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Abstract: This paper considers a version of the problem of how to teach robots to write
characters in an actual environment. In particular, a feedforward controller is designed for
two-link manipulators to improve tracking performance despite limited knowledge of the
surroundings. An adaptive scheme, called MIMO-FEL (Multi-input Multi-output Feedback
Error Learning), is employed to achieve the objective. After convergence, the feedforward
controllers are switched depending on the target character to be written. This switching strategy
is a clear contrast with the precise identification approach, which uses a single general-purpose
controller.
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1. INTRODUCTION

High tracking performance is one of the most important
requirements for robotics applications. To design a model-
based feedforward controller with good tracking perfor-
mance, an accurate model of the process is needed. How-
ever, factors such as uncertainty, nonlinearity or time-
varying behavior make modeling and identification more
difficult or expensive. To overcome this challenge, several
adaptive and learning control techniques have been pro-
posed; see Tao (2003), de Vries (2000), Colbaugh et al.
(1994), Dawson (1991), Li and Slotine (1989). There are in
general two distinct adaptive control approaches. The first
approach is called indirect adaptive control because the
adaptive laws provide explicit estimates of the dynamics
of the model parameter, which is then used in controller
design ; Li and Slotine (1989). The second is called direct
adaptive control, as the adaptive laws adjust the control
gains directly without parameter estimation; Colbaugh et
al. (1994). These approaches have also been used to adjust
the feedforward controller to obtain an accurate inverse
model of the plant as in Sun and Tsao (1999). Adaptive
inversion, which first needs to estimate a plant model, is
less sensitive to plant uncertainties and variations but also
adjusts itself to plant parameter changes.

However, two powerful model-free learning control meth-
ods, iterative learning control (ILC) and feedback error
learning (FEL), have attracted much attention in the last
two decades (see, e.g., Bein and Xu (1998), Sugie and Ono
(1991), Sugie (2004), Kawato et al. (1987), Miyamura and
Kimura (2002), Muramatsu and Watanabe (2004)). ILC
deals with repeating tracking tasks in a finite time interval.
Thus, it yields the desired input through the iteration of
trials with the reset action of initial conditions. FEL, pro-
posed by Kawato et al. (1987), achieves an inverse model of
the plant without extensive modeling by utilizing the error
signal during continuous-time closed-loop operation. The
key point of FEL is to use a learning law which depends

Fig. 1. Experimental Hardware

on the feedback error in order to tune the feedforward
controller parameters.

Miyamura and Kimura (2002) have established a control
theoretical validity of the FEL method in the frame of
adaptive control for the SISO case, proving its stability
based on strictly positive realness, whereas Muramatsu
and Watanabe (2004) have relaxed the positive real-
ness condition of FEL. Following Miyamura and Kimura
(2002), Alali et al. (2006a,b) have studied some general-
izations of the FEL scheme.

This work studies an application of MIMO-FEL technique
developed in Alali et al. (2006a) to a practical problem in
terms of two-link manipulators. The basic idea of this work
is to achieve an approximated inverse of the plant adap-
tively, using linear parameterization instead of Artificial
Neural Networks (ANN) used in Kawato et al. (1988) and
Ruan (2007), to improve tracking performance for each
specific desired trajectory and also the speed of parameter
convergence by means of MIMO-FEL. This also contrasts
with achieving an exact inverse via precise system identifi-
cation, which requires a huge amount of data and richness
of the excitation input. Thus, by FEL, one can obtain an
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Fig. 2. Feedforward Controller Design

inverse model for a specific reference signal with a limited
amount of data and a limited range of frequency compo-
nents. In practice, the feedforward controllers are switched
depending on the target character to be written. This is
a clear contrast with the precise identification approach,
which uses a single general-purpose controller.

The basic assumption made in Alali et al. (2006a) to
prove the convergence of the proposed algorithm is that
the plant is linear. Since the two-link manipulator is a
typical nonlinear system, we have to fill this gap. There
are basically two sources of the nonlinearity: the first one
is caused by the friction force generated by the reduction
gear of the motor and the time-varying inertia. The second
one is caused by the trigonometric dependency of the angle
of the motors to the X-Y coordinates of the hand position.
We overcome the first one by means of high-gain local
feedback, the second by restricting the working area of
the hand position to within a small neighborhood around
the equilibrium point.

2. DYNAMICS OF TWO-LINK MANIPULATOR

We consider a two-link manipulator in Fig. 1. Each arm is
driven by a DC motor with a reduction gear. The derivers
apply the current to each motor in proportion to their in-
put voltages. The objective here is to design a feedforward
controller Ω for this manipulator system which achieves
a good tracking performance, namely ‖p(t) − r(t)‖ → 0
as t → ∞ as illustrated in Fig. 2. As mentioned above,
local angular velocity and angular feedback based on the
encoder signal with relatively high gains are applied, as
in Fig. 3. Thus, the nonlinearities due to friction or time-
varying inertia are compensated. Assume that the behav-
ior of the dashed line block in Fig. 3 is much improved by
the inner PI loop, i.e., G(s) ≃ 1. Then, the dynamics from
input voltage vi to angle θi can be approximated as

θi =
ki

τis+ 1
vi, (1)

Fig. 3. Local Feedback Structure

Fig. 4. Two-Link Manipulator Model

where τi and ki are parameters that need to be identified.
The x-y coordinates of the two points p1 and p2 in Fig. 4
are given as follows:

[

x1
y1

]

=

[

l1 cos θ1
l1 sin θ1

]

, (2)

[

x2
y2

]

=

[

l1 cos θ1 + l2 cos(θ2 − θ1)
l1 sin θ1 − l2 sin(θ2 − θ1)

]

. (3)

Let

θ1 = θ∗1 +∆θ1,
θ2 = θ∗2 +∆θ2,

(4)

where θ∗1 and θ∗2 are initial angles of the motor corre-
sponding to the equilibrium point of the hand position. To
overcome the nonlinearity effects caused by the trigono-
metric functions in (3), we restrict the working area of
the hand position to within a small neighborhood around
the equilibrium point. Then, the motion around (θ∗1 , θ

∗

2)
can be approximated by linear dynamics using Taylor
series expansion. Therefore, the resulting hand position
p2(x2, y2) is given as follows:

x2 = x∗

2 +
{

l2 sin(θ
∗

2 − θ∗1)− l1 sin θ∗1
}

∆θ1

−l2 sin(θ
∗

2 − θ∗1)∆θ2,

y2 = y∗

2 +
{

l2 cos(θ
∗

2 − θ∗1)− l1 cos θ
∗

1

}

∆θ1

−l2 cos(θ
∗

2 − θ∗1)∆θ2, (5)

The coordinates x∗

2 and y∗

2 are given as

x∗

2 = l1 cos θ
∗

1 + l2 cos(θ
∗

2 − θ∗1),

y∗

2 = l1 sin θ∗1 − l2 sin(θ
∗

2 − θ∗1).
(6)

Note that (x∗

2, y
∗

2) is the equilibrium point of linearization.
Further, the following relationship is obtained from (1)

∆θi =
ki

τis+ 1
∆vi, (7)

where ∆vi denotes the deviation from the initial voltage.
As a result, if we consider the motion in a small neigh-
borhood of (x∗

2, y
∗

2), then we can approximate the hand
motion with the following linearized model as
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Fig. 5. Control System Scheme
[

∆x2
∆y2

]

=M1(θ
∗

1 , θ
∗

2)M2(s)

[

∆v1
∆v2

]

,

=: P (s)

[

∆v1
∆v2

]

, (8)

where
∆x2 = x2 − x∗

2,
∆y2 = y2 − y∗

2 ,
(9)

M1(θ
∗

1 , θ
∗

2) =
[

l2 sin(θ
∗

2 − θ∗1)− l1 sin θ∗1 − l2 sin(θ
∗

2 − θ∗1)
l2 cos(θ

∗

2 − θ∗1) + l1 cos θ
∗

1 − l2 cos(θ
∗

2 − θ∗1)

]

, (10)

M2(s) =







k1

τ1s+ 1
0

0
k2

τ2s+ 1






. (11)

The theoretical contribution in Alali et al. (2006a) is two-
fold: extension of FEL to MIMO and to strictly proper
systems. The target system (8) is exactly what should be
considered in this framework and we may apply the linear
MIMO-FEL technique to this plant.

3. CONTROLLER DESIGN

In this section, we briefly summarize our MIMO-FEL algo-
rithm developed in Alali et al. (2006a). The block diagram
of the control system is shown in Fig. 5. The objective
of our controller design is to minimize the error signal
between w(t) and the plant output y(t). The following
equations represent the interconnection in the figure:

y(t) = P (s)u(t)
u(t) = ufb(t) + uff(t)

ufb(t) = Kfbe(t)
e(t) = w(t)− y(t)
w(t) = W (s)r(t)
uff(t) = QΘ(s)r(t).

(12)

Let P (s) be a MIMO strictly proper plant. Kfb is a
feedback gain to stabilize the plant, and Θ is a tunable
parameter. The first equation implies

y(t) = £−1[P (s)](t) ∗ u(t),

where ∗ denotes the time-domain convolution. For simplic-
ity, we will adopt this kind of slight abuse of the notation

throughout this paper. We first note that, if the system
is invertible with properness as in Miyamura and Kimura
(2002); Muramatsu and Watanabe (2004), then we can
readily take QΘ = P−1 and obtain a perfect tracking.
This is not the case, however, since P (s) is assumed to
be strictly proper, and hence P−1(s) becomes improper.
To overcome this difficulty, pre-filter W (s) is introduced.
Under a mild assumption on the plant, one can set the
pre-filter to a diagonal form

W (s) =













1

(s+ a1)µ1

0

. . .

0
1

(s+ am)µm













, (13)

where ak is an arbitrarily chosen positive real number
and the integers µ1, µ2, · · ·, µm can be regarded as a
generalization of the relative degree to MIMO case.

We now construct a tunable feedforward controller. To
generate uff(t), we consider the following dynamical sys-
tem:

ξ̇1(t) =Afξ1(t) +Bfr(t)

ξ̇2(t) =Afξ2(t) +Bfuff(t)

uff(t) = F (t)ξ1(t) +G(t)ξ2(t) +H(t)r(t)

=Θ(t)ξ(t),

(14)

where

Θ(t) = [F (t) G(t) H(t)], ξ(t) =

[

ξ1(t)
ξ2(t)
r(t)

]

.

(15)

Take Af and Bf in a controllable canonical form as shown
in (16) and (17),

Af =

































0 1 0
...

. . . 0
· · · 1

−fµ −f1
. . .

0 1 0

0
...

. . .
· · · 1

−fµ −f1

































, (16)

Bf =

























0
... 0
1
. . .
0

0
...
1

























, (17)

where Af is a stable matrix. Then, we have
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uff(t) =
[

I − G(t)(sI − Af )
−1Bf

]

−1

·
{

H(t) + F (t)(sI − Af )
−1Bf

}

r(t)

=: QΘ(s)r(t).

(18)

Note that the unknown parametric matrices F (t), G(t),
H(t) enter linearly into (14). The matrix Θ(t) is tuned
using the following learning law

dΘ

dt
= αufb(t)ξ

T (t). (19)

The derivation and stability analysis of the learning law
have been studied in detail in Alali et al. (2006a). If Θ(t)
converges to some constant value Θc which corresponds to
Fc, Gc, Hc and e(t) → 0 as t → ∞, then we can obtain
from (18) the following learning feedforward controller

uffLearning(t) =
[

I − Gc(sI − Af )
−1Bf

]

−1

·
{

Hc + Fc(sI − Af )
−1Bf

}

r(t)

=: QΘc
(s)r(t).

(20)

Clearly, the learning process for QΘc
(s) depends on the

reference signal r(t). Thus, we employ a switching strategy
in writing different characters since it means tracking to
different references.

4. SIMULATION AND EXPERIMENTAL RESULTS

Using the on-line output y(t) for learning may be the
ultimate goal to demonstrate the practical usefulness of
the proposed method. Toward this end, we first try a
numerical simulation with nonlinear model (3). Since the
nonlinear model includes the motor dynamics (1), we have
to identify their parameters to perform the simulation
under a realistic situation.

We use the following parameters for the length of the
links and the equilibrium points in both simulation and
experiment: l1 = 0.2 [m], l2 = 0.2 [m], θ∗1 = 30 [deg],
θ∗2 = 45 [deg]. The working space is within 0.02 [m].

4.1 Identification of Motor Dynamics

As mentioned earlier, due to the double local feedback
loops, the dynamics of each motor can be approximated as
the first order systems. we then identified the parameters
for each motor via curve fitting method as

θ1 =
0.9982

0.2422s+ 1
v1, θ2 =

0.9956

0.1458s+ 1
v1.

The responses are well approximated as shown in Figs. 6
and 7.

4.2 Simulation Results

We first conduct a numerical simulation based on the
nonlinear model (3) and linearized model (8). we choose
the feedback gain and diagonal pre-filter as

Kfb =

[

−1 3
−3 −1

]

, W (s) =







1

s+ 1
0

0
1

s+ 1






.

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

Time

Identified step response

Actual step response

Fig. 6. Identification
of Motor 1
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Fig. 7. Identification
of Motor 2

We also need to set stable Af and Bf which makes
(Af , Bf ) controllable based on the upper bound of the
relative degree µ = 1, (see (16) and (17)). They are chosen
as

Af =

[

−4 0
0 −4

]

, Bf =

[

1 0
0 1

]

.

Note that the size of the matrix Θ(t) is 2 by 6. Thus,
it includes 12 components. We consider the following two
different reference trajectories to illustrate the idea clearly:

r0(t) =

[

sin(0.4t)
cos(0.4t)

]

, r8(t) =

[

sin(0.6t)
sin(0.3t)

]

.

The reference trajectories represent the numerical numbers
“0” and “8”, respectively. We then tune Θ(t) by using the
learning rule (19).

1) Nonlinear model case:

We restrict the working area of the hand position to within
a small neighborhood around the equilibrium point to
guarantee the convergence of the learning law. The time
evolution of Θ0(t) and Θ8(t) are shown in Figs. 8 and
9, respectively. Each line in the plot corresponds to the
time evolution of one component of the matrix over the
time period. It can be seen that the convergence has been
achieved only after a long time. The simulation results of
the trajectories of the hand for “0” and “8” are shown in
Fig. 10. It shows that the actual trajectories are close to
the reference trajectories. As a result, one can verify that
the algorithm really works for a nonlinear model with a
restricted moving area. However, the result also shows that
it takes long time for convergence, even in the simulation.
This implies that the experiment with on-line data via
current algorithm is unrealistic. Thus, this direction of
research will be considered in the future.

We now turn the attention toward the simulation with a
linear model, as used in studies such as Miyamura and
Kimura (2002) and Muramatsu and Watanabe (2004), to
verify the proposed switching learning strategy in writing
characters. The simulation result with the linear model is
much faster than in the nonlinear case, as shown below.

2) Linear model case:

To solve the above problem of slow convergence, we use a
linearized model of the plant, which can be obtained from
(8) as follows:

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

4087



P (s) =









−0.04815

0.2422s+ 1

−0.05154

0.1458s+ 1

0.3657

0.2422s+ 1

−0.1923

0.1458s+ 1









. (21)

Based on this model, we perform another numerical simu-
lation. The time evolution of Θ0(t) and Θ8(t) is shown in
Figs. 11 and 12, respectively. It is clear how fast the conver-
gence is, compared to the nonlinear case. The simulation
results of the trajectories of the hand before and after
learning are shown in Fig. 13. The resulting parameter
matrices for each example from Figs. 11 and 12 are as
follows:

a) for the first example (“0”):

Θ0 =

[

−0.22 0.28 0.88 1.26 −0.77 1.38

−0.57 −0.27 0.87 2.86 −2.37 −0.97

]

,

b) for the second example (“8”):

Θ8 =

[

−0.38 0.43 2.97 0.01 −1.63 0.37

−0.65 −0.22 0.03 3.10 −2.81 −0.35

]

,

and also e(t) → 0 for both. Thus, the resulting learning
feedforward controller for each case using (20) is given as
follows:

0 5 10 15

x 10
4

−4

−2

0

2

Time

C
o
m

p
o
n
e
n
ts

 o
f 
T

h
e
ta

Fig. 8. Time Evolution of Θ0: Nonlinear Case
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Fig. 9. Time Evolution of Θ8: Nonlinear Case
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Fig. 10. Nonlinear Simulation Results for 0 and 8

QΘ0
(s) =





−0.7721s2
− 7.184s − 16.47

s2 + 4.257s+ 2.456

1.384s2
+ 6.162s+ 1.355

s2 + 4.257s+ 2.456
−2.375s2

− 18.14s − 34.25

s2 + 4.257s+ 2.456

−0.9749s2
− 6.014s − 7.973

s2 + 4.257s+ 2.456



 ,

QΘ8
(s) =





−1.63s2
− 8.405s − 6.354

s2 + 1.936s+ 0.9322

0.3725s2
+ 2.25s+ 1.712

s2 + 1.936s+ 0.9322
−2.805s2

− 14.82s − 12.47

s2 + 1.936s+ 0.9322

−0.3475s2
− 1.954s − 1.606

s2 + 1.936s+ 0.9322



 .

To confirm that the above learning controllers can really
let the manipulator write its corresponding characters, we
perform an experiment with the real manipulator.

4.3 Experimental Results

The experimental setup of the two-link manipulator is
shown in Fig. 1. The target is to let the manipulator write
the numerical numbers 0, 2, 3,· · ·, 9. The first step is to
obtain the learning controller for each character, as we

Fig. 11. Time Evolution of Θ0: Linear Case

Fig. 12. Time Evolution of Θ8: Linear Case
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Fig. 13. Linear Simulation Results for 0 and 8
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Fig. 14. Written Characters 0 and 8 by the Manipulator
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Fig. 15. Experimental Results of writing 0, 2, · · ·, 9

did before for “0” and “8” with (21). We then switch
the feedforward controller depending on the objective. For
example, we use QΘ0

(s) if we want to write “0” and
QΘ2

(s) to write “2” and so on. Note that we use the
same Kfb and W (s) in the simulation part to perform
the experiment. Fig. 14 shows the picture of written
“0” and “8” before and after learning. The resulting
picture is close to the numerical simulation result in
Fig. 13. The experimental result in Fig. 15 shows the
reference trajectory versus the actual one for each number
written by the manipulator. The results indicate that
the manipulator succeeded in writing different characters
based on the switching strategy.

5. CONCLUSION

The main objective of this work is to demonstrate the
practical effectiveness of the MIMO-FEL scheme proposed
in Alali et al. (2006a) by an experiment. We verified that
controllers generated by the numerical simulation show
good tracking performance in the experiment with a real
two-link manipulator. The next goal is to use on-line data
during the learning process. Under this configuration, we
can be free from the identification of the motor dynamics
and the linearization of nonlinear dynamics of the manip-
ulator.
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