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Abstract: In this paper, a novel robust delay-dependent guaranteed cost controller is introduced for a 

class of uncertain nonlinear neutral systems with both norm-bounded uncertainties and nonlinear 

parameter perturbations. A neutral memory state-feedback control law is chosen such that a 

quadratic cost function is minimized. On the basis of a descriptor type model transformation, an 

augmented descriptor form Lyapunov-Krasovskii functional is proposed. A linear matrix inequality 

(LMI) of synthesis condition is derived. Two numerical examples have been introduced to show the 

application of the theoretical results. Copyright © 2008 IFAC 
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1. INTRODUCTION 
 
Time-delay systems is a significantly fruitful field of 

research for several decades. The main reason for this is that 

time-delay naturally arises in many physical and dynamical 

systems leading to bring about many theoretical and practical 

problems which need to be resolved. Among some of them, 

one can notice that a system which is subject to time-delay 

may exhibit a poor performance, it may get into an unstable 

behavior or it may not endeveour with external disturbances 

or even it may excite undesired modes which cause to get far 

away from meeting the required specifications. An important 

class of delay-differential systems is referred to as time-delay 

systems of neutral type in which the time-delay may be 

available in both position and velocity of the system. For a 

theoretical and practical consideration of neutral systems, 

one can refer to (Hale, and Lunel, 1993).  

In recent years, a number of different guaranteed cost 

controller design investigations have been taken into 

consideration for neutral systems with or without 

uncertainties and/or nonlinear parameter perturbations. See 

the reference list. Generally, the proposed methods have 

employed linear matrix inequality (LMI) techniques. It is 

well known that (Fridman, and Shaked, 2002), (He et al., 
2004), Parlakci (2006), the utilization of some free weighting 

parameters introduce a considerable rate of relaxation into 

the results in particular for systems under the existence of 

uncertainties. However, the existing work on the subject has 

not taken into account this useful phenomenon because of the 

fact that the involvement of such slack variables destroy the 

nature of the LMI form of the stability and/or synthesis 

conditions. Therefore, the motivation of the present research 

is to develop improved LMI delay-dependent guaranteed cost 

controller synthesis through the use of free weighting 

matrices. 
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In this paper, the design problem of a robust delay-dependent 

guaranteed cost control of a class of uncertain nonlinear 

systems with both norm-bounded uncertainties and nonlinear 

parameter perturbations has been studied on the basis of a 

descriptor form of system representation along with an 

augmented descriptor type of Lyapunov-Krasovskii 

functional which has been recently proposed by Parlakci 

(2006). The proposed approach allows to introduce free 

weighting matrices embedded in the Lyapunov-Krasovskii 

functional. A memory state-feedback controller in the form 

of neutral structure is introduced to provide integral and 

delayed state-feedback for a better control performance. The 

use of descriptor system representation in the quadratic 

Lyapunov stability analysis has been applied to both delay-

differential equation and neutral operator equation which 

lead to be able to include additional slack variables. A 

sufficient robust delay-dependent guaranteed cost controller 

synthesis criterion is derived in terms of relaxed linear matrix 

inequality. Moreover, a convex optimization problem with 

LMI constraints is formulated to design the optimal 

guaranteed cost delayed neutral state-feedback controller 

which minimizes the upper bound of the guaranteed cost 

function for the closed-loop uncertain nonlinear neutral 

system. Two numerical examples show that the novel 

augmented descriptor LMI approach improves the 

guaranteed cost performance in comparison to the existing 

guaranteed cost controllers from the literature. 
 
 

2. PROBLEM STATEMENT 
 
Let us consider  
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where ntx ℜ∈)(  is the state vector of the system, mtu ℜ∈)(  

is the control input, A , hA , dA , B  are known real constant 

system matrices all with appropriate dimensions, )(tA∆ , 

)(tAh∆ , )(tAd∆ , )(tB∆  are unknown real time-varying 

matrix functions with appropriate dimensions representing 

time-varying parametric uncertainties which are assumed to 

be of the following form 
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where D , aE , hE , dE , bE  are known constant matrices 

with appropriate dimensions, and )(tF  is an unknown real 

time-varying matrix satisfying 

Ι≤)()( tFtF T    (4) 

and )),(( ttxf , )),(( thtxg − , )),(( tdtxh −&  represent 

nonlinear parameter perturbations satisfying 

0),0(),0(),0( === thtgtf   (5) 

and )(⋅Φ  is a vector valued initial condition function. Note 

that the parameter uncertainties are said to be admissible if 

both (3) and (4) hold. Moreover, it is assumed that the 

nonlinear perturbations satisfy  
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where α , β , and γ  are known positive scalars. The 
discrete, and neutral delays are scalar constants such that 

( )dh,max=τ . A difference operator can be defined as 
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Definition 1: (Hale, and Lunel, 1993) The difference operator 
∇  is said to be stable if the zero solution of the 
homogeneous difference equation 0=∇ tx , 0≥t , 

[ ]( ){ }0:0,
0

=∇−∈∈= φτφψ Cx  is uniformly asymptotically 

stable. The stability of ∇  is necessary for the stability of 
system (1). 

Assumption 1: (Park, 2005b) Given positive scalars h , d , 

and any constant matrices hA , dA
nn×ℜ∈ , the operator )( tx∇  
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A quadratic cost function associated with the uncertain 

nonlinear neutral system (1) is defined as 

[ ]∫ +=
∞

0
21
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  (11) 

where 
1
S , and 

2
S  are given constant gain matrices. A linear 

memory type neutral state feedback control law is chosen as 

in (Park, 2005b) as follows 

)()( txKtu ∇=    (12) 

where nmK ×ℜ∈  denotes the feedback gain.  
 
 

3. MAIN RESULTS 
 
Let us assume that system (1) is not subject to any norm-

bounded uncertainty, then one can obtain  
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Differentiating )( tx∇  along trajectory of (13) gives 
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where hAAA +=
0

, or as a descriptor form, we get 

)),(()()()(),()(
0

ttxfxBKtxAtytyx tt +∇+==∇&

)),(()),(( tdtxhthtxg −+−+ &   (15) 

where )(ty  is the descriptor variable.  

Theorem 1: Given the positive scalars, h , d , and 
1
ρ , 

2
ρ  

such that 1
21
<+ ρρ , if there exist symmetric positive 

definite matrices 
0

Λ , 
1

X , Q , R , S , Z , and matrices iX , 
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Y , 6,,2K=i  and scalars λ , jε , 3,2,1=j , kε , 6,5,4=k  

satisfying  
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then a robust guaranteed cost neutral state-feedback 

controller with 1−= YXK  robustly asymptotically stabilizes 

system (1) via ensuring an upper bound for the cost function 

computed as 
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Proof: Applying Schur complement to (10) gives 

0

**

*

0

0

002

001

<
















Λ−

ΛΛ−

ΛΛ−

=Ψ T

h

T

d

hA

A

ρ
ρ

 (19) 

then replacing hA , dA  with )(tAA hh ∆+ ,  

)(tAA dd ∆+ , respectively in (19) gives 
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where  
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Let us choose an augmented Lyapunov-Krasovskii functional 
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Theorem 1 describes how to synthesize a robust guaranteed 

cost neutral state-feedback controller. For the design of an 

optimal robust guaranteed cost neutral state-feedback 

controller that minimizes the upper bound of the quadratic 

cost function (11), the following theorem is presented. 
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quadratic cost function upper bound is minimized, where 

T

h

T WWdssshsh
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0

)()()( =∫ ΦΦ+
−

, 
T

d

T WWdsss
22

0

)()( =∫ ΦΦ
−

, 

T

h

T WWdsss
33

0

)()( =∫ ΦΦ
−

, 
T

d

T WWdsss
44

0

)()( =∫ ΦΦ
−

&& . 

Proof: Similar to the proof of (Park, 2005b), thus it is 
omitted. 
 
 

4. NUMERICAL EXAMPLES 
 
This section presents two numerical examples. 

Example 1: An uncertain linear neutral system example is 
considered as follows 

[ ] [ ] )()()()()( htxEtDFAtxEtDFAtx hha −+++=&  

[ ] [ ] )()()()( tuEtDFBdtxEtDFA bdd ++−++ & (43) 

where 







=
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5.00
A , 









−
=

5.02.0

2.00
hA , 








=

2.00

1.02.0
dA , 









=

5.0

0
B  with 5.0=h , 2.0=d  and 







−
=

t

t

e

e
t)(φ , 

[ ]0,5.0−∈∀t . The gain matrices are selected as 









=

10

01
1
S , 2.0

2
=S . If 0=D , the system in (43) reduces 

to the example studied in (Park, 2005a). Choosing 1.0
1
=ρ , 

2.0
2
=ρ , the stability of the difference equation is satisfied 

with 








−

−
=Λ

7136.113109.1

3109.10812.9
0

. A feasible solution set has 

been obtained for satisfying (17) appropriately. Then 

computing the cost function upper bound gives 8478.1* =J , 

[ ] 6100736.17173.0 ⋅−−=K . However, one notices that the 

achievable cost function bound obtained in (Park, 2005a) is 

9.7773 with [ ]3077.38737.1 −−=K . Hence the proposed 

methodology is shown to be less conservative than that of 

(Park, 2005a). Let us now choose 







=

3.0

5.0
D , 

[ ]2.01.0=aE , [ ]1.03.0=hE , [ ]1.02.0=dE , 1.0=bE . 

Then application of Theorem 1, 2 results in a set of feasible 

solution. The upper bound of the cost function is calculated 

as 8706.3* =J  and [ ]5678.268891.24 −−=K . This result 

shows that the performance of the proposed guaranteed cost 

controller is still quite better than that of the method 
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presented in (Park, 2005a) even in the case of norm-bounded 

uncertainties. 

Example 2: An example of uncertain nonlinear neutral 
system is considered as follows 

[ ] [ ]
[ ] [ ] )()()()(

)()()()()(

tuEtDFBdtxEtDFA

htxEtDFAtxEtDFAtx

bdd

hha

++−++

−+++=

&

&
 

)),(()),(())),(( tdtxhthtxgttxf −+−++ &  (44) 

where 
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A , 
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2.00
hA , 








=

1.00

1.00
dA , 









=
1

1
B , 








=

2.0

0
D , [ ]2.00=aE , [ ]3.01=hE , 

[ ]2.02.0=dE , 5.0=bE  and 0.1=h , 0.2=d . The initial 

condition is given as 







=Φ

te
t

1
)( , [ ]0,0.2−∈∀t  with the 

cost function gain matrices chosen as 







=

10

05.0
1

S , 1
2
=S . 

Let us assume that (Xu et al., 2003), 0)),(( =ttxf , 

0)),(( =− thtxg , 0)),(( =− tdtxh & . The stability of ( )tx∇  is 

ensured by choosing 3.0
21
== ρρ  and 










−

−
=Λ

3121.10108.0

0108.04214.1
0

, 1281.0=λ . The linear matrix 

inequality (17) has given a feasible solution set which 

indicates that the cost function upper bound is computed as 

7377.4* =J  with [ ]6587.15309.1 −−=K . However, the 

achievable cost function bound obtained in (Xu et al., 2003) 
is 50.0275 with [ ]9615.09943.0 −−=K . This shows that 

the proposed methodology is capable of yielding less 

conservative cost function bounds. Now let us assume that 

the numerical example of neutral system given in (44) 

involves nonlinear parameter perturbations defined such that 

[ ]Ttxttxtttxf )(sin)(cos)),((
2211

αα= , 3.0≤iα , 

[ ]Thtxthtxttthtxg )(sin)(cos))),(((
2211
−−=− ββ

3.0≤iβ ,  

[ ]Tdtxtdtxtttdtxh )(sin)(cos))),(((
2211
−−=− &&& γγ

3.0≤iγ , 2,1=i . The simulation work yields a feasible 

solution set and the upper bound of the cost function is 

computed as 9199.11* =J  with [ ]5742.28622.2 −−=K . 

Consequently, it can be seen that even in the case of 

nonlinear parameter perturbations, the proposed robust 

guaranteed cost neutral state feedback controller performs 

much better than that given in (Xu et al., 2003). 
 
 

5. CONCLUSIONS 
 
This paper has investigated the design of a robust delay-

dependent guaranteed cost stabilizing controller for uncertain 

nonlinear neutral systems. A memory type neutral form of 

state-feedback control law is introduced. On the basis of a 

descriptor representation, an augmented descriptor form of a 

candidate Lyapunov-Krasovskii functional is adopted to 

study the stability of the neutral system. Sufficient robust 

delay-dependent linear matrix inequality (LMI) synthesis 

conditions are derived. Two numerical examples have 

concluded that the proposed method assures a less 

conservative control cost in comparison to some of the 

existing approaches. 
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