2007b), where we propose
a communication model and a communication operation on a
shared-medium network for the control approach in Schmidt
et al. (2007a). In this context, communication messages have to
be sent before a certain specified deadline.

Reliability (continuity of correct service) and safety (avoidance
of catastrophic consequences) are components of dependable
system operation as in Avizienis et al. (2004). In this paper,
the results in Schmidt et al. (2007b) are extended by deriving
a lower bound for the network bandwidth that is required for
the reliable and safe operation of the distributed controllers.
Additionally, a large-scale manufacturing system model with
50 distributed controllers is simulated in order to validate the
formal results and to investigate the average performance.

The paper outline is as follows. In Section 2, we briefly discuss
our communication model. Reliable and safe communication
operation are investigated in Section 3. Section 4 provides a
simulation study, and we give conclusions in Section 5.

2. COMMUNICATION MODEL FOR DISTRIBUTED
DISCRETE EVENT CONTROLLERS

2.1 Distributed Discrete Event Controllers

In this paper we employ the hierarchical and decentralized
control approach in Schmidt et al. (2007a) for a distributed con-
troller implementation. The approach is based on the assump-
tion that a large-scale DES is composed of several interacting
system components, and results in a set R = {R1, . . . ,Rk} of
k DES controllers for the different components in a hierar-
chical relationship as indicated in Fig. 1 (a). Each controller
is represented by a finite automaton Ri = (Xi,Σi,δi,x0,i,Xm,i)
with a finite set of states Xi, a finite alphabet of events Σi,
a partial transition function δi : Xi × Σi → Xi, an initial state
x0,i ∈ Xi, and a set of marked states Xm,i ⊆ Xi following the
notation in Cassandras and Lafortune (1999). We also introduce
Γi(x) := {σ ∈ Σi|δi(x,σ) exists} as the set of feasible events in
each state x ∈ Xi. Interaction among the different controllers is
modeled by shared events that have to occur synchronously in
all controllers that share the event. Formally, this interaction is
given by the synchronous composition of the controllers. Let
Ri,R j ∈ R be finite automata. Then, the synchronous composi-
tion Ri||R j of Ri and R j is defined as the finite automaton Ri|| j :=
(Xi|| j,Σi|| j,δi|| j,x0,i|| j,Xm,i|| j) with Xi|| j = Xi×X j, Σi|| j = Σi∪Σ j ,

x0,i|| j = x0,i×x0, j, Xm,i|| j = Xm,i×Xm, j. For a state (xi,x j)∈ Xi|| j
and an event σ ∈ Σi|| j, the transition function is

δi|| j((xi,x j),σ) :=











(δi(xi,σ),δ j(x j,σ)) if σ ∈ Γi(xi)∩Γ j(x j)
(δi(xi,σ),x j) if σ ∈ Γi(xi)−Σ j

(xi,δ j(x j,σ)) if σ ∈ Γ j(x j)−Σi

undefined otherwise

Accordingly, the overall system representation of the hierarchi-
cal and decentralized controllers evaluates to a finite automaton
R := ||ki=1Ri, and the controller synthesis procedure in Schmidt
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et al. (2007b) guarantees that R is nonblocking, i.e., from each
of its states there is a sequence of transitions to a marked state.
However, note that the state space of R need not be enumerated
explicitly, but is implicitly given by the decentralized represen-
tation of the controllers and the rule of interaction via the syn-
chronous composition, which avoids the state space explosion
problem encountered by monolithic implementations.

Example 1 illustrates the controller interaction.

Example 1. Fig. 1 (b) shows a simple hierarchical architecture
with two levels and k = 3 automata. It describes the operation of
a manufacturing unit with a conveyor belt (R1) and a machine
(R2, see Fig. 1 (c)) that is controlled by a high-level controller
R3. The conveyor belt notices if a product has to be transported
(fl/tr – product from left/to right) and moves accordingly
(mvr – move to right). It stops (stp) when a sensor signals the
product arrival at the machine (son), which is indicated by the
shared event am (product at machine). After am, the machine
R2 starts processing (s) and finishes processing (f) after some
time. The high-level controller R3 ensures that the shared events
am, f and tr occur such that the product is not transported to
the right before the machine finished processing.
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Fig. 1. (a) Hierarchical and decentralized architecture (b) sim-
ple example hierarchy (c) machine and conveyor belt.

2.2 Logical Communication Model

The decentralized controller representation introduced in Sec-
tion 2.1 is profitable especially if the respective controller de-
vices (e.g., PLCs) are placed in distinct physical locations and
connected by a network, e.g., on a factory floor. Nevertheless,
in this case, the occurrence of shared events Σ∩ with Σi ∩
Σ j ⊆ Σ∩ for all i, j = 1, . . . ,k, i 6= j, has to be communicated
and synchronized. Consequently, each controller that shares an
event σ ∈ Σ∩ must know when σ is possible in all of the other
controllers that share σ. Using the hierarchical system structure,
a communication model automaton (CMA) CRi

for each con-
troller Ri ∈ R has been constructed algorithmically in Schmidt
et al. (2007b). The communication is modeled by identifying
shared events with system tasks that have to be completed by
communicating jobs among the distributed controllers. Due to
the hierarchical system structure, high-level controllers know
about shared event occurrences in their lower-level controllers.
This is reflected in the sequential order of job transmissions
of the proposed communication model by initiating commu-
nication in the highest level and propagating it to the lower-
level controllers along the hierarchy. The main features of this
communication model are briefly outlined in Example 2.

Example 2. Fig. 2 depicts the CMA CRi
, i = 1,2,3 for the

respective controllers in Fig. 1 (b). Every state in CRi
corre-

sponds to a state in the controller Ri, and the state labels and
markings are chosen accordingly (e.g., 1 1, 1 2, 1 3, 1 4 in CR3

correspond to 1 in R3). Assuming that each controller in Fig. 1
is in its initial state, the communication is as follows.

• R3 can execute the task (shared event) am and needs
to know when this event is possible in the low-level
controllers that share am. Thus, R3 issues a question job
?amR3

for am to R1 and R2. This is realized by the transition
?amR3

in state 1 1 of CR3
. CR1 and CR2 receive ?amR3

(transition from 1 1 to 1 2 with ?amR3
).

• In the initial state of R2, am is feasible. Thus, R2 can
directly send the answer job !amR2

and CR2
changes from

1 2 to 1 3.
• in R1, am only becomes feasible after the string of non-

shared events fl mvr son stp occurred, and the answer
job !amR1

is given in the corresponding state 5 2 in CR1
.

• If all answers (!amR1
and !amR2

) have been received by R3,
it can send the command job amc in the corresponding state
1 4 of CR3

to make all controllers execute the shared event

am. 1 All low-level controllers can process the command
in their communication model: CR1

changes from 5 3 to
6 1, and CR2

changes from 1 3 to 2 1.
• The question-answer-command procedure repeats with R3

initiating communication for f.
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Fig. 2. Communication model for the manufacturing unit.

Formally, the outcome of the communication model construc-
tion is a tree structure TC = (C ,Ck,cC , pC ) (see e.g., Hopcroft
and Ullman (1975)) that captures the hierarchical relationship
of the distributed controllers. In this paper, the set of vertices C
denotes the set of CMAs CRi

= (Qi,J i,νi,q0,i,Qm,i) for the con-
trollers Ri, i = 1, . . . ,k with the set of jobs J i = Jout,i∪̇J in,i that
are communicated from (Jout,i) and to (J in,i) Ri as described in

Example 2. Furthermore, Ck is the root vertex and cC : C → 2C

and pC : C → C are the children map and the parent map such
that cC (Ci) is the set of children and pC (Ci) is the parent of
Ci ∈ C , respectively. Every vertex without children is called a
leaf. We also distinguish the set of jobs Jσ that are sent for each
σ ∈ Σ∩, and call σc the command job for σ.

Observing that again interaction between the CMAs via the
exchange of jobs is modeled by jobs shared between CMAs, the
overall communication model C = (Q,J ,ν,q0,Qm) is obtained

as the synchronous composition of the CMAs: C := ||ki=1Ck.
In particular, each state of the overall communication model is
composed of the state values of its distributed components. The
following properties can be deduced from the communication
model construction in Schmidt et al. (2007b).

1 The communication operation in Section 3.1 ensures the synchronous arrival

of amc at all controllers.
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Properties: Let q = (q1, . . . ,qk) ∈ Q and J ∈ Jσ − {σc} for
σ ∈ Σ∩ s.t. νi(qi,J) exists for some 1 ≤ i ≤ k. Then

(1) for all j s.t. J ∈ J j it follows that ν j(q j,J) exists
(2) for all j s.t. J ∈ (J j − Jout, j) it holds that there is a J′ ∈
Jout, j ∩ Jσ s.t. ν j(q j,JJ′) exists.

Property (1) states that whenever a job is communicated, all
CMA that contain the job either send or receive the job, while
property (2) makes clear that every CMA that received a job for
an event σ can send a follow-up job for this event. Additionally,
it holds that C is nonblocking and exhibits the same behavior as
the original controllers.

2.3 Requirements and Issues for Reliable and Safe Operation

The communication model introduced above describes the log-
ical behavior of the communication, i.e., the sequential order
of job transmissions. However, the fact that the communication
model is designed for distributed systems on a network, where
possible communication delays affect the system operation,
also has to be addressed. Specifically, issues such as system
reliability and safety (the occurrence of a shared event has to
be detected fast in order to prevent an undesired situation) and
system performance (the occurrence of a shared event has to be
detected fast such that the communication does not slow down
the system operation) have to be accounted for.

Considering the controller representation, a shared event σ∈Σ∩

theoretically occurs if each controller Ri that shares σ is in a
state xi ∈ Xi where δi(xi,σ) exists. According to the distributed
implementation with the communication model, σ physically
happens when the command job σc is transmitted. Depending
on the physical interpretation of σ, it has to be ensured that
the time between its theoretical and its physical occurrence
remains below an appropriate bound in order to fulfill safety
and performance requirements.

In our work, we incorporate such real-time requirements in
the communication model be introducing a map r : Σ∩ → R∪
{∞} for the shared events, where r(σ) represents the maximal
allowable time between the theoretical and physical occurrence
of an event σ ∈ Σ∩ (e.g., the reaction time to a sensor event).
The execution of an event σ ∈ Σ∩ in the worst case requires
the communication of all jobs related to σ, while the actual
event can happen any time between the transmission of the
first and the last job for σ. Denoting Nσ the number of jobs

for a task σ, a deadline dJ := r(σ)
Nσ is associated with each job

J ∈ Jσ. In this framework, dJ indicates that if J is ready to be
transmitted by its corresponding controller at time t0, then it has
to be sent at t0 +dJ latest. A communication model with a map
r : Σ∩ → R∪{∞} as defined above is denoted a communication
model with deadlines.

To sum up; the case where controllers synthesized according
to Schmidt et al. (2007a) are implemented in a distributed
manner and communicate via a network has been considered.
The communication model with deadlines for each controller
defines rules for job communication such that the behavior of
the communicating controllers and the original controllers is
equivalent. It is constructed such that jobs that are transmitted
by Ri, are received by all controllers that contain the respective
job. In doing so, it has to be ensured that whenever a controller
needs to transmit a job, it has access to the network before the
job deadline. This issue is addressed in the next section.

3. NETWORKED IMPLEMENTATION

3.1 Shared-Medium Operation

According to Schmidt et al. (2007b), the CMAs in Section
2.3 can be represented by a set of corresponding network
nodes N = {N1, . . . ,Nk} that are situated in different physical
locations (e.g., on PLCs, PCs) and can communicate via a
shared-medium network as in Fig. 3 (a).

Shared-medium networks have a simple and low-cost architec-
ture. However, collisions occur if more than one node send
messages at the same time. We provide a collision avoidance
policy for messages to be sent on the network. In the first
step, we propose time-slotted operation with fixed size time
slots ts such that the time instants for message transmissions
are synchronized among all nodes (see Fig. 3 (b)). Note that
such synchronization with an accuracy up to 100ns is for ex-
ample provided by the IEEE 1588 standard for Ethernet in
IEEE (2002) which is already implemented in the Intel IXP465
network processor and integrated in PLCs. Secondly, we exploit
the deterministic structure of the controller automata and the
hierarchical relationship between controllers as follows. Each
node that sends a job knows which nodes will have to send a job
next, and attaches this information to the job in the form of a
communication request (CR). All of the nodes process this CR
and deterministically compute which node will transmit next.
To this end, the time-slotted operation together with the de-
scribed scheduling policy ensure that in each time instant, each
node uniquely knows the next node to send a message. Further-
more, due to the inherent broadcast on the shared medium, all
of the nodes can receive all messages synchronously.

0 ts 2 ts 3 ts

N1 Ni Nk

t

(a)

(b)

Fig. 3. (a) shared-medium network; (b) time-slotted operation.

3.2 Network Node

A network node Ni ∈ N implements the following entities.

N1 a CMA CRi
,

N2 an output buffer that stores messages to be sent,
N3 an input buffer that stores received messages,
N4 a set of active tasks (shared event communications) cur-

rently initiated by the node,
N5 a priority queue (PQ) that stores communication requests

as a tuple (N,e,d,T ), where N is a node to transmit, e ∈R

is an eligibility time, d ∈R∪{∞} is a deadline and T is the
active task that issued the request. The PQ is ordered such
that the CR with the smallest deadline is granted first.

In this setting, a CR (N,e,d,T ) states that the node N has to
access the shared medium before the deadline d. The fact that
each node needs a certain amount of time to react to incoming
messages is captured by the eligibility time e. It determines the
earliest time instant when a node is ready to transmit a message.
Hence, the eligibility time and the deadline define the time
interval, where the message has to be sent, and can be derived
from the process parameters (e.g., the cycle time of a PLC) and
the communication model with deadlines, respectively.
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3.3 Message

According to Section 2.2, communication between nodes re-
quires the exchange of jobs. In our approach, jobs are sent via
messages that are constructed offline for each node Ni and each
state q ∈ Qi of its associated CMA CRi

.

A message M of a sender node Ni ∈ N in state q ∈ Qi contains:

M1 A set of jobs to be sent by Ni. To this end, the longest se-
quence of outgoing jobs s = J1J2 · · ·Jm ∈ Jout,i is computed

s.t. q′ := νi(q,s) exists. 2 The set of jobs of the message
contains all jobs in J1J2 · · ·Jm.

M2 A set of receiver nodes. If s is not empty, then all nodes
that share jobs in the set of jobs constructed above are
receiver nodes. Otherwise, there is no receiver node.

M3 A minischedule with CRs. If s is not empty, then for
each job, a request (Nr,e,d,σ) with the receiver node Nr,
an eligibility time e, a deadline d and the task σ of the
job is generated. Otherwise, a self request (Ni,e,d,σ) is
generated, where e is the next time when Ni can send a
message, and d is the deadline of the valid task σ in q. 3

M4 A set of tasks that have been terminated in Ni. If in a set
of competing tasks, one task finishes first, the requests for
the other tasks become invalid, and have to be erased from
the PQ. Let T be the set of tasks initiated by node Ni in
state q and let T ′ be the set of tasks in state νi(q,s) (s is
derived as in M1). Then the set of terminated tasks is set
to T − T ′ as these tasks are no longer active and valid.

Altogether, messages constructed by a node Ni in its state q∈Qi

contain information about the current jobs to be sent, the times
when receiving nodes have to transmit their next messages and
tasks that are valid at the moment. Note that the collision avoid-
ance policy demands that at most one message is sent per time
slot. Hence, ts has to accommodate the longest message frame
with a frame length Fmax which can be computed during the
offline message construction process of the individual nodes.

3.4 Communication Operation

The nodes transmit the messages prepared as defined above,
where the transmission times are determined by the respective
PQ. At system startup, the nodes are initialized as follows:

O1 Only the highest-level node Nk constructs the output mes-
sage for its initial state q0,k.

O2 All nodes put the CR (Nk,0,1,−) in their PQ.

After initialization, in each time slot

O3 Each node takes out the first eligible CR from its PQ.
O4 The node in this CR sends the message in its output buffer.
O5 All nodes insert the CRs in the minischedule in their PQ,

while adding the current time to both eligibility time and
deadline. CRs with terminated tasks are removed from the
PQ s.t. all nodes have the same PQ by exchanging CRs.

O6 The receiver nodes put the incoming jobs in their input
buffer and compute their according state update (evalua-
tion of the transition function for incoming jobs) and the
message in the output buffer (according to Section 3.3).

Example 3 illustrates the communication operation.

Example 3. Assume that at time t = 0ms, all nodes are in the
initial states of their respective communication model in Fig. 2;

2 It can be shown that such a sequence exists in each state of CRi
.

3 Such task exists because the communication model is nonblocking.

the time slot is ts = 1ms; the eligibility times of N1, N2 and
N3 are 1ms, 0.5ms and 1ms, respectively, and dam = 50ms.
Then the high-level node N3 has a message in its output buffer
with the receiver nodes N1,N2, the job to be sent ?amR3

, and the
minischedule (N1,1ms,50ms,am)(N2,0.5ms,50ms,am). Note
that 1ms and 0.5ms are the eligibility times of N1 and N2, re-
spectively. Initially, each PQ contains the CR (N3,0ms,1ms,−)
(O1). At t = 1ms, N3 sends the content of its output buffer
(O3,O4). The operation of node N1 is as follows:

(1) PQ: the CRs (N1,2ms,51ms,am) and
(N2,1.5ms,51ms,am) are added (O5).

(2) input buffer computation: state update of CR1
to state 1 2

with received job ?amR3
(O6).

(3) output buffer computation for s empty (M1-M4): re-
ceiver nodes: {}; set of jobs to be sent: {}, minisched-
ule: (N1,1ms,50ms,am); set of terminated tasks: {}. By
sending this message, N1 gives itself the opportunity to
transmit again until the answer job !amR1

can be sent.
(4) if the local string fl mvr son stp occurs, then the new

state of CR1
is 4 2. Output message for s =!amR1

: receiver
node: N3; set of jobs to be sent: !amR1

; minischedule:
(N3,1ms,50ms,am); set of terminated tasks: {}.

(5) suppose the first eligible CR in the PQ is (N1,2ms,51ms,
am) at time t = 4ms (it is eligible as 2ms < 4ms). N1 sends
the answer in (4) to N3 if it is in state 4 2. Otherwise it
transmits the CR in (3) to itself.

3.5 Reliability and Safety Guarantees

Reliable and safe system operation is achieved if all jobs that
are ready to be sent by the nodes in N meet their deadlines
and are transmitted in the order specified by the communication
model. In this section, we first recall a result from Schmidt et al.
(2007b). It states that the communication operation in Section
3.4 guarantees that all jobs are sent in the order specified by the
communication model and that a CR for each corresponding
message is put into the PQ of each node before its deadline.

Proposition 3.1. (Job order). Let J1J2 · · ·Js be a job sequence
according to the defined communication operation with a set of
nodes N , and assume that Jl has to be sent by Nil ∈ N between
time el and tl , l = 1, . . . ,s. Then J1J2 · · ·Js is a job sequence in
C and there exists a CR for Nil between el and tl in the PQ.

Additionally, in order to guarantee reliable and safe system
operation, the network bandwidth B has to be high enough
to send the message associated to each CR in the PQ before
its deadline. By intuition, the required B increases with the
maximum priority queue length Qmax, the frame length of the
maximum size message Fmax, the reaction time of the slowest
controller (maximum eligibility time) emax, and the minimum
job deadline dmin. We first establish a result for Qmax, and then
provide a sufficient condition for B to guarantee reliable and
safe system operation based on the above parameters.

Proposition 3.2. (Maximum Queue Length). Let N be a set
of nodes with the communication model tree structure TC
and the communication operation as defined above. Then, the
maximum number Qmax of communication requests in the PQ
is finite and can be computed algorithmically.

Lemma 3.1 supports the proof of Proposition 3.2.

Lemma 3.1. (Requests per State and Event). Given the prereq-
uisites in Proposition 3.2, assume that q = (q1, . . . ,qk) ∈ Q and
σ ∈ Σ∩. Let C j be the highest-level node such that J j ∩ Jσ 6= /0

and define the subtree T σ
q of TC as follows:
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• T σ
q is empty if ν j(q j,J) does not exist for any J ∈ J j ∩ Jσ.

• otherwise, T σ
q = (C σ,C j,c

σ
C , pσ
C ), where each Ci ∈ C

σ has

the property that cC (Ci) = {Cl ∈ C
σ|νl(ql,J

′) exists for
some J′ ∈ J l ∩ Jσ}, i.e., C σ contains all nodes in C such
that each node that lies on a branch is in a state where
some J′ ∈ J i ∩ Jσ is possible.

Then, the maximum number CRσ
q of CRs in the PQ associated

with σ in state q equals the number of leaves of T σ
q and is finite.

Proof (Sketch) If T σ
q is not empty, then C j can send a message

with a job J ∈ J j ∩ Jσ. By Property (1) in Section 2.2, νi(qi,J)
exists for all Ci ∈ cσ

C (C j), i.e., C j sends |cσ
C (C j)| CRs. Each of

these Ci has a follow-up job Ji ∈ J i∩Jσ such that νi(qi,Ji) exists
because of Property (2). Hence, sending jobs with associated
CRs to the children nodes in T σ

q can be repeated until the leafs

of T σ
q are reached. The maximum number CRσ

q of CRs for σ

occurs if each leaf has a CR. �

Now, Proposition 3.2 can be proved.

Proof Applying Lemma 3.1, the maximum number CRq of
requests in the PQ for a certain state q evaluates to CRq =
∑σ∈Σ∩

CRσ
q . Then, taking the maximum over all states q ∈ Q

gives the desired result Qmax = maxq∈QCRq. �

The computation of Qmax suggests the enumeration of the over-
all state space of C that was deemed computationally infeasible
for the controller synthesis. However, the above result only
shows the existence of Qmax. Practically, the hierarchical sys-
tem structure can be exploited to efficiently compute Qmax.

We now deduce an upper bound ts,max for the time slot such
that each CR leaves the PQ before its respective deadline, and
then conclude reliable and safe system operation for network

bandwidth higher than Bmin = Fmax
ts,max

.

Lemma 3.2. (Meeting Deadlines). Let rq = (N,e,d,T ) be a
communication request that enters the PQ at time t0. Then, rq
can be scheduled before its absolute deadline t0 + d if

ts ≤ ts,max := dmin−emax

Qmax+1
.

Proof First assume that rq has the minimum deadline d =
dmin. For notational purposes, the entries in the PQ are num-
bered from 1 to Qmax, the set of all CRs R Q is defined, and
the map q : R × R Q → {0, . . . ,Qmax} is introduced, where
q(t,rq) denotes the entry of the CR rq in the PQ at time t and
q(rq,t) = 0 if rq is not in the queue at t. It has to be shown that
rq leaves the PQ before t0 + dmin, i.e., q(t0 + dmin) = 0.

Because of Proposition 3.2, it holds that q(t0,rq) ≤ Qmax.
Observing that no CR can enter the PQ in front of rq for t > t0,
and that all CRs in the PQ become eligible after emax latest, the
position of rq in the PQ at times t > t0 evaluates to

q(t,rq) ≤ q(t0,rq)+ ⌈
emax

ts
⌉−⌊

t − t0

ts
⌋ ≤

≤ Qmax + 1−⌈
−emax +(t − t0)

ts
⌉ ≤

≤ Qmax + 1−⌈
t − t0 − emax

(dmin− emax)
(Qmax + 1)⌉.

That is, q(t0 +dmin,rq)≤Qmax +1−⌊ dmin−emax

dmin−emax
(Qmax +1)⌉= 0.

Let d > dmin. Then there is t ′ > t0 s.t. t0 + d = t ′ + dmin and
q(t ′,rq)≤Qmax. With rq as a CR with deadline dmin that arrives
at t ′, the same argument shows that q(t ′ + dmin,rq) ≤ 0. �

Theorem 3.1. (Bound on Network Bandwidth). Let N be a set
of nodes with the communication model tree structure TC and
the communication operation as defined above. Then a network

bandwidth B ≥ Bmin := Fmax
ts,max

is sufficient for reliable and safe

operation of the distributed controllers.

Proof Because of Proposition 3.1 and Lemma 3.2, each
message to be sent has a CR in the PQ before its deadline, and
this CR is served before its deadline. C ≥ Fmax/ts,max ensures
that the message can be sent until the next transmission starts.
Conversely, if C < Fmax/ts,max this requirement is violated. �

Theorem 3.1 implies that a lower bound on the network band-
width for reliable and safe operation can be computed offline
using dmin, Qmax, emax and Fmax for a given distributed system.

4. SIMULATION

4.1 Laboratory Setup

In Section 2 and 3, the communication model and the opera-
tion are formally described, and statements for the worst case
network usage are employed to derive real-time guarantees. In
this section, an extensive simulation study of the large-scale
manufacturing system model in Fig. 4 with 50 distributed con-
trollers on 5 hierarchical levels is carried out. The distributed
controller design for this system which comprises manufactur-
ing components such as the machine and the conveyor belt in
Example 1 has been elaborated in Schmidt et al. (2007a). The
communication models with deadlines and the corresponding
message sets for each node are constructed algorithmically.
Considering the measured system characteristics, jobs with a
minimum deadline of dmin = 20 ms ensure reliable and safe sys-
tem operation. Additionally, this study assumes that all nodes
implement PLCs with a cycle time emax/2 such that the eligibil-
ity time emax is chosen. Furthermore, the simulator implements
all network components as described in Section 3.2 - 3.4. In
order to achieve a realistic simulation, the timed behavior of
all manufacturing components that interact with the distributed
controllers has been modeled in the form of timed automata,
where the timing characteristics of transitions are in the order
of 1 s. The entire simulator that incorporates the component
models as well as the communication operation and network
model is developed in C++ based on the libfaudes software
library for DES in libfaudes (2007). All of the results in the
following sections are obtained after simulating the manufac-
turing system for 10 minutes of operation.

The goal of the study in this paper is the validation of the
theoretical results in Section 3.5. In addition to that, we conduct
an investigation of the average performance of our real-time
communication operation.

Fig. 4. Manufacturing system example.
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4.2 Experiments and Results

According to the result in Proposition 3.2, the maximum length
of the PQ in each node could be determined as Qmax = 32.
Noting that the longest message frame is Fmax = 708 bits,
this results in a required network bandwidth of up to Bmin =
1800 Mbit/s. For emax between 0.2 ms and 7 ms, a maximum

time slot of ts,max = (20ms−emax)
32+1

between 0.6 ms and 0.4 ms is
required according to Theorem 3.1.

In the following experiments, we first investigate how the
variation of ts/ts,max and emax affects the number of missed
deadlines (NMD) which is a metric to indicate reliability and
safety of the system operation. The deadline misses in Figure
5 (a) could only be observed for combinations of large emax

(≥ 3ms) and/or very large ts/ts,max (≥ 6), which clearly violates
Theorem 3.1. The maximum observed queue size is 15 and thus
significantly smaller than the theoretical value Qmax = 32.

Furthermore we study the average used bandwidth (AUB in
Mbit/s) and the number of completed tasks (NCT) as metrics
for the average system performance. In particular, we want to
find out how to spare network resources (bandwidth) without
slowing down the communicating controllers.

As can be seen in Fig. 5 (b), it is favorable to choose a
large value of emax while keeping a large value of ts/ts,max to
achieve a small AUB. This is expected as on the one hand
messages cannot be sent frequently (large emax) and on the
other hand, messages are only sent as frequently as necessary.
Furthermore, the variation of NCT for different values of emax

and ts/ts,max is below 2% (see Fig. 5 (c)). This is the case as the
occurrence of tasks (shared events) rather depends on the timing
characteristics of the system evolution which are in the order of
seconds. Note that the slight decrease of NCT with larger emax

is due to the increased average CR delay (ARD) (see Fig. 5 (d)).

Together, it has been observed from the simulation that there is
a trade-off between AUB and NTC. The operating point ts =
0.54 ms (this corresponds to B = 1.3 Mbit/s) and emax = 2.1 ms
is a good choice, as it yields a good system performance (1010
tasks) and at the same time results in a small value for NTS. The
PLC cycle time of emax/2 ≈ 1 ms is standard in current PLCs.

ts/ts,max

ts/ts,max
ts/ts,max

ts/ts,max

emax (ms)emax (ms)

emax (ms)emax (ms)

(a) (b)

(c) (d)
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Fig. 5. Simulation results: (a) missed deadlines (b) bandwidth
usage (c) completed tasks (d) request delay.

5. CONCLUSION

In this paper, the distributed implementation of hierarchical
and decentralized DES controllers on a shared-medium network
has been investigated. Based on the deterministic hierarchical
system structure, a communication model has been developed,
and a communication operation has been proposed such that
communication messages are transmitted according to the com-
munication model. Using this operation, it has been formally
proved that a lower bound for the network bandwidth that
guarantees reliable and safe system operation can be computed
depending on the dynamic system properties and the real-time
requirements in form of message deadlines. A simulation study
of a large-scale distributed DES with 50 controllers has been
performed to validate the formal results and to characterize the
average behavior of our communication architecture. Future
work aims at the incorporation of timing information of the
discrete event system models in the communication model, and
the hardware implementation of the proposed approach.

REFERENCES

A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr. Basic
concepts and taxonomy of dependable and secure comput-
ing. IEEE Transactions on Dependable and Secure Comput-
ing, 1(1):11–33, 2004.

G. Barett and S. Lafortune. Decentralized supervisory control
with communicating controllers. IEEE Transactions on
Automatic Control, 45:1620–1638, 2000.

C.G. Cassandras and S. Lafortune. Introduction to Discrete
Event Systems. Kluwer Academic Publishers, 1999.

M.H. de Queiroz and J.E.R. Cury. Modular supervisory control
of large scale discrete event systems. In Workshop on
Discrete Event Systems, 2000.

L. Feng and W.M. Wonham. Computationally efficient super-
visor design: Abstraction and modularity. In Workshop on
Discrete Event Systems, 2006.

R. Hill and D. Tilbury. Modular supervisory control of discrete-
event systems with abstraction and incremental hierarchical
construction. Workshop on Discrete Event Systems, 2006.

J.E. Hopcroft and J.D. Ullman. The design and analysis of
computer algorithms. Addison-Wesley, 1975.

IEEE. 1588tm-2002 standard for a precision clock synchro-
nization protocol for networked measurement and control
systems, 2002. URL http://ieee1588.nist.gov.

J. Komenda, J. van Schuppen, B. Gaudin, and H. Marchand.
Modular supervisory control with general indecomposable
specification languages. In Conference on Decision and
Control, 2005.

R.J. Leduc, M. Lawford, and W.M. Wonham. Hierarchical
interface-based supervisory control-Part II: Parallel case.
IEEE Transactions on Automatic Control, 50:1336–1348,
2005.

K. Schmidt, Th. Moor, and S. Perk. Nonblocking hierarchical
control of decentralized discrete event systems. accepted in
IEEE Transactions on Automatic Control, 2007a.

K. Schmidt, E.G. Schmidt, and J. Zaddach. A shared-medium
communication architecture for distributed discrete event
systems. In Mediterranean Conference on Control and
Automation, 2007b.

R. Su and J. Thistle. A distributed supervisor synthesis ap-
proach based on weak bisimulation. In Workshop on Discrete
Event Systems, 2006.

libfaudes. software library, 2007. URL http://www.rt.

eei.uni-erlangen.de/FGdes/faudes/index.php.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

4131


