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Abstract: In this paper, a novel robust delay-dependent guaranteed cost controller is introduced for a
class of uncertain nonlinear neutral systems with both norm-bounded uncertainties and nonlinear
parameter perturbations. A neutral memory state-feedback control law is chosen such that a
quadratic cost function is minimized. On the basis of a descriptor type model transformation, an
augmented descriptor form Lyapunov-Krasovskii functional is proposed. A linear matrix inequality
(LMI) of synthesis condition is derived. Two numerical examples have been introduced to show the
application of the theoretical results. Copyright © 2008 IFAC
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1. INTRODUCTION

Time-delay systems is a significantly fruitful field of
research for several decades. The main reason for this is that
time-delay naturally arises in many physical and dynamical
systems leading to bring about many theoretical and practical
problems which need to be resolved. Among some of them,
one can notice that a system which is subject to time-delay
may exhibit a poor performance, it may get into an unstable
behavior or it may not endeveour with external disturbances
or even it may excite undesired modes which cause to get far
away from meeting the required specifications. An important
class of delay-differential systems is referred to as time-delay
systems of neutral type in which the time-delay may be
available in both position and velocity of the system. For a
theoretical and practical consideration of neutral systems,
one can refer to (Hale, and Lunel, 1993).
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In recent years, a number of different guaranteed cost
controller design investigations have been taken into
consideration for neutral systems with or without
uncertainties and/or nonlinear parameter perturbations. See
the reference list. Generally, the proposed methods have
employed linear matrix inequality (LMI) techniques. It is
well known that (Fridman, and Shaked, 2002), (He et al.,
2004), Parlakci (2006), the utilization of some free weighting
parameters introduce a considerable rate of relaxation into
the results in particular for systems under the existence of
uncertainties. However, the existing work on the subject has
not taken into account this useful phenomenon because of the
fact that the involvement of such slack variables destroy the
nature of the LMI form of the stability and/or synthesis
conditions. Therefore, the motivation of the present research
is to develop improved LMI delay-dependent guaranteed cost
controller synthesis through the use of free weighting
matrices.
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In this paper, the design problem of a robust delay-dependent
guaranteed cost control of a class of uncertain nonlinear
systems with both norm-bounded uncertainties and nonlinear
parameter perturbations has been studied on the basis of a
descriptor form of system representation along with an
augmented descriptor type of Lyapunov-Krasovskii
functional which has been recently proposed by Parlakci
(2006). The proposed approach allows to introduce free
weighting matrices embedded in the Lyapunov-Krasovskii
functional. A memory state-feedback controller in the form
of neutral structure is introduced to provide integral and
delayed state-feedback for a better control performance. The
use of descriptor system representation in the quadratic
Lyapunov stability analysis has been applied to both delay-
differential equation and neutral operator equation which
lead to be able to include additional slack variables. A
sufficient robust delay-dependent guaranteed cost controller
synthesis criterion is derived in terms of relaxed linear matrix
inequality. Moreover, a convex optimization problem with
LMI constraints is formulated to design the optimal
guaranteed cost delayed neutral state-feedback controller
which minimizes the upper bound of the guaranteed cost
function for the closed-loop uncertain nonlinear neutral
system. Two numerical examples show that the novel
augmented descriptor LMI approach improves the
guaranteed cost performance in comparison to the existing
guaranteed cost controllers from the literature.

2. PROBLEM STATEMENT

Let us consider
2(0) = [A+ M@ () +[A4, + A4, (6) et = 1)
+[A4, + A4, Ot —d) +[B+AB@O(t) (1)
+ f(x(@),t)+ g(x(t—=h),t)+ h(x(t—d),t)
x(1) = O(), ()= D), Vie[-7,0lr>0 (2)
where x(z) € R" is the state vector of the system, u(z) € R"
is the control input, 4, A4,, A,, B are known real constant
system matrices all with appropriate dimensions, AA(¢),
AA,(t), AA,(t), AB(t) are unknown real time-varying

matrix functions with appropriate dimensions representing
time-varying parametric uncertainties which are assumed to
be of the following form

[Ad(t) A4,(t) A4,() AB()]
:DF(t)[Eu Eh Ed Eh]

where D, E , E,, E,, E, are known constant matrices

€)

with appropriate dimensions, and F(¢) is an unknown real
time-varying matrix satisfying
FI(OF()<1 4
and f(x(¢),t), g(x(t—h),t), h(x(t—d),t) represent
nonlinear parameter perturbations satisfying
S(0,2) = g(0,1) = h(0,1) = 0 (%)
and ®(-) is a vector valued initial condition function. Note

that the parameter uncertainties are said to be admissible if
both (3) and (4) hold. Moreover, it is assumed that the
nonlinear perturbations satisfy

| @), 0 < efx(@®)], ve>0 (6)
lg et =)o) < Blx(e = n), V>0 (7
|nGi(t —d), 1) < i -a)|, V>0 (8)

where «, f, and y are known positive scalars. The
discrete, and neutral delays are scalar constants such that
r=max(h,d). A difference operator can be defined as

V:3(-[2,0} %") > R such that

V(x,)=x()+ 4, jx(s)ds —-Ax(t-4d) 9)

t=h

Definition 1: (Hale, and Lunel, 1993) The difference operator
V is said to be stable if the zero solution of the
homogeneous  difference  equation Vx, =0, (>0,
X, =y € {¢ eC (— [2',0]): Vo= O} is uniformly asymptotically
stable. The stability of V is necessary for the stability of
system (1).
Assumption 1: (Park, 2005b) Given positive scalars &, d,
and any constant matrices 4,, 4, € R"", the operator V(x,)
is asymptotically stable if there exist a symmetric and
positive definite matrix, A, and positive scalars p,, p, such
that

p+p, <l
A;AoAd _ple hAdTAoAh <0 (10)
* —p A, +HPATAA,

A quadratic cost function associated with the uncertain
nonlinear neutral system (1) is defined as

J =¥ ©Sx(0)+u” (0)S () |at (11)

where S, and S, are given constant gain matrices. A linear

memory type neutral state feedback control law is chosen as
in (Park, 2005b) as follows
u(t)=KV(x,) (12)

where K € R™ denotes the feedback gain.

3. MAIN RESULTS

Let us assume that system (1) is not subject to any norm-

bounded uncertainty, then one can obtain
X(t)=Ax@)+ A, x(t—h)+ A,x(t - d)
+BKV(x,)+ f(x(2),t)+ g(x(t —h),1) (13)
+h(x(t—d),t)

Differentiating V(x,) along trajectory of (13) gives
V(x,) = A,x(t) + BKV(x,)+ f(x(£),1)
+g(x(@t—h),t)+h(x(t—d),t)

where 4, = A+ A, , or as a descriptor form, we get

V(x,) = y(1), ¥(t)= 4x(t)+BKV(x,)+ [ (x(1),1)
+g(x(t—h),t)+h(x(t—d),t) (15)
where y(t) is the descriptor variable.

(14)

Theorem I: Given the positive scalars, 4, d, and p,, p,
such that p +p, <1, if there exist symmetric positive
definite matrices A, X,, @, R, §, Z , and matrices X,,
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Y,i=2,..,6 and scalars 1, &, j=123, &, k=456
satisfying

-p A, AhE'E, A'A, 0
—pA
O 750 N
+AWE]E, <0 (16)
* * -A, A,D
* * * )|
Zl 1 hiﬁ ElZ ElZ E15 E16
* -0 0 0 0 0
- |* * —R 0 0 0
Y= <0(17)
* % % _g1 00
* * * * —S; 0
* % % % * Em
f[an 12 w3 0 0 (L6) |
22 23 0 0 (26
E _ * * (3:3) Ahg _AdR (176)
D . * -0 0 (Lo
* * % * _E (1,6)
A =X, +X7,(02)=X,+Y" B" - X +X74,
13)=—X +X’,1,6)=[0 0 0 0 0]
2,2)=-X,- X/ +A4,X,+ XA +&,DD",
(23)=4,X,+X,26)=[c1 0 &1 0 zl]
(B33)=X,+X/+e&,DD",
(6.6) = diag{-£,1,-5.-7,1,-Z,~z,1},
T, =[x, hX, hXx, 0 0 0 0 0 0 O],
Z.=[r 0000000 0 Of,
E1f>:[0(§|2 E12 E18 EIQ E110 E111]7
T.=[0 000004 00 0f,
- [By _ — - }’
T, = AX, 4X, 0 0 &1 A4S &1 A,Z &l|>
| +4X,
T.=l0 0000000,z 0
£y ;
+EX, EX, EX, 0 0 0 0 0 0 O
.=l 0 0 0 EQ -ER O 0 0 0 0
EY
+EX, EX, EX, 0 0 0 ES 0 EZ 0
3, =diagl-£1.-5,~2,1-Z + £,DD" ~Z 15,1},
el 0 0
and g,=| 0 &l 0 |, and (*) denotes the symmetricity,
0 0 gl

then a robust guaranteed cost neutral state-feedback
controller with K =YX ™" robustly asymptotically stabilizes
system (1) via ensuring an upper bound for the cost function
computed as

T =V (@0))X'V(D(0))+ [ (s + D' ()0 'D(s)ds
£ [0 ()R D(s)ds + | ()5 " D(s)ds

[ (5)Z " d(s)ds (18)
“d
Proof: Applying Schur complement to (10) gives
-pPA, 0 AN,
Y= * —p, A, hAIA, <0 (19)
* * _ Ao
then replacing A,, 4, with 4, + A4,(¢),
A, +AA,(t), respectively in (19) gives
Y+ A¥Y () +AY (1) <0 (20)
where
AY () =TI, F (O,
with TI, =[0 0 D'A,]. ®, =[E, #E, 0].Applying
norm bounding inequality yields
¥+ AT, + 20,0, <0 21
which then by Schur complement verifies the condition (16).

Let us choose an augmented Lyapunov-Krasovskii functional
(Parlakcei, 2006) as

V(0.0 =3V, (22)

where V, =n' ()EPn(¢),V, = h j(s —t+h)x" ()Ox(s)ds ,

V, = [x"(s)Rx(s)ds, V, = [x"(s)Sx(s)ds ,
t—d t—h

V.= [ (s)Zi(s)ds,n(t) = [V (x) ¥ () *'(®].  and
t—d
1 00 P 0 0

E=[0 0 0, P=|P P 0|, P =P>0,
00 0 P P P

0"=0>0, RT=R>0, S7=85>0, Z"'=Z>0. The
time-derivative of V(x(¢),t) along the state trajectory of
system (1), (12), (15) gives

V(x(O),6) =3V (23)
i=1
One can compute V1 in the following form
Vi (x(0),) = 27 () PE %n(r) (24)

It follows from (15) that one can write
0=—y(t)+ Ax(t)+BKV(x,)+ f(x(2),t)
+g(x(t—h),t)+ h(x(t —d),t)

Utilizing the neutral difference operator gives

0=—V(x)+x(t) + 4, [x(s)ds — A,x(t—d) (26)

(25)

In view of (25), (26), one can compute
ET %n(t) = An(t)+T, [x(s)ds + T,x(t - d)
t=h

+ T, [/ (x(),0) + g6t = h),0)+ h(ie =d).0] - (27)
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0 1 0
where 4=|BK -1 4,|,T,=[0 0 4],
-1 0 1

r,=0 0 —4’],r,=[0 1 0. Substituting (27) into
(24) gives

V= 2;7T(t)PT{Z 7(6)+T, [ x(s)ds + T,x(t - d)

+ [ (x(0), 1) + g(x(t = h), 1)
+h(i(t=d),0 = 2 (O, 2 (1) (28)
¢ T
where m:{nf(r) (Jx(s)ds) X (t-d) [T (x(0),0)
t—h
X'(t—h) g (x(e—h)t) F(—d) K ((—d).0]
o _[20D 2,02)
YL 9@
Q,(12)=[P'T, P'T, P'T, 0 PT, 0 P'T,]
Q,(2,2) = diag{0,0,0,0,0,0,0} . Calculating ¥, yields
V, = *x" (1)0x(t) — h [ x" (s)Ox(s)ds
t—=h
< 71 (O(Q, + B’TTOT, )y (t)
0 Q1,2
where Q, = (12) ;A =[0 0 1],
* 0,22
Q,1,2)=[0 0 0 0 0 0 0],
Q,(2,2) = diag{~ 0,0,0,0,0,0,0},
1"4=[A1 00 0O0O0OO 0].M0re0ver, the time-
derivative of V, is computed as follows
V.= 2 0)(Q, + TR, )y (1) (30)
0 92(1,2)}
* 022)]
Q,(2,2) = diag{0,-R,0,0,0,0,0} . Computing the time-
derivative of V, yields
V,(x(0).0 = 7 (0Q, +T7 ST, )y (1) (31)
0 Q,(2)
* Q12,2

}, QA)=P A+A"P,

(29)

where Q, ={

where Q, :[ } Q,(2,2) = diag{0,0,0,-5,0,0,0}.

Finally, one can compute V5 (x(),t) as follows

V.(x(t),0) = " (1) Zx(t) — %" (t — d) Zx(t — d)
= 7 0(Q, +T! 2L, )y (1)

0 Q1.2

* Q. (22)

Q,(2,2) = diag{0,0,0,0,0,-Z,0},

L=[A, 0 0 1 4, 1 4, 1] It follows from (6)-(8)

that one can write the following inequality
2" OQ, +£a T[T, +£,AT/T,
+&7°TIT, )y (1) > 0

0 Q,(12)

*0.(22)

(32)

where QS:[ },AZ:[BK 0 A,

(33)

wheregé{ },A;[K 0 0]

Q,(2,2) = diag{0,0,-£,1,0,-&,1,0,~&,1}, and
I,=[A, 0 0 0 0 0 0 0],. Therefore, substituting

(29)-(32) into (23) and adding (33) yields
V(x(t),t) + x" (£)S,x(t)

(34)
+u (OS,ut) < 2" (O (0)
where Q, = zQ +T/(Q+R+5, +S+£a’I),
+IVZ0 + &, BT T, +&,y°T T, + I} S,T.
In order to guarantee
V(x(t),t) + x" (6)S,x(t) +u” ()S,u(t) <0, one needs to
satisfy
Q, <0 (35)
then applying Schur complement to (35) gives
Q<0 (36)
where
Q, A A AN A Q]

* 0" 0 0 0 0
* ¢ _R' 0 0 0
* kx5t 0 0

0

Q= ,
* * * * _Sz’l
* * * * * Q,
Qm:_[aATl A OQ@18) Q(9) Q(1,10)],_
QL= 0 0 0 g1 0 0 0],

QLY=[A, 0 0 1 4, 1 4, 1],
QLI)=[0 0 0 0 0 0 A o,
Q, =diagl£'1,-5" &, 17" -¢,'1},
|PTA+ATP Q,(12)

! _{ * Q“(2,2)}’
Q,(12)=[P'T, P'T, P'T, 0 P'T, 0 P'T,]
0Q,2,2)= diag{— Q,—R,—glI,—S,—gzl,—Z,—53I}. Then pre-
and post- multiplying Q <0 in (36) with M" and M ,
respectively, where
M = diag{X,0,R.2,.5.2,, 2,2, L LLLLLLLI}, X =P,
0=0"',R=R",S=8",Z=7"c=¢",i=123,and
choosing K =YX give the following linear matrix
inequality

£<0 (37)
where
Z:1] hzj Z:12 Z:12 215 216
* -0 0 0 0 0
* ok _R 0 0 0
2 = B
* * * —S(l 0 0
* * * * —S;l 0
* * * * * 266
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) 1,2 (1,3) 0 0 1,6) |
* (2,2 2,3) 0 0 (2,6)
—-&,DD’
>y o= — —
" * * (333) AhQ - A(/R (156)
—-&, DD’
% % % _ Q 0 (1,6)
% % % % -R (1,6)
* % * * % (6,6)—

Now, one canreplace 4, 4,, 4,, B with A+ AA(?),
A, +AA4,(t), A, +AA4,(t), B+AB(t), respectively in (37)
to get

SH+AZ()+AT (1) <0 (38)
where AZ(t) =T1"F ()0,

0D 0 (14 0 o]
nm={0 o D" (14 0 0],
0 0 0 149 D" 0
4= 000000000000 0
ay EX, EX, 0 0 0 0 0 0 @O
©= 0 0 0 EQ -ER 0 0 0 0 (10
@) EX, EX, 0 0 0 ES 0 EZ (110)
(L)=EY+EX,, Bl)=EY+E,X,,
(1,10)=[0 0 0 0 0 0 0 0 0 0].
with E, = E_+ E, . One can rewrite (38) as follows
SHAS()+AT () <Z+¢ 1T +£,'0"® <0 (39)
Then, by Schur complement, one obtains the linear matrix
inequality (17). This completes the proof.
Next, one can show that by the neutral state-feedback
controller (12), the guaranteed cost function in (11) has an
upper bound. Note that (34), (37) imply
V(x(t),1) < —x" (£)S,x(£) —u” (£)S,u(t) (40)
Integrating both sides of (40) from 0 to 7 >0 gives
V(x(T),T) -V (x(0),0)

<[ OSx(t)+u” 0 S.ut) it

As the system is robustly asymptotically stable once the
conditions in (16), (17) are satisfied, for 1imV (x(7),7) — 0,
T—x

(41)

one  obtains  fim | ()Sx(t) +u" (DSu i =T < T
Tow

Theorem 1 describes how to synthesize a robust guaranteed
cost neutral state-feedback controller. For the design of an
optimal robust guaranteed cost neutral state-feedback
controller that minimizes the upper bound of the quadratic
cost function (11), the following theorem is presented.
Theorem 2: (Park, 2005b) For the uncertain nonlinear neutral
system (1) and the associated quadratic cost function (11),
consider the optimization problem defined as

____ min {(u+i‘trace(Tl)
X.O.RSZYT=l...45,j=1.2.3.¢ i=1

subject to (16), (17), and

4891

{_y vr(‘P(O))} < O,{‘Tl a } <0

* _Xl * —_
=L W <0, -Low <0
* _R -3
-T, W’
{ ! “_}so (42)
* _Z

such that if a feasible solution set of X, @, R, §, Z,7Y,
T,i=1..4,¢,6 j=123, & can be achieved then the

neutral state-feedback control law (12) is said to be an
optimal robust guaranteed cost control law ensuring that the
quadratic cost function upper bound is minimized, where

B (s + O (s)Mds =W, [D()D (s)ds = W7

[ D)D" (s)ds = W, [d(s)D (s)ds = W, W7 .

Proof: Similar to the proof of (Park, 2005b), thus it is
omitted.

4. NUMERICAL EXAMPLES

This section presents two numerical examples.
Example I: An uncertain linear neutral system example is
considered as follows

(1) =[A+ DF(0)E, Jx(t) +[4, + DF(1)E, Ix(t — )
+[4, + DF(0)E, Ji(t —d) +[B + DF (1) E, Ju(t) (43)

0.5 0 02 0.2 0.1
] A/, = ] Ad = ]
1 02 -05 0 02

0 _ t
B= with h=05, d=02 and ¢0)=| - |,
0.5 e

0
where A=
0

Vie[-0.5,0]. The gain matrices are selected as

S, = [(1) ﬂ, S, =0.2.1f D=0, the system in (43) reduces
to the example studied in (Park, 2005a). Choosing p, =0.1,
p, =0.2, the stability of the difference equation is satisfied
9.0812 -1.3109
-1.3109 11.7136
been obtained for satisfying (17) appropriately. Then

with A, :[ } . A feasible solution set has

computing the cost function upper bound gives J =1.8478,
K =[-0.7173 —1.0736]-10°. However, one notices that the

achievable cost function bound obtained in (Park, 2005a) is
9.7773 with K =[-1.8737 —3.3077]. Hence the proposed

methodology is shown to be less conservative than that of
0.5
(Park, 2005a). Let us now choose D= {O 3},
E =[0.1 02], E,=[03 0.1], E,=[02 0.1], E, =0.1.
Then application of Theorem 1, 2 results in a set of feasible
solution. The upper bound of the cost function is calculated
as J =3.8706 and K =[-24.8891 —26.5678]. This result

shows that the performance of the proposed guaranteed cost
controller is still quite better than that of the method
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presented in (Park, 2005a) even in the case of norm-bounded
uncertainties.

Example 2: An example of uncertain nonlinear neutral
system is considered as follows

(1) = [4+ DF(0)E, Jx(t) + [4, + DF(t)E, |x(t - h)
+[4, + DF(0)E, |x(t - d) + [B+ DF (1) E, Ju(¢)
+f(x(@),0) + g(x(t =h),t) + h(x(t =d),t)  (44)

-1 1 0 0.2 0 0.1
where A= , A, = , A, = ,
1 -1 02 0 0 0.1

B:H, D:{O}, E =[0 02], E =1 03],

1 0.2
E,=[02 02], E,=05 and h=1.0, d =2.0. The initial

1
condition is given as q)(t):[ ,}, Vte[— 2.0,0] with the
e

1
Let us assume that (Xu et al., 2003), f(x(z),t)=0,
g(x(t—h),1)=0, h(x(t—d),t)= 0. The stability of V(x,) is

05 0
cost function gain matrices chosen as S, :[ 0 }, S, =1.

ensured by choosing p=p,=03 and
1.4214  -0.0108 . :
0 = , A=0.1281. The linear matrix
-0.0108 1.3121

inequality (17) has given a feasible solution set which
indicates that the cost function upper bound is computed as

J' =4.7377 with K =[-1.5309 —1.6587]. However, the

achievable cost function bound obtained in (Xu et al., 2003)
is 50.0275 with K =[-0.9943 —0.9615]. This shows that

the proposed methodology is capable of yielding less
conservative cost function bounds. Now let us assume that
the numerical example of neutral system given in (44)
involves nonlinear parameter perturbations defined such that

S(x(2),0) = [al cos t|xl (t)| a, sin t|x2 (t)|]r , |ai| <03,

gt = h(0),0) =B, cosdx, (.= )| B, sind, (¢ — )]
|B]<03,

h(i(t = d(©)),t) = [y, costfs, (¢ )| 7, sindx, ()]
|7/‘.|£0.3, i=12. The simulation work yields a feasible

solution set and the upper bound of the cost function is
computed as J' =11.9199 with K =[-2.8622 —2.5742].

Consequently, it can be seen that even in the case of
nonlinear parameter perturbations, the proposed robust
guaranteed cost neutral state feedback controller performs
much better than that given in (Xu et al., 2003).

5. CONCLUSIONS

This paper has investigated the design of a robust delay-
dependent guaranteed cost stabilizing controller for uncertain
nonlinear neutral systems. A memory type neutral form of
state-feedback control law is introduced. On the basis of a
descriptor representation, an augmented descriptor form of a
candidate Lyapunov-Krasovskii functional is adopted to
study the stability of the neutral system. Sufficient robust

delay-dependent linear matrix inequality (LMI) synthesis
conditions are derived. Two numerical examples have
concluded that the proposed method assures a less
conservative control cost in comparison to some of the
existing approaches.

REFERENCES

Esfehani, S. H., S. O. R. Moheimani, and I. R.

Petersen, “LMI approach to suboptimal guaranteed
cost control for uncertain time-delay systems”, /EE
Proceedings-Control Theory and Applications, vol.
145, no. 6, pp. 491-498, 1998.

Fridman, E., and U. Shaked, “An improved stabilization
method for linear time-delay systems”, I[EEE
Transactions on Automatic Control, vol. 47, no. 11,
pp- 1931-1937, 2002.

Hale, J., and S. V. Lunel, Introduction to Functional
Differential Equations, (Springer-Verlag, New York
1993).

He, Y., M. Wu, J.-H. Shi, and G.-P. Liu, “Delay-dependent
robust stability criteria for uncertain neutral systems
with mixed delays”, Systems and Control Letters,
vol. 51, pp. 57-65, 2004.

Lien, C. H., “Delay-dependent and delay-independent
guaranteed cost control for uncertain neutral systems
with time-varying delays via LMI approach”,
Chaos, Solitons and Fractals, vol. 33, no. 3, pp.
1017-1027, 2007.

Nian, X., and J. Feng, “Guaranteed cost control of a
linear uncertain system with multiple time-varying
delays: an LMI approach”, [EE Proceedings-
Control Theory and Applications, vol. 150, no. 1,
pp. 17-22, 2003.

Parlakci, M. N. A., “Robust stability of uncertain
time-varying state-delayed systems”, IEE
Proceedings-Control Theory and Applications, vol.
153, no. 4, pp. 469477, 2006.

Park, J. J., “Delay-dependent criterion for guaranteed cost
control of neutral delay systems”, Journal of
Optimization Theory and Applications, vol. 124, no.
2, pp. 491-502, 2005a.

Park, J. H., and O. Kwon, “On guaranteed cost
control of neutral systems by retarded integral state-
feedback”, Applied Mathematics and Computation,
vol. 165, no. 2, pp. 393—404, 2005b.

Yu, L., and J. Chu, “An LMI approach to guaranteed
cost control of linear uncertain time-delay systems”,
Automatica, vol. 35, no. 6, pp. 1155-1159, 1999.

Xu, S. Y., J. Lam, C. W. Yang, and E. I. Verriest,

“An LMI approach to guaranteed cost control for
uncertain  linear  neutral delay  systems”,
International Journal of Robust and Nonlinear
Control, vol. 13, no. 1, pp. 35-53, 2003.

Zhang, D. M., and L. Yu, “Delay-dependent guaranteed cost
control for generalized uncertain neural systems”,
Dynamics of Continuous Discrete and Impulsive
Systems - Series A — Mathematical Analysis, vol. 13,
pp- 974-982, 2006.

4892



