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Abstract: This paper addresses the problem of establishing robust stability of uncertain genetic
networks with SUM regulatory functions. For these networks we derive a sufficient condition for
robust stability by introducing a bounding set of the uncertain nonlinearity, and we show that
this condition can be formulated as a linear matrix inequality (LMI) optimization obtained via
the square matricial representation (SMR) of polynomials by adopting polynomial Lyapunov
functions and polynomial descriptions of the bounding set. Then, we propose a method for
computing a family of bounding sets by means of convex optimizations. It is worthwhile to
remark that these results are derived in spite of the fact that the variable equilibrium point
cannot be computed being the solution of a system of parameter-dependent nonlinear equations,
and is hence unknown.
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1. INTRODUCTION

The study of genetic regulatory networks has recently
become a fundamental challenge in systems biology as it
explains the interactions between genes and proteins to
form a complex system that performs complicated biolog-
ical functions, see for instance Jacob and Monod [1961],
Smolen et al. [2000], Bower and Bolouri [2001]. Genetic
networks are biochemically dynamical systems, and it is
natural to model genetic networks by using dynamical
system models which provide a powerful tool for studying
gene regulation processes in living organisms. Basically,
there are two types of genetic network models, the Boolean
model and the differential equation model. In Boolean
models, the activity of each gene is expressed in one of two
states, ON or OFF, and the state of a gene is determined
by a Boolean function of the states of other related genes.
In the differential equation models, the variables describe
the concentrations of gene products, such as mRNAs and
proteins, as continuous values of the gene regulation sys-
tems. See also Bay et al. [2002], Kobayashi et al. [2002],
Jong [2002], Wang et al. [2004], Aluru [2005], Davidson
[2006] and references therein for a wider categorization
of genetic networks models. Genetic networks with SUM
regulatory functions are differential equation models where
each transcription factor acts additively to regulate a gene,
i.e., the regulatory function sums over all the inputs. For
further details see for example Li et al. [2006] where the
stability of these networks is studied in presence of time
delays.

In modeling genetic networks, like any other biological or
physical system, it is necessary to introduce estimation
errors, which makes the mathematical model uncertain.
This means that one has to investigate the stability of
an uncertain nonlinear system. In the control literature,
stability analysis of uncertain linear systems is a widely

studied problem with a lot of contributions in recent years
(see for example Chesi et al. [2005], Scherer [2006] and
references therein) generally formulated as linear matrix
inequality (LMI) optimizations Boyd et al. [1994]. Unfor-
tunately, genetic networks are nonlinear systems, which
means that not only the dynamics but also the equilib-
rium point are uncertain. Moreover, the relationship be-
tween this uncertain equilibrium point and the uncertainty
cannot be calculated being the solution of a system of
parameter-dependent nonlinear equations.

In spite of these difficulties, we propose in this paper
a condition for establishing robust stability of uncertain
genetic networks with SUM regulatory functions. Specif-
ically, we assume that the coefficients of the genetic net-
work are unknown being affected by uncertain parameters.
We derive a condition for robust stability by substituting
the uncertain nonlinearity with an auxiliary variable con-
strained in a bounding set. This condition ensures that,
for each admissible value of the uncertainties, the system
has only one equilibrium point and this equilibrium point
is globally asymptotically stable in the positive octant.
Moreover, we show that this condition can be formulated
as an LMI optimization by exploiting the square matricial
representation (SMR) of polynomials and adopting poly-
nomially parameter-dependent Lyapunov functions and
polynomial descriptions of the bounding set. Then, we
consider the problem of calculating a family of bounding
sets. The difficulty of this step is that, in order to reduce
the conservatism, the bounding sets must be calculated
on the basis of the variable equilibrium point which is an
unknown function of the uncertainty. In order to overcome
this problem we propose two procedures: the first one for
obtaining an embedding set of the variable equilibrium,
and the second one for calculating a family of bounding
sets of the uncertain nonlinearity based on this estimate
of the equilibrium point.

Proceedings of the 17th World Congress
The International Federation of Automatic Control
Seoul, Korea, July 6-11, 2008

978-1-1234-7890-2/08/$20.00 © 2008 IFAC 12593 10.3182/20080706-5-KR-1001.0205



It is worthwhile to remark that the problem of establish-
ing stability of uncertain genetic networks has not been
considered yet in the literature.

2. PRELIMINARIES

2.1 Problem formulation

Notation: 0n: origin of R
n; R

n
+: nonnegative real numbers

set; In: identity matrix n× n; A′: transpose of matrix A;
A > 0 (A ≥ 0): symmetric positive definite (semidefinite)
matrix A; diag(v): diagonal matrix whose diagonal com-
ponents are the entries of the vector v; A⊗B: Kronecker’s
product of matrices A and B; [a, b] and [a; b]: row and
column concatenations of vectors a, b; ⌈c⌉: smallest integer
greater than or equal to c.

A genetic regulatory network with SUM regulatory func-
tions can be described by the model

{

ṁ(t) = Am(t) + b+Bg(p(t))
ṗ(t) = Cp(t) +Dm(t)

(1)

where m(t) and p(t) ∈ R
n are the concentration vectors

of mRNA and protein of the i-th gene, A and C ∈ R
n×n

are diagonal Hurwitz matrices containing the degradation
rates, D ∈ R

n×n is a diagonal positive definite matrix,
B ∈ R

n×n is the coupling matrix, b ∈ R
n and β is

a positive constant. The i-th component of the function
g(p(t)) is

gi(p(t)) =
pi(t)

H

βH + pi(t)H
(2)

where H is the Hill coefficient. See for example Li et al.
[2006] for details and illustrations of the structure and
regulation mechanism of this genetic network and for the
typical relation between b and B.

In this paper we address the stability analysis of the
genetic network (1) affected by time-invariant parametric
uncertainties. In particular, we consider the model

{

ṁ(t) = A(θ)m(t) + b(θ) +B(θ)g(p(t))
ṗ(t) = C(θ)p(t) +D(θ)m(t)
θ ∈ Θ

(3)

where θ ∈ R
r is the time-invariant uncertainty vector and

Θ is the uncertainty set described by the hypercube

Θ = {θ ∈ R
r : θi ∈ [0, 1] ∀i} . (4)

The functions A(θ), C(θ), D(θ), B(θ) ∈ R
n×n and b(θ) ∈

R
n are linear, with A(θ) and C(θ) diagonal Hurwitz for

each θ ∈ Θ, and D(θ) diagonal and positive definite for
each θ ∈ Θ. The problem we consider is as follows.

Problem P1: to establish if, for each θ ∈ Θ, system
(3) has an equilibrium point in R

2n
+ and whose domain

of attraction includes R
2n
+ .

In the sequel the dependence on t will be omitted where
appropriate for ease of notation. Let us observe that, if
problem P1 has a positive answer, the equilibrium point
is unique and globally asymptotically stable in R

2n
+ .

2.2 Square matricial representation (SMR)

Let us introduce a key representation of polynomials. Let
s(x) be a polynomial of degree 2m in x ∈ R

n. This

polynomial can be represented via the square matricial
representation (SMR) of polynomials as

s(x) = x[m]′S(α)x[m]. (5)

In (5), x[m] ∈ R
ν(n,m) is a vector containing all monomials

of degree less than or equal to m in x, and S(α) ∈
R

ν(n,m)×ν(n,m) is a symmetric matrix affine on a free
vector αµ(n,m). The quantities ν(n,m) and µ(n,m) are

ν(n,m) =
(n+m)!

n!m!

µ(n,m) =
1

2
ν(n,m)(ν(n,m) + 1) − ν(n, 2m).

(6)

For details see Chesi et al. [1999, 2003]. In the sequel we
will refer to S(α) as SMR matrix of s(x).

3. STABILITY CONDITION

Let [m∗(θ); p∗(θ)] ∈ R
2n be an equilibrium point of (3),

that is a solution of the nonlinear equations
{

A(θ)m+ b(θ) +B(θ)g(p) = 0n

C(θ)p+D(θ)m = 0n
(7)

Let us first introduce the following remark.

Remark 1. By the nature of the problem, all trajectories
of (3) starting in R

2n
+ remain in R

2n
+ for each θ ∈ Θ. In fact,

from (1) one has that the derivatives of m when m = 0n

and p when p = 0n are non-negative. Hence:
[

m(0)
p(0)

]

∈ R
2n
+ ⇒

[

m(t)
p(t)

]

∈ R
2n
+ ∀t ≥ 0 ∀θ ∈ Θ. (8)

Let us shift the unknown equilibrium point [m∗(θ); p∗(θ)]
in the origin by defining

x = m−m∗(θ)
y = p− p∗(θ).

(9)

System (3) becomes:
{

ẋ = A(θ)x +B(θ)h(y, p∗(θ))
ẏ = C(θ)y +D(θ)x
θ ∈ Θ

(10)

where the i-th component of the function h(y, p∗(θ)) is

hi(y, p
∗(θ)) =

(yi + p∗i (θ))
H

βH + (yi + p∗i (θ))
H

−
p∗i (θ)

H

βH + p∗i (θ)
H
. (11)

Let X (θ) × Y(θ) be the image of R
2n
+ via the map (9):

X (θ) = {x ∈ R
n : xi ≥ −m∗

i (θ) ∀i = 1, . . . , n}
Y(θ) = {y ∈ R

n : yi ≥ −p∗i (θ) ∀i = 1, . . . , n} .
(12)

The following result provides a first step for building a
solution of problem P1.

Theorem 1. Let Z(y, θ) ⊆ R
n be any set satisfying the

following condition:

h(y, p∗(θ)) ∈ Z(y, θ) ∀y ∈ Y(θ) ∀θ ∈ Θ. (13)

Suppose there exists a parameter-dependent Lyapunov
function v(x, y, θ) such that it is continuously differentiable
and radially unbounded for each θ ∈ Θ and

v(x, y, θ) > 0
v̄(x, y, z, θ) < 0

}

∀[x; y] ∈ R
2n \ 02n

∀z ∈ Z(y, θ) ∀θ ∈ Θ
(14)

where

v̄(x, y, z, θ) =
∂v(x, y, θ)

∂[x; y]

[

A(θ)x +B(θ)z
D(θ)x + C(θ)y

]

(15)

Then, problem P1 admits a positive answer.
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Proof. Suppose that the conditions (13)–(14) are satisfied.
From (15) one has that v(x, y, θ) is positive definite (with
respect to x, y) for each θ ∈ Θ and that the derivative of
v(x, y, θ) along the trajectories of (10) is negative definite
in X (θ) × Y(θ) for each θ ∈ Θ. In fact, from (13) one has
that for all y ∈ Y(θ) there exists z ∈ Z(y, θ) such that
v̄(x, y, z, θ) = v̇(x, y, θ) for each θ ∈ Θ, being

v̇(x, y, θ) =
∂v(x, y, θ)

∂[x; y]

[

A(θ)x +B(θ)h(y, p∗(θ))
D(θ)x + C(θ)y

]

.

Hence, let us consider any trajectory [x(t); y(t)] of system
(10) starting in X (θ) × Y(θ). From the positive definite-
ness of v(x, y, θ) and −v̇(x, y, θ) in X (θ) × Y(θ) one has
that [x(t); y(t)] move on decreasing level sets of v(x, y, θ)
asymptotically reaching the origin unless [x(t); y(t)] exits
from X (θ)×Y(θ). But the latter case is impossible because
from (12) and the first condition in (13) one has that

[x(t); y(t)] 6∈ X (θ) × Y(θ) ⇒ [m(t); p(t)] 6∈ R
2n
+

which contradicts (8). Therefore, the theorem holds. �

Theorem 1 provides a sufficient condition for problem P1
based on the existence of a suitable set Z(y, θ) and a
suitable Lyapunov function v(x, y, θ).

Remark 2. Let us observe that we have derived this
condition in spite of the fact that the equilibrium point
[m∗(θ); p∗(θ)] of system (3) cannot be calculated being
the solution of a system of parameter-dependent nonlinear
equations.

Remark 3. Let us also observe that Theorem 1 pro-
vides a guaranteed domain of attraction of the unknown
equilibrium point [m∗(θ); p∗(θ)] without requiring that the
derivative of the Lyapunov function is negative definite in
a sublevel set of the Lyapunov function including R

2n
+ nor

in the whole space R
2n.

The condition of Theorem 1 can be tackled through convex
LMI optimizations by restricting our attention to polyno-
mial Lyapunov functions and polynomial descriptions of
the set Z(y, θ). In particular, let us select v(x, y, θ) as a
parameter-dependent quadratic Lyapunov functions with
polynomial dependence according to

v(x, y, θ) = [x; y]′V̄ (θ)[x; y]

V̄ (θ) = V
(

θ[δv ] ⊗ I2n

)

(16)

where δv is the degree of the dependence and V is a matrix
of suitable dimension such that V̄ (θ) = V̄ (θ)′. Then, we
describe Z(y, θ) as follows:

Z(y, θ) = {z ∈ R
n : ai(y, z, θ) ≥ 0 ∀i = 1, . . . , na} (17)

where ai(y, z, θ) are suitable polynomials of degree δa in θ
such that condition (13) holds (the computation of these
polynomials will be dealt with in Section 4).

The next step for obtaining an LMI formulation of Theo-
rem 1 consists of exploiting the Hilbert’s positivstellensatz
and a parameter-dependent extension of the SMR of poly-
nomials. In particular, let us define c = [x; y; z] and

t1(c, θ) = v(x, y, θ) −
r

∑

i=1

θi(1 − θi)s1,i(c, θ)

t2(c, θ) = −v̄(x, y, z, θ) −
r

∑

i=1

θi(1 − θi)s2,i(c, θ)

−
na
∑

i=1

ai(y, z, θ)s3,i(c, θ)

(18)

where s1,i(c, θ), s2,i(c, θ) and s3,i(c, θ) are auxiliary poly-
nomials to determine known as Hilbert’s polynomials. Let

us select δ1 ≥
⌈

δv

2

⌉

, δ2 ≥
⌈

max{δv+1,2δ3+δa}
2

⌉

, δ3 ≥ 0 and

let us express these polynomials as

tk(c, θ) =
(

θ[δk+1] ⊗ ξk(c)
)′

Tk

(

θ[δk+1] ⊗ ξk(c)
)

sk,i(c, θ) =
(

θ[δk] ⊗ ξk(c)
)′

Sk,i

(

θ[δk] ⊗ ξk(c)
) (19)

where Tk and Sk,i are SMR matrices and ξk(c) are cho-
sen vectors containing bases for these polynomials. For
example, if t2(c, θ) is quadratic in c, one can simply select

ξk(c) = c since t2(c, θ) =
(

θ[δ2+1] ⊗ c
)′
T2

(

θ[δ2+1] ⊗ c
)

.
Lastly, for k = 1, 2 let us define the linear sets

Nk =

{

Nk = N ′
k :

(

θ[δk+1] ⊗ ξk(c)
)′

Nk

·
(

θ[δk+1] ⊗ ξk(c)
)

= 0 ∀c ∀θ
}

(20)

and let Nk(αk) be linear parameterizations of Nk where
αk is a free vector of suitable dimension.

Theorem 2. Suppose there exist V, S∗, α∗ such that the
following LMIs are satisfied:

Tk +Nk(αk) > 0 ∀k = 1, 2
Sk,i > 0 ∀k = 1, 2 ∀i = 1, . . . , r
S3,i > 0 ∀i = 1, . . . , na

(21)

Then, problem P1 admits a positive answer.

Proof. Suppose that (21) is satisfied. By multiplying the
inequality T2 + N2(α2) > 0 by θ[δ2] ⊗ ξ2(c) on the left
and right sides and exploiting the definition of N2(α2)
one obtains that t2(c, θ) > 0. Similarly, from the other
LMIs one obtains analogous positivity conditions for the
polynomials in (18). Now, let us consider any θ ∈ Θ and
c = [x; y; z] such that [x; y] 6= 02n and z ∈ Z(y, θ). It
follows from (17) that ai(y, z, θ) ≥ 0 for all i = 1, . . . , na.
Moreover, from the definition of t2(c, θ) in (18) and Θ
in (4) one has that the condition t2(c, θ) > 0 implies
v̄(x, y, z, θ) < 0 as required by condition (14). Analogously,
one proves from the definition of t1(c, θ) in (18) that
v(x, y, θ) satisfies condition (14). �

Theorem 2 provides a sufficient condition for problem P1
via an LMI feasibility test, which is a convex optimization.
This condition is obtained by exploiting a polynomial
description of the set Z(y, θ) which contains the uncertain
nonlinearity of system (10) under the assumption that con-
dition (13) is satisfied. The SMR matrices T1, T2, N1(α1)
and N2(α2) involved in the condition of Theorem 2 can
be computed via simple algorithms, see for example Chesi
et al. [2003].
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4. COMPUTATION OF THE UNCERTAIN
NONLINEARITY BOUNDING SET

In this section we consider the problem of computing
polynomials ai(y, z, θ) such that the set Z(y, θ) in (17)
satisfies the condition (13). We proceed according to the
following steps:

(1) characterizing the variable equilibrium point of sys-
tem (3);

(2) computing ai(y, z, θ) on the base of this characteriza-
tion.

4.1 Characterizing the variable equilibrium point

Let us define the set P of possible values for the p-
component of the equilibrium points of (3) as

P =
{

p ∈ R
n
+ : [m; p] is a solution of (7)

for some m ∈ R
n and θ ∈ Θ} .

(22)

Since the computation of P is a difficult task, we proceed
by computing an embedding set of P .

Theorem 3. Let Θv = {0, 1}r be the set of vertices of Θ
and let φ−i and φ+

i be any quantities satisfying

φ−i ≤ min
θ∈Θ

Di,i(θ)

Ai,i(θ)Ci,i(θ)

φ+
i ≥ max

θ∈Θ

Di,i(θ)

Ai,i(θ)Ci,i(θ)

(23)

for all i = 1, . . . , n. For i = 1, . . . , n let us define u−0,i = 0

and u+
0,i = +∞. Moreover, for k ≥ 1 let us define the set

Uk =
{

u ∈ R
n : u−k,i ≤ ui ≤ u+

k,i ∀i = 1, . . . , n
}

(24)

where
u−k,i = max{u−k−1,i, φ

−
i ψ

−
k,i}

u+
k,i = min{u+

k−1,i, φ
+
i ψ

+
k,i}

(25)

and
ψ−

k,i = min
[θ;q]∈Θv×Qk−1

e′i (b(θ) +B(θ)q)

ψ+
k,i = max

[θ;q]∈Θv×Qk−1

e′i (b(θ) +B(θ)q)
(26)

being ei ∈ R
n the i-th column of In and

Qk =
{

g(u) : ui = u−k,i, u
+
k,i

}

(27)

with g(·) as in (2). Then,

Uk ⊇ Uk+1 ⊇ P ∀k ≥ 1. (28)

Proof. Let us consider first k = 1. From the definition of
equilibrium points of the system (3) in (7), one has that
p ∈ P if and only if

−A(θ)D(θ)−1C(θ)p+ b(θ) +B(θ)g(p) = 0n

p ∈ R
n
+

for some θ ∈ Θ. If p ∈ R
n
+ one has that g(p) ∈ [0, 1]n and,

hence, each p satisfying the previous conditions satisfies
also

p = C(θ)−1D(θ)A(θ)−1 (b(θ) +B(θ)q)

for some q ∈ [0, 1]n. Hence, taking into account that
A(θ), C(θ), D(θ) are diagonal one has

min
p∈P

pi ≥ ū−1,i

ū−1,i = min
[θ;q]∈Θ×[0,1]n

Di,i(θ)e
′
i (b(θ) +B(θ)q)

Ai,i(θ)Ci,i(θ)
.

Moreover,

ū−1,i ≥ φ−i min
[θ;q]∈Θ×[0,1]n

e′i (b(θ) +B(θ)q)

= φ−i ψ
−
1,i

because e′i (b(θ) +B(θ)q) is a multi-linear function and
hence the minimum over the hypercube Θ × [0, 1]n is
taken on the vertices of this hypercube. Hence, taking
into account that pi ≥ u−0,i = 0 for all p ∈ P one has

immediately shows that U1 ⊇ P . Then, from (25) it is
clear that Uk ⊇ Uk+1 because the limits of the set Uk do
not increase with k. Hence, the theorem holds. �

Theorem 3 provides an iterative strategy for computing an
embedding set of P which consists of the following steps:

(1) calculate φ−i and φ+
i which are respectively a lower

and an upper bound of a rational function over the
hypercube Θ;

(2) calculate ψ−
k,i and ψ+

k,i which are respectively the
minimum and maximum of a function on the set of
vertices Θv ×Qk−1;

(3) iterate the calculation of ψ−
k,i and ψ+

k,i based on the
estimate found at the previous iteration.

The computation of ψ−
k,i and ψ+

k,i is trivial. For the

computation of the φ−i and φ+
i in the general case one

can readily exploit dedicated software based on convex
LMI optimizations, see for example Henrion and Lasserre
[2002], Chesi et al. [2003]. Moreover, there are special
cases in which also the computation of φ−i and φ+

i is
trivial, such as r = 1 (one has to find the minimum and
maximum of a rational function of a scalar parameter).
The following simple numerical example illustrates the
proposed procedure.

Example A. Let us consider system (3) with H = 2,
β = 1, n = 2, r = 1 and

A(θ) = diag(−1 + 0.2θ1,−1)

C(θ) = diag(−1 − 0.3θ1,−1)

D(θ) = diag(1 + 0.2θ1, 1 + 0.1θ1)

B(θ) =

[

0 −0.3 − 0.2θ1
0.2 + 0.5θ1 0

]

b(θ) = [0.5 + 0.3θ1; 0].

(29)

The first step consists of computing the quantities φ−i , φ
+
i

satisfying the condition (23). For i = 1 we have:

φ−1 ≤
1 + 0.2θ1

(1 − 0.2θ1)(1 + 0.3θ1)
≤ φ+

1 ∀θ1 ∈ [0, 1] (30)

and, by simply looking at the zeros of the first derivative,
one sees that φ−1 and φ+

1 can be selected respectively as 1
and 1.154. Analogously, one finds that φ−2 and φ+

2 can be
selected as φ−2 = 1 and φ+

2 = 1.1.
The next step consists of computing the embedding set Uk

in (24) by simply evaluating the function e′i (b(θ) +B(θ)q)
on the set of vertices Θv × Qk−1. Table 1 shows the
estimates obtained for some values of k. Let us observe
that the convergence is quite fast as the final value (shown
at the 20-th iteration) is reached in about 4 iterations.
Figure 1 shows the set U4 and the true equilibrium
point p∗(θ) computed by solving the system of nonlinear
equations (7) for θ = 0, 0.1, . . . , 0.9, 1: as we can see p∗(θ)
belongs to U4 for each θ ∈ Θ according to Theorem 3.
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k u
−

k,1
u
+

k,1
u
−

k,2
u
+

k,2

1 0 0.577 0 0.77

2 0.188 0.577 0 0.192

3 0.289 0.577 0.00685 0.192

4 0.289 0.577 0.0154 0.192

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

20 0.289 0.577 0.0154 0.192

Table 1. Example A: embedding sets Uk of P .

0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

p1

p
2

Fig. 1. Example A: box U4 (solid line) and true equilibrium
point p∗(θ) for θ = 0, 0.1, . . . , 1 (“∗” marks).

4.2 Uncertain nonlinearity bounding set

In this section we consider the problem of computing
bounding sets Z(y, θ) satisfying the condition (13) based
on the embedding set Uk of P provided by Theorem
3. The first step consists of selecting a structure for
the polynomials ai(y, z, θ) in (17). Since hi(y, p

∗(θ)) for
y ∈ Y(θ) is a monotonically increasing function with
saturation and vanishing at y = 0n, one can select for
example the linear set

ai(y, z, θ) = zi(σiyi − zi) (31)

or the parameter-dependent quadratic set

ai(y, z, θ) = zi((σi,1 +σ′
i,2θ)yi − zi(σi,3 +σ′

i,4θ+ yi)) (32)

where σi, σi,1, σi,3 ∈ R and σi,2, σi,4 ∈ R
r are constants.

For clarity and conciseness, we illustrate the technique
for the structure (31). With this definition of Z(y, θ), the
condition (13) is fulfilled if and only if

hi(y, p) (σiyi − hi(y, p)) ≥ 0 ∀i = 1, . . . , n
∀yi ≥ −pi ∀p ∈ P

(33)

From the definition of the function hi(y, p) in (11), one has
that this condition holds if and only if

oi(yi, pi) ≥ 0 ∀i = 1, . . . , n ∀yi ≥ −pi ∀p ∈ P (34)

where

oi(yi, pi) = σiyi(β
H + pH

i )
(

βH + (yi + pi)
H

)

·
(

(yi + pi)
H − pH

i

)

− βH
(

(yi + pi)
H − pH

i

)2
.

(35)

In order to determine σi satisfying (34), we can exploit
the SMR of polynomials and LMI optimizations. To this
end, let us observe that oi(yi, pi) is a polynomial in yi

whose coefficients depend on pi, and hence we can adopt
a parameter-dependent structure where the parameter is
pi. Specifically, let us define the polynomial

t4,i(yi, pi) = oi(yi, pi) − (yi + pi)s4,i(yi, pi)
−(pi − u−k,i)(u

+
k,i − pi)s5,i(yi, pi)

(36)

where s4,i(yi, pi) and s5,i(yi, pi) are auxiliary polynomials

and u−k,i and u+
k,i are the bounds of the set Uk in (24).

Let us select δ4 ≥
⌈

2H+1
2

⌉

, δ5 ≥
⌈

3H−1
2

⌉

and the following
structures:

t4,i(yi, pi) =
(

pi
[δ4] ⊗ yi

[δ5]
)′

T4,i

(

pi
[δ4] ⊗ yi

[δ5]
)

s4,i(yi, pi) =
(

pi
[δ4−1] ⊗ yi

[δ5−1]
)′

S4,i

(

pi
[δ4−1] ⊗ yi

[δ5−1]
)

s5,i(yi, pi) =
(

pi
[δ4−1] ⊗ yi

[δ5]
)′

S5,i

(

pi
[δ4−1] ⊗ yi

[δ5]
)

(37)
where T4,i, S4,i and S5,i are SMR matrices of suitable di-
mension. Moreover, let N4(α4) be a linear parametrization

of the set {N = N ′ :
(

pi
[δ4] ⊗ yi

[δ5]
)′
N

(

pi
[δ4] ⊗ yi

[δ5]
)

=
0 ∀yi ∀pi} where α4 is a free vector of suitable dimension.

Lastly, let us observe that there exist multiple constants
σi satisfying (13), and clearly one wants to pick up the
smallest one in order to reduce the conservatism of Z(y, θ).
The computation of an upper bound of this optimal
constant is considered in the following result.

Theorem 4. For all i = 1, . . . , n let σ̄i be the solution of
the following EVP:

σ̄i = min
σi,S4,i,S5,i,α4,i

σi

s.t.

{

T4,i +N4(α4,i) ≥ 0
Sj,i ≥ 0 ∀j = 4, 5

(38)

Then, the set Z(y, θ) defined with ai(y, z, θ) as in (31) for
σi = σ̄i satisfies the condition (13).

Proof. Similarly to the proof of Theorem 2 one proves that
t4,i(yi, pi) and sj,i(yi, pi) are nonnegative. Then, for any yi

and pi such that yi ∈ [−pi,+∞) and p ∈ P , one has that
the non-negativity of t4,i(yi, pi) and sj,i(yi, pi) and the fact
that Uk ⊇ P for all k ≥ 1 (see Theorem 3) imply that
oi(yi, pi) ≥ 0 as required by condition (34). Lastly, the
optimization (38) is an EVP because the cost is a linear
function of the LMI variables Boyd et al. [1994]. �

Theorem 4 provides a technique to find the set Z(y, θ)
which amounts to solving an EVP (that is a convex
optimization constrained by LMIs).

5. AN EXAMPLE

Let us consider the uncertain genetic network described
by (3) with H = 2, β = 1, n = 5, r = 1 and

A(θ) = diag(−1 − 0.2θ1,−1,−1,−1,−1)

C(θ) = diag(−1,−1− 0.2θ1,−1,−1,−1)

D(θ) = diag(0.8 + 0.2θ1, 0.8, 0.8, 0.8, 0.8 + 0.1θ1)

B(θ) =











0 −0.5 0.5 + 0.1θ1 0 0
−0.5 0 0 0.5 0.5 + 0.2θ1

0 0.5 0 0 0
0.5 −0.5 0 0 0

0.1θ1 0 0 0.5 0











b(θ) = [0.5; 0.5; 0; 0.5; 0].

The model for θ1 = 0 is considered in Li et al. [2006].

Let us consider first problem P1. We compute an embed-
ding set Uk of P as described in Section 4.1, and then
constants σi satisfying the condition (13). We find the
set U11 shown in Table 2 (after the 11-th iteration of the
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procedure in Theorem 3 these values remain constant). Ta-
ble 2 also shows the constants σ̄i obtained from Theorem
4. We select a parameter-dependent quadratic Lyapunov

i 1 2 3 4 5

u
−

11,i
0.341 0.335 0.0404 0.382 0.0509

u
+

11,i
0.376 0.419 0.0597 0.409 0.0757

σ̄i 0.633 0.639 0.529 0.638 0.536

Table 2. Example 1: embedding set U11 of P
and constants σi based on this set.

function with polynomial dependence of degree δv = 0
(common quadratic Lyapunov function) and find that the
LMI (21) is satisfied. Hence, according to Theorem 2
we find that, for each θ ∈ Θ, the system considered in
this example has an equilibrium point in R

2n
+ and whose

domain of attraction includes R
2n
+ .

In addition to problem P1 we also consider the following
problem:

Problem P2: to compute a lower bound of the stability
margin

̺∗ = sup {̺ : problem P1 has a positive
answer with Θ replaced by Θ(̺)}

Θ(̺) = {θ ∈ R
r : θi ∈ [0, ̺] ∀i} .

(39)

We can address problem P2 via a bisection algorithm on ̺
where, at each step, the robust stability for each θ ∈ Θ(̺)
is established by using Theorem 2. By using a common
Lyapunov function we find the lower bound ̺∗0 = 21.4.
This lower bound can be improved by increasing δv. In
particular, with δv = 1 we find ̺∗1 = 31.1.

Regarding the complexity of the proposed approach, we
have that the number of scalar variables in the LMI
optimization (21) for this example is 296 for the case
δv = 0 and 451 for the case δv = 1 (see also Table 3 where
different values of n are also shown). The computational
time for these two cases are less than 10 seconds on a
standard PC.

δv | n 1 2 3 4 5

0 16 53 112 193 296

1 23 79 169 293 451

Table 3. Example 1: number of scalar variables
in the LMI optimization (21).

6. CONCLUSION

In this paper we have addressed the problem of estab-
lishing robust stability of genetic regulatory networks af-
fected by parametric uncertainties. We have proposed a
sufficient condition for robust stability by introducing a
bounding set of the uncertain nonlinearity which ensures
that, for each admissible value of the uncertainties, the
system has only one equilibrium point and this equilibrium
point is globally asymptotically stable in the positive oc-
tant. Moreover, we have shown that this condition can be
formulated as an LMI optimization by considering poly-
nomial Lyapunov functions and polynomial descriptions
of the bounding set and by exploiting the square matri-
cial representation (SMR) of polynomials. Then, we have

shown that a family of bounding sets can be computed
by means of convex optimizations in spite of the fact that
the variable equilibrium point cannot be calculated being
the solution of a system of parameter-dependent nonlinear
equations.

ACKNOWLEDGEMENT

The authors would like to thank the Associate Editor and
Reviewers for their comments.

REFERENCES

S. Aluru, editor. Handbook of Computational Molecular
Biology. Computer and Information Science Series.
Chapman and All/Crc, 2005.

S. D. Bay, J. Shrager, A. Pohorille, and P. Langley.
Revising regulatory networks: From expression data to
linear causal models. Journal of Biomedical Informatics,
35(5):289–297, 2002.

J. M. Bower and H. Bolouri, editors. Computational
Modeling of Genetic and Biochemical Networks. Com-
putational Molecular Biology. MIT Press, 2001.

S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan.
Linear Matrix Inequalities in System and Control The-
ory. SIAM, Philadelphia, 1994.

G. Chesi, A. Tesi, A. Vicino, and R. Genesio. On convex-
ification of some minimum distance problems. In 5th
European Control Conf., Karlsruhe, Germany, 1999.

G. Chesi, A. Garulli, A. Tesi, and A. Vicino. Solv-
ing quadratic distance problems: an LMI-based ap-
proach. IEEE Trans. on Automatic Control, 48(2):200–
212, 2003.

G. Chesi, A. Garulli, A. Tesi, and A. Vicino. Polynomially
parameter-dependent Lyapunov functions for robust
stability of polytopic systems: an LMI approach. IEEE
Trans. on Automatic Control, 50(3):365–370, 2005.

E. H. Davidson. The Regulatory Genome: Gene Regulatory
Networks In Development And Evolution. Academic
Press, 2006.

D. Henrion and J. B. Lasserre. GloptiPoly: Global Op-
timization over Polynomials with Matlab and SeDuMi.
In Proc. of 41st IEEE Conf. on Decision and Control,
Las Vegas, Nevada, 2002.

F. Jacob and J. Monod. Genetic regulatory mechanisms in
the synthesis of proteins. Journal of Molecular Biology,
3:318–356, 1961.

H. De Jong. Modeling and simulation of genetic regulatory
systems: A literature review. Journal of Computation
Biology, 9:67–103, 2002.

T. Kobayashi, L. Chen, and K. Aihara. Modeling genetic
switches with positive feedback loops. Journal of Theo-
retical Biology, 221:379–399, 2002.

C. Li, L. Chen, and K. Aihara. Stability of genetic
networks with sum regulatory logic: Lure system and
lmi approach. IEEE Trans. on Circuits and Systems-I,
53(11):2451–2458, 2006.

C. W. Scherer. LMI relaxations in robust control. Euro-
pean Journal of Control, 12(1):3–29, 2006.

P. Smolen, D. A. Baxter, and J. H. Byrne. Mathematical
modeling of gene networks. Neuron, 26(3):567–580,
2000.

R. Wang, T. Zhou, Z. Jing, and L. Chen. Modelling
periodic oscillation of biological systems with multiple
time scale networks. Systems Biology, 1:71–84, 2004.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

12598


