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Abstract: The problem of fault accommodation is considered for a class of nonlinear systems whose 
purpose is tracking the prescribed trajectory. In the framework of solving above problem, two main tasks 

are investigated involving algebraic tools (algebra of functions). The first task is nonlinear model 

reduction followed by adaptive observer design for fault estimation. The second one is asymptotic model 

matching to accommodate the faults. 

 

1. INTRODUCTION 

An increasing demand on reliability and safety for critical 
purpose control systems calls for the use of fault tolerant 

control (FTC) techniques. The goal of FTC is to determine 

such control law that preserves the main performances of the 

system in faulty case while the minor performances may 

degrade. An active approach to FTC is associated with on 

line fault detection and estimation followed by control law 
accommodation (Patton, 1997; Chen and Patton, 1999; 

Blanke et. al., 2003). During last years different solutions 

were proposed to FTC problem involving the methods of 

optimal control (Staroswiecki, et. al., 2006), H-infinity 

optimization (Weng et. al., 2006), model matching 

(Staroswiecki, 2005), adaptive control (Jiang et. al., 2003). 

This paper deals with a class of systems whose purpose is 
tracking the prescribed trajectory. Different kinds of technical 

objects such as missiles, vehicles and manipulators belong to 

this class. The problem under consideration is formulated as 

follows: for a given reference model of the system and a 

given control it is necessary to find a new control such that 

the output of faulty system is asymptotically converging to 

the corresponding output produced by the reference model. 

Above problem is closely related to asymptotic model 
matching whose solution for nonlinear affine systems has 

been considered by Isidori (1989) within the framework of 

geometric approach. Nonlinear system transformation to so-

called normal form is a basis for this solution. 

In this paper, algebraic approach (algebra of functions) is 
proposed to solve FTC problem for nonlinear dynamic 

systems. It will allow extending the solution of asymptotic 

model matching task on the class of nonlinear systems that is 

more general than affine ones. Notice that algebraic approach 

was applied earlier for solving different tasks dealing with 

nonlinear system analysis, transformation and fault diagnosis 

(see e.g. Zhirabok and Shumsky, 1987; 1989; 1993; so on).  

An idea of solution considered in the paper is: firstly, to 
extend the state space of nonlinear system by parameters 

subjected to fault action, secondly, to use an adaptive 

observer for estimating both system states and parameters 

and, thirdly, to accommodate the faults involving asymptotic 

model matching techniques. Solution of the last two tasks is 
based on nonlinear model transformations. As a result, 

studying these transformations is the central point of 

investigations. 

The paper is organized as follows. In Section 2, description 
of FTC method is given. Section 3 is devoted to algebraic 

methods for nonlinear model transformations. Illustrative 

example is given in Section 4. Section 5 concludes the paper. 

2. FTC METHOD DESCRIPTION 

Consider the system specified by equations of the form 

))(()()),(),(),(()(
.

txhtyttutxftx =ϑ=           (1) 

 

where nRXtx ⊆∈)(  is the vector of state, pRUtu ⊆∈)( is 

the input vector, lRYty ⊆∈)(  is the output vector, 

qRt ⊆Θ∈ϑ )(  is the parameter vector given for fault 

representation, f and h  are nonlinear vector functions 

assumed to be smooth. Let for healthy system 0)( ϑ=ϑ t , 

where 0ϑ is the nominal value of the parameter vector. The 

model (1) under 0)( ϑ=ϑ t is called nominal or reference 

system model and is written as follows  

))(()()),(),(()(
.

txhtytutxftx == .            (2) 

Faults in the system result in 0)( ϑ≠ϑ t . It is assumed that 

after abrupt fault distorted parameter vector takes constant 

value fϑ . 

Assume that the output of reference model (2) under control 

)(tu  provides the desirable system trajectory. Consider a 

way of the new control )(' tu  generation such that the output 
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of the system (1) with ft ϑ=ϑ )(  is asymptotically 

converging to the corresponding output produced by the 

reference model. 

Let 

0)(
.

=ϑ t                                      (3) 

and introduce extended system model (1), (3). This model is 

considered as the base for adaptive observer design as well as 
for asymptotic model matching. Notice in advance, that 

adaptive observer design needs in observability of the 

extended model (see Section 3). If it is not a case, using 

appropriate coordinate transformation 

))(),(()( ttxtz ϑϕ=                            (4) 

one may find equivalent (in the sense of input-output 
behaviour) observable model of the form 

))(()()),(),(()(
.

tzhtytutzftz ∗∗ == .          (5) 

For the model (5), consider equivalent transformation to 
normal form 
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zn  the dimension of the model (5) state vector. Denote 
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and assume that for every )),,((, ϑϕψ=ξξ x ,, Θ∈ϑ∈ Xx  

Uu ∈'  
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In this case nonlinear equation 

wug =′ξ ),(                                 (8) 

is solvable for u ′ . Let solution of (8) is written in the form 

),( wu ξη=′ .                              (9) 

Taking 
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one obtains from (4), (6) – (8) 
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Subscript (R) in (10) and below accompanies the vectors of 
the reference (nominal) model (2). Thus, an appropriate 

choosing the roots ,1, i
i
j rj ≤≤δ  ,1 li ≤≤ of characteristic 

equations  

,1,)( 12
1

1

liccc iiri
r

r
r

j

i
j

i

i

i

i

≤≤+δ++δ+δ=δ−δ −

=
∏ K  

makes available asymptotical convergence of the system 
output to the corresponding output produced by the reference 

model (2). 

So, the new control may be found by substituting (10) into 

(9). Under this, as soon as the vector ξ  is immediately 

unavailable, its estimation obtained by adaptive observer has 

to be involved.  

3. NONLINEAR MODEL TRANSFORMATIONS 

This section deals with the tasks related to the realization of 
FTC method discussed above. It starts with brief introduction 

into algebraic tools in use. Then, the methods for extended 

model reduction and nonlinear transformation to normal form 

are consistently considered. 

3.1 Mathematical preliminaries 

Denote 
Sℑ  the set of smooth vector functions with domain 

S . For 
Sℑ∈βα , , partial preordering relation  ≤  is defined 

as follows: β≤α  if and only if there exists some 

differentiable function γ  determined on the set of values of 

α  such that )(αγ=β . To verify if β≤α , one can check the 

equality of ranks for functional (Jacobian) matrices s∂α∂  

and s∂βα∂ TTT ),( : ⇔β≤α =∂βα∂ )),((rank TTT s   

Sss ∈∀∂α∂ )(rank . If β≤α  and α≤β  then α  and β  

are equivalent: β≅α . The relation ≅  splits the set 
Sℑ  on 

equivalent function classes. The set of equivalent function 

classes corresponds to the partial ordering set of partitions of 

S , and the first is a grid with zero, given by arbitrary one-to-

one function (in particular, the identity function 
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Ssssi ∈∀=)( ), and unity, given by arbitrary constant 

function ( Sssc ∈∀= const)( ). The binary grid operation 

β×α  is defined as the operation of finding the maximum 

bottom for the functions α  and β . This operation is 

calculated in a simple way: TTT ),( βα=β×α . For nominal 

system (2), binary relation 
XX ℑ×ℑ⊂∆  and operator M  

are introduced as follows: 

[ ] 








∂

β∂
≤α×⇔∆∈βα ),(

)(
)())(),(( uxf

x

x
xuxx  

( ) ( ) ).(,,),( β≤α⇒∆∈βα∆∈ββ MM  

The way for operator M calculating is given by following 
theorem 

Theorem 1 (Zhirabok and Shumsky, 1989). Let the vector 

function ( ) ),( uxfx∂β∂  is written in the form ),(( 1 xαζ  

)),(,),(2 uxx sαα K , where ,),(),( 21 Kxx αα 1
)( Rxs ∈α  are 

the functions, satisfying following condition: there exist the 

values of input vector ,1uu =  ,,2 Kuu = ,ruu = such that 

the functional inequality  

( ) ( ) ( ) ),(),(),( 21 ruxfxuxfxuxfx ∂β∂××∂β∂×∂β∂ K  

                          sixi ,,1),( K=α≤ , 

holds. Then 
sα××α×α≅β K21)(M .  

The next theorem gives the rule for finding the vector 
function with so-called substitution property. 

Theorem 2 (Zhirabok and Shumsky, 1987). Let there exists 

integer k  such that  

∏ ∏
=

+

=

≤=ϕ
k

j

k

j

jj
hh

0

1

0

)()( MM  

where .)(0 hh =M Then the function ϕ  satisfies conditions 

( ) h≤ϕ∆∈ϕϕ ,,                             (11) 

and for every vector function 
Xℑ∈ϕ′  satisfying (11) 

functional inequality ϕ≤ϕ′  holds. 

By evident manner, above algebraic tools are extended for 
model (1), (3). 

3.2. Extended model reduction 

Adaptive observer can be designed in the form of Luenberger 

observer on the base of the extended model (1), (3). Known 

nonlinear techniques (see e.g. Birk and Zeitz, 1988; Misawa 

and Hedrick, 1989; Jo and Seo, 2002; so on) can be applied 
to solve this problem involving the methods of global 

(perfect or partial) and local linearization. All these methods 

need in observability of the model in use. As soon as there is 

no guarantee that the model (1), (3) is observable (under 

observable nominal model (2)), the problem of model 

reduction (finding the observable image of unobservable 

model) arises. 

There are different kinds of observability for nonlinear 
systems. Consider some of them with application to the 

extended model. Denote )),(),(( 0)( TutxH E τ  output 

response for (1), (3) starting from )( 0)( tx E
under 

control )(τu , tt ≤τ≤0
 at time interval ],[ 0 ttT = , where 

=)( Ex
TTT ),( ϑx is the state vector of the extended model 

(1), (3).  

Definition 1 (observability). System (1), (3) is called 
observable (or, that is the same, weakly observable) if for 

every )()( 0
'

)(0)( txtx EE ≠  there exist finite time interval T  

and control )(τu  such that  

                  ≠τ )),(),(( 0)( TutxH E )),(),(( 0)( TutxH E τ′ .        (12) 

Definition 2 (strong observability). System (1), (3) is called 

strongly observable if there exists finite time interval T  such 

that (12) holds for every control )(τu .  

Definition 3 (local observability). System (1), (3) is called 

locally (locally strongly) observable if for every )( 0)( tx E
 and 

)( 0
'

)( tx E
 from small neighbourhood of  )( 0)( tx E

 condition of 

definition 1 (2) holds. 

Generally speaking, known methods of nonlinear observer 
design need, at least, in local strong observability condition 

that guarantees full rank of the nonlinear observability matrix 

(Birk and Zeitz, 1988). It is caused by the necessity to inverse 

the observability matrix under observer design. But at 

practice, local strong observability condition holds seldom. 

Usually, only the demand on local observability is satisfied. 

In this case, full rank condition for nonlinear observability 

matrix function is fulfilled almost for all values of its 

arguments, excluding only some points of singularity. From 

the practical point of view, it is not a fatal for nonlinear 

observer design if the methods for ill-defined matrix 

inversion can be applied. 

Theorem 3. Let ϕ  be the vector function, satisfying 

condition (11) written for the model (1), (3). For every 

)()( 0
'

)(0)( txtx EE ≠  and arbitrary time interval T the equality  

=τ )),(),(( 0)( TutxH E )),(),(( 0)( TutxH E τ′  

holds if and only if 

))(())(( 0)(0)( txtx EE ′ϕ=ϕ . 

Proofs of this and the next theorems are omitted due to the 

limited volume of the paper. 

Corollary 1. The system (1), (3) is observable if and only if 

ϕ  is one-to one function. 
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Corollary 2. The system (1), (3) is locally observable if and 

only if for every Θ×∈ Xx E )(
 

qn
x E

+=
∂

ϕ∂

)(

rank .                         (13) 

Let condition (13) is violated. In this case the model (1), (3) 

has to be transformed to observable one; an appropriate 
coordinate transformation is given by following theorem. 

Theorem 4. Let ϕ  be the function “on” satisfying condition 

(11). In this case ϕ  specifies coordinate transformation of 

(1), (3) to observable model (5) and the functions 
∗∗ hf ,  of 

the model (5) are found from equations 

( ) 









∂ϕ∂=ϕ

×
∗

1

)(

)()( 0

),(
)),((

q

E

EE

uxf
xuxf , 

)())(( )( xhxh E =ϕ∗
.                          (14) 

Remark 1. ϕ  is the function “on” if it does not contain 

functionally dependent components, i.e. the number of 

components of this function is strictly equal to the rank of 

functional matrix 
)( Ex∂ϕ∂ . 

Given above is summarized in following algorithm. 

Algorithm 1 (model reduction). 

1. For the model (1), (3), find the function ϕ  involving the 

rule of theorem 2. 

2. If (13) holds go to the next step, otherwise go to the step 4. 

3. Take identity function ϕ  and the model (5) in the form 

(1), (3). End. 

4. Obtain the function “on” by excluding functional 

dependent components from ϕ . 

5. Find the model (5) from equations (14). End. 

3.3. Transformation to normal form 

Let 

11),(1 −≤≤=ψ −
ii

ji
j rjhM ,                     (15) 

 
∗

∂

ψ∂
=ξ f

z

i
ji

j

.
.                               (16) 

Determine the indices (so-called relative degrees) 

,ir ,1 li ≤≤ as follows 

0/and10/
..

≠∂ξ∂−<∀=∂ξ∂ urju
i
ri

i
j i

.      (17) 

An algorithm for the model (5) transformation to normal 
form (6) is given below. 

Algorithm 2 (transformation to normal form). 

1. Calculate the functions i
jψ , i

j

.

ξ  and relative degrees 

,ir ,1 li ≤≤  according to (15) - (17).  

2. If  

∑
=

=
l

i

zi nr

1

, 

then complete description of the normal form is found from 

,, 1

..
i
j

i
j

i
ri

r f
z

i

i +∗ ξ=ξ
∂

ψ∂
=ξ  

.1,1, 11 −≤≤≤≤ξ= i
i

i rjliy               (18) 

End. Otherwise go to the next step. 

3.  Find the vector function 1+ψ l  with number of components 

strictly equal to 

∑
=

−
l

i

iz rn

1

 

such that 

∏ ∏
= =

+ ≅×ψ
l

i

r

j

i
jl ih

i

1 1

1 )(M . 

4. Find the normal form from (18) and 

∗

+
+

∂

ψ∂
=ξ f

z

l
l

1
1

.
.                             (19) 

End. 

Remark 2. ,1,1),(
.

lirjt i
i
j ≤≤≤≤ξ  and )(1

.

tl+ξ  are found 

from (18) and (19) respectively as the functions of )(tu  and 

)(tz . The last vector is estimated by adaptive observer. 

4. EXAMPLE 

Consider system of the form (1) with the functions 












ϑ−ϑ++−

ϑ+ϑ++−
=

)1ln(

)1ln(

221121

2211
2
1

.

uuxx

uux
x ; 









=

2

1

x

x
y .                                   (20) 

Nominal values of parameters are as follows =ϑ0
1 10

2 =ϑ . 

Using additional equations 

0)(,0)( 2

.

1

.

=ϑ=ϑ tt                         (21) 
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one obtains extended model (20), (21). For this model, 
application of algorithm 1 results in: 

1. ×ϑ××××=×==ϕ ∏
=

121
2
121

1

0

)()( xxxxxhhh
j

j
MM   

∏
=

≤ϑ≅ϑ
2

0

2 )(),(
j

j
hxi M , where ϑ×=ϑ xxi ),(  is identity 

function. The function  )(hM  has been found by following 

manner. Involving the rule of theorem 1, the function 










ϑ∂

∂

×120),(

f

x

h is fixed at 021 == uu , 0,1 21 == uu ,  

1,0 21 == uu  that gives the functions 
21

2
1 xxx × , 

))1ln(())1ln(( 1211
2
1 ϑ++−×ϑ++− xxx , ×ϑ++− ))1ln(( 2

2
1x    

))1ln(( 221 ϑ−+− xx . It may be easily seen that the functions 

2121
2
1 ,,, ϑϑxxx  are expressed from above functions. Then, 

as soon as   









ϑ∂

∂

×120),(

f

x

h  can be expressed as the function 

of ×2
1x  

2121 ϑ×ϑ×xx  and u  (the function ζ  in theorem 1), 

one obtains =)(hM 2121
2
1 ϑ×ϑ×× xxx . 

2. Because ϕ  is one-to-one function, condition (17) holds. 

3. Observable extended model is taken in the form (20), (21) 

that corresponds to identity function ϕ . End. 

To design adaptive observer, local linearization techniques 
(Birk and Zeitz, 1988) has been applied to (20), (21). 

Adaptive observer has been found in the form 
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where
21 , dd  are the coefficients of characteristic equation 

and the symbol ^ accompanies the estimations of appropriate 

variables under new control Uu ∈' . 

Normal form for (20), (21) is found by application of 
algorithm 2: 

1. From (19)-(21) one obtains 11 =r , 
1

1
1 x=ψ ; 12 =r , 

2
2
1 x=ψ . 

2. As soon as 421121 =<=+=+ znrr , step 3 has to be 

fulfilled. 

3. Function 3ψ  with 211421 =−−=−− rrn z
components 

is taken as follows 
21

3 ϑ×ϑ=ψ . 

4. Normal form is found from (18), (19) 

;),1ln( 1
112211

2
1

1
1

.

ξ=ϑ+ϑ++=ξ yuux

;),1ln( 2
12221121

2
1

.

ξ=ϑ−ϑ++=ξ yuuxx  









=ξ

0

03
.

.                                      (22) 

After this, new control is found from (22) and (9) as follows 












−−
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ϑ−ϑ
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1))ˆexp((

ˆ2/1ˆ2/1

ˆ2/1ˆ2/1
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2
11

22

11

'
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1

xxw
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u
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where 
21 , ww  are obtained from (22) and (10) 

);ˆ()1ln( 1)(1
1
12

0
21

0
1

2
)(11 xxcuuxw RR −+ϑ+ϑ++=

).ˆ()1ln( 2)(2
2
12

0
21

0
1)(2)(12 xxcuuxxw RRR −+ϑ−ϑ++=  

Some above results are proved by simulation. Under 
simulation, the initial coordinates of system (20) are taken 

equal to 0. Initial estimations of coordinates and parameters 

are taken equal to 0 and 1 respectively. The constants are 

91 =d , 62 =d , 32
1

1
1 == cc  that correspond to the roots of 

characteristic equations equal to -3. The controls are taken as 

follows 8.0)(1 =tu , 64.0)(2 =tu . To represent the faults, 

parameters 
21 , ϑϑ are changed to 5.01 =ϑ and 7.02 =ϑ at 

30=t and 60=t respectively. Simulation results are given 

in figures. Fig.1 illustrates the reference model behaviour 

under initial control, while Fig.2 and Fig.3 show the 

behaviour of faulty system under initial and new control 

respectively. The residuals 
)(11 Ryy −  and 

)(22 Ryy − are 

given in Fig.4. It is clearly seen from Fig.4 that the outputs of 
faulty system under new control are asymptotically 

converging to appropriate outputs of the reference model.   

5. CONCLUSION 

In this paper, the method has been proposed for FTC in 
nonlinear systems whose purpose is tracking the prescribed 

trajectory. Realization of the method is connected with the 

tasks of nonlinear model reduction and asymptotic model 

matching. Algebra of functions based solutions have been 

proposed for these tasks. In contrast to former result (Isidori, 
1989), the method of asymptotic model matching considered 

in the paper is applicable to more general class of nonlinear 

systems than affine ones. 
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