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Abstract: An iterative learning control scheme for the application of functional electrical stimulation to
the human arm is designed and implemented. The task is to track trajectories in the horizontal plane and
stimulation is applied to the triceps muscle. A model of the arm is first derived which includes assistive
torque about the shoulder provided by a robotic arm. A linearising controller is then designed and a
linear ILC algorithm is applied to the resulting system. Experimental results show that a high level of
performance can be achieved in practice, and provide justification for the system to be subsequently used
by stroke patients for rehabilitation.

1. INTRODUCTION

Strokes affect between 174 and 216 people per 100,000 pop-
ulation in the UK each year, and half of all acute stroke pa-
tients starting rehabilitation will have a marked impairment of
function in one arm (Mant et al. [2004]). Functional electrical
stimulation (FES) can provide the experience of moving for the
patient, which is necessary if sensory-motor function is to be
regained. Recent studies have shown that when stimulation is
associated with a voluntary attempt to move the limb, improve-
ment is enhanced (Burridge and Ladouceur [2001]). Open-loop
methods for the control of FES (see, for example, Davoodi
and Andrews [2004]) have not provided the high level of per-
formance necessary to fully promote this association. Closed-
loop and model-based schemes, however, have overwhelmingly
concentrated on the lower rather than the upper limb. Neural
networks are one of the few approaches that have successfully
been used to control FES applied to the arm, but these require
extensive training and have unresolved stability issues due to
their black-box structure (see Lan et al. [1994]).

An experimental test facility incorporating a five-link planar
robotic arm and an overhead trajectory projection system (see
Freeman et al. [2007] for details) has been developed in order
to provide a controlled environment in which to apply electrical
stimulation to stroke patients. The subject is seated with their
arm strapped to the robot, and the task presented to them is
to repeatedly track a number of reaching trajectories using
a combination of voluntary control and surface FES applied
to muscles in their impaired shoulder and arm. The electrical
stimulation is mediated using iterative learning control (ILC),
a technique that is applicable to systems operating in a cyclical
mode. This is one of the few advanced control techniques which
has previously been applied to stimulation of the upper limb,
although a high level of performance has not been achieved in
practice (Dou et al. [1999]). Given the nature of the task, ILC
is an obvious choice but also provides a framework which is
capable of producing accurate tracking provided that the differ-
ence in voluntary effort (interpreted as an external disturbance
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applied to the system) is sufficiently small from one trial to the
next (see, for example, Moore [1992]). When accurate tracking
of the trajectory is achieved, the stimulation will be reduced in
order to promote sustained voluntary effort by the subject.

In this paper ILC is used to control the FES applied to the
triceps of an unimpaired subject who provides no voluntary
effort. The robot supplies an assistive torque about the shoulder
to allow full reaching tasks to be accomplished that are driven
by the stimulation. The results show that high performance can
be achieved, and confirm the efficacy of the system prior to its
use by stroke patients.

2. WORKSTATION DESCRIPTION

The robotic workstation consists of a five-link planar robotic
arm rigidly connected to an overhead projection system, and is
shown in Figure 1. A subject is strapped to the extreme link and

Fig. 1. Unimpaired subject using the robotic workstation.

a 6 axis force/torque sensor records the force they apply to the
robotic end effector. The robotic arm is used to constrain the
subject’s arm, to impose forces on the end-effector that make
the task feel ‘natural’ to the subject, and to apply assistance
during the performance of tracking tasks. The stroke patient’s
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task during the treatment will be to track a range of trajectories
that are projected onto a target mounted above their hand.

3. HUMAN ARM MODEL

The mathematical description of the subject’s arm consists of
a model of the passive dynamical system to which the torque
generating properties of the stimulated muscle is then added.

3.1 Passive System

Figure 2 shows the geometry of the constrained human arm
model. The first link represents the upper arm, from the
acromion to the elbow, with length (lu1 + lu2). The second link
represents the forearm, from the elbow to the thumb web, with
length (l f 1 + l f 2). The constraint means that the forearm must
lie in the horizontal plane, and rotation is possible about the axis
along the upper arm. The point, Q, denotes where the subject’s
hand grasps the robot, and components of the forces applied in
the xxx0 and yyy0 directions are denoted by Fx0

and Fy0
respectively.

Actuation is provided by the triceps, which has been modelled
as supplying a torque, Tβ ≥ 0, acting about an axis orthogonal
to both the upper arm and forearm. To satisfy the horizontal

Fig. 2. Geometry of constrained human arm.

constraint it is necessary to set

α(ϑ f ) = arccos





c f sγ
√

1− c2
f c

2
γ



 (1)

which corresponds to an elbow angle of

β (ϑ f ) = arccos(−c f cγ) (2)

Here c f and cγ denote cos(ϑ f ) and cos(γ) respectively, and
cu and cu f will be used to denote cos(ϑu) and cos(ϑu + ϑ f ).
Similar expressions are used for the case of sin(·). The unitary
axis about which Tβ is applied is given by

1
√

1− c2
f c

2
γ

[

−s f sγ

c f sγ

−s f cγ

]

(3)

The dynamic model of the constrained arm can then be ex-
pressed in the form

BBB(qqq)q̈qq+CCC(qqq, q̇qq)q̇qq+ FFF(qqq, q̇qq) = τττ − JJJT (qqq)hhh (4)

where qqq = [ϑu ϑ f ]
T , τττ =

[

0 Tβ
−s f cγ

√

1−c2
f
c2

γ

]T

, hhh = [Fx0
Fy0

]T and

BBB(qqq) =

[

b1 b2

b2 b3

]

, CCC(qqq, q̇qq) =

[

−2c1ϑ̇ f −c1ϑ̇ f

c1ϑ̇u c2ϑ̇ f

]

,

JJJT (qqq) =

[

−(lu1 + lu2)cγ su − (l f 1 + l f 2)su f (lu1 + lu2)cγ cu +(l f 1 + l f 2)cu f

−(l f 1 + l f 2)su f (l f 1 + l f 2)cu f

] (5)

with
b1 = mu(lu1cγ )

2 + Iu +m f (l
2
f 1 +((lu1 + lu2)cγ )

2 +2(lu1 + lu2)cγ l f 1c f )+ I f

b2 = m f (l
2
f 1 +(lu1 + lu2)cγ l f 1c f )+ I f , b3 = m f l2

f 1 + I f + Ie

(

sγ

1− c2
f c2

γ

)2

c1 = m f (lu1 + lu2)cγ l f 1s f , c2 = −2Ie

(

s2
γ c2

γ c f s f

(1− c2
f c2

γ )
3

)

(6)
The most general form of the friction term considered is

FFF(qqq, q̇qq) =
[

F1(ϑu, ϑ̇u) F2(ϑ f , ϑ̇ f )
]T

(7)

in which F1(·) and F2(·) are piecewise linear functions.

A form of impedance control (see Colgate and Hogan [1988]) is
used to control the robotic arm, which results in the relationship

−hhh = KKKKx x̃xx−KKKBx ẋxx−KKKMx ẍxx (8)

at Q, where x̂xx is the reference position, x̃xx = x̂xx − xxx, xxx = kkk(qqq),
ẋxx = JJJ(qqq)q̇qq and ẍxx = JJJ(qqq)q̈qq+ J̇JJ(qqq, q̇qq)q̇qq. Here xxx = kkk(qqq) is the direct
kinematics equation for the human arm system. When the robot
is moved freely by the subject in the absence of assistance, the
gain matrices are set as KKKKx = 000, KKKBx = KBx III and KKKMx = KMx III.
The values of KBx and KMx assume positive values and are tuned
to create a ‘natural’ feel. When the robot is required to move
the subject’s arm along predefined trajectories, it is necessary
to set KKKKx = KKx III with KKx > 0. The three gains are then tuned
to produce the required tracking performance. The form of the
gain matrices for the case where the robot applies assistance
during tracking tasks, is described in Section 4. Further details
of the robotic controller are given in (Freeman et al. [2007]).

3.2 Muscle Model

A model of the torque, Tβ , generated by electrically stimulated
muscle acting about a single joint is given by

Tβ (β , β̇ ,u,t) = g(u, t)×Fa(β , β̇ )+ Fp(β , β̇ ) (9)

where u denotes the stimulation pulsewidth applied, and β is
the joint angle (see Shue et al. [1995]). A Hammerstein struc-
ture incorporating a static non-linearity, h IRC(u), representing
the isometric recruitment curve, cascaded with linear activation
dynamics, hLAD(t), produces the first term, g(u,t). The acti-
vation dynamics can be modelled as a critically damped sec-
ond order system (Baratta and Solomonow [1990]). The term

Fa(β , β̇ ) describes the multiplicative effect of the joint angle
and joint angular velocity on the active torque developed by the

muscle. The term Fp(β , β̇ ) accounts for the passive properties
of the joint. Since γ is invariant, (2) means it is accounted for
when using the frictional form of (7). A full description of
the procedures used to establish the parameters appearing in
the model, and also identification results for the subject whose
results appear in Section 6, is given in (Freeman et al. [2008]).

4. ROBOTIC ASSISTANCE AND TRAJECTORY CHOICE

The action of the robotic arm must now be considered in order
to make the task a feasible yet productive one. The following
points therefore concern the choice of trajectory and necessary
role of the robot during the performing of the task:

(1) The trajectories will be elliptical reaching tasks for the
subject’s dominant arm, and should be achievable given
their identified arm model.

(2) The triceps muscle will provide the sole actuating torque
about the elbow, and the robotic arm will use the control
scheme given by (8) to make the dynamics about the
elbow feel ‘natural’ to the subject.
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(3) The robotic arm will provide a torque acting about the sub-
ject’s shoulder in order to track the reference in a manner
which is entirely governed by the angle of the forearm.
This then makes the task feasible without lessening the
role played by the triceps.

Combining (8) and (4) results in

BBB(qqq)q̈qq+CCC(qqq, q̇qq)q̇qq+FFF(qqq, q̇qq)= τττ +JJJT (qqq)
(

KKKKx x̃xx−KKKBx ẋxx−KKKMx ẍxx
)

(10)
To separate the dynamics of the end-effector in the directions
corresponding to the human arm joint angles, it is then neces-
sary to set

KKKKx x̃xx−KKKBx ẋxx−KKKMx ẍxx = JJJ−T (qqq)
(

KKKKq q̃qq−KKKBq q̇qq−KKKMq q̈qq
)

(11)

where q̃qq = q̂qq− qqq and q̂qq = kkk−1(x̂xx). To meet the requirements of
points 2) and 3) above, it is then required that

KKKKq = diag{KK1
,0}, KKKBq = diag{KB1

,KB2
}

KKKMq = diag{KM1
,KM2

}
(12)

and q̂qq =
[

ϑ̂u ϑ̂ f

]T
where KK1

, KB1
, KB2

, KM1
, KM2

≥ 0. This
allows a choice of arbitrary second order dynamics to be
imposed about the shoulder and the damping and inertia about
the elbow to be prescribed. This produces the expression

τττ +

[

KK1
ϑ̃u −KB1

ϑ̇u −KM1
ϑ̈u

−KB2
ϑ̇ f −KM2

ϑ̈ f

]

(13)

for the right-hand side of (10), and provides the necessary
dynamic relationship for both components of the torque. To

arrive at the required values of ϑ̂u and ϑ̂ f , components of (11)
are compared to give

KKKKx (x̂xx− xxx)= JJJ−T (qqq)

[

KK1

(

ϑ̂u −ϑu

)

0

]

=
KK1

(

ϑ̂u −ϑu

)

(lu1 + lu2)cγs f

[

cu f

su f

]

This leads to a solution

KKKKx =
KK1

(

ϑ̂u −ϑu

)

|x̂xx− xxx|(lu1 + lu2)cγs f

III, x̂xx = xxx+ |x̂xx− xxx|

[

cu f

su f

]

(14)

so that x̂xx is a point lying on a line extending along the forearm
and passing through xxx. To achieve the tracking task it must
therefore be set equal to the point of intersection with the
trajectory. This is shown in Figure 3, in which xxx∗(t) = kkk(qqq∗(t))
with qqq∗(t) defined in (16). The remaining robotic controller

Fig. 3. Trajectory Geometry.

matrices may be chosen to satisfy
{

KKKBx = JJJ−T (qqq)KKKBqJJJ−1(qqq)

KKKMx

(

JJJ(qqq)q̈qq+ J̇JJ(qqq, q̇qq)q̇qq
)

= JJJ−T (qqq)KKKMq

(15)

with the gains given by (12). Let the trajectory be defined by

qqq∗(t) =
[

ϑ ∗
u (t) ϑ ∗

f (t)
]T

, t ∈ [0 T ] (16)

Eliminating t from the components provides the relationship
ϑu = Ψ(ϑ f ). The reference point is then defined formally as

x̂xx = ΩΩΩ(xxx,Ψ(·)) : kkk

([

Ψ(ϑ̂ f )
ϑ̂ f

])∣

∣

∣

∣

kkk

([

Ψ(ϑ̂ f )
ϑ̂ f

])

= xxx+ λ

[

cu f

su f

]

where λ is a scalar. The complete control system is shown in
Figure 4. The gain (14) can then be written explicitly as

Fig. 4. Human arm system with robotic assistance.

KKx (xxx,Ψ(·)) =
KK1

(

Ψ(ϑ̂ f )−ϑu

)

λ (lu1 + lu2)cγs f

III (17)

Certain points will now be made concerning the nature of the
trajectories and the selection of KB2

and KM2
that govern how

the task feels to the subject:

(1) For Ψ(ϑ f ) to be a one-one continuous function, both ϑ ∗
u (t)

and ϑ ∗
f (t) must be monotone.

(2) The bottom row of (10), with the expressions given by (8)
and (11), and the control gains (12), is

[b2 b3]

[

ϑ̈u

ϑ̈ f

]

+[c1ϑ̇u c2ϑ̇u]

[

ϑ̇u

ϑ̇ f

]

+ F2(ϑ f , ϑ̇ f )

= Tβ





−s f cγ
√

1− c2
f c

2
γ



−KB2
ϑ̇ f −KM2

ϑ̈ f (18)

If the robotic assistance system provides perfect tracking of ϑ̂u

by ϑu, so that ϑu = Ψ(ϑ f ), then ϑ̇u = ϑ̇ f Ψ
′
(ϑ f ) and ϑ̈u =

ϑ̈ f Ψ
′
(ϑ f )+ ϑ̇ 2

f Ψ
′′
(ϑ f ). The system is then independent of ϑu,

and can be written solely in terms of ϑ f , giving

Tβ =





−
√

1− c2
f c

2
γ

s f cγ





{

KB2
ϑ̇ f +

(

KM2
+ b3 + b2Ψ

′(

ϑ f

)

)

ϑ̈ f

+

(

b2Ψ
′′(

ϑ f

)

+ c1Ψ
′(

ϑ f

)2
+ c2Ψ

′(

ϑ f

)

)

ϑ̇ 2
f + F2(ϑ f , ϑ̇ f )

}

(3) In practice ca1, ca2 ≪ ba2,ba3 and Ie ≈ 0.005 Kgm2 (see
Freeman et al. [2008] for examples of identified values), and
the trajectories are chosen so that the derivatives of Ψ(·) are
small. Therefore Tβ can be approximated as




−
√

1− c2
f c

2
γ

s f cγ





{

KB2
ϑ̇ f +

(

KM2
+ ba3

)

ϑ̈ f + Fa2(ϑ f , ϑ̇ f )
}

which is shown schematically in Figure 5.

(4) In practice the existence of a torque that will allow ϑ ∗
f (t)

to be tracked perfectly is ensured by selecting slow trajectories
that comprise half ellipse segments. The start and end points
are chosen so that they can be reached by a smooth extension
about the elbow. The gains, KB2

and KM2
, are selected in order to

mimic a realistic activity, and their effect on the overall control
scheme is discussed in Section 5.1.
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Fig. 5. Approximate model of stimulated human arm.

5. CONTROL SCHEME

A linearising controller will firstly be designed for the arm
system and to this an ILC feedforward controller will be added.
The results are from an unimpaired subject aged 57 years, and
electromyographic (EMG) data has been used to ensure that
they supplied no voluntary effort during the task.

5.1 Linearising PD Controller

The first component of the linearising controller is the in-
verse of the isometric recruitment function. Since the terms

−s f cγ/
√

1− c2
f c

2
γ , F2(ϑ f , ϑ̇ f ) and Fa(β , β̇ ) appearing in the

arm model vary only slowly when the trajectories considered in
this paper are followed perfectly (see Freeman et al. [2008]), the
control action taken is to attempt to remove their effect in order
to produce a system which approximates the linear activation
dynamics in series with the linear arm dynamics (the transfer
functions appearing in the left and right sub-systems respec-
tively of Figure 5). To achieve this, the linearising controller
with input w, is given by

u = h−1
IRC





(

F2(ϑ f , ϑ̇ f )+ w
)

−
√

1− c2
f c

2
γ

s f cγFa(β , β̇ )



 (19)

and the validity of this approach will now be investigated. For
concision, attention is restricted to the case where F2(·) and
Fa(·) are functions of their first argument only. The system that
is then formed is shown in Figure 6 in which

g(ϑ f ) =
−s f cγFa(β (ϑ f ))

√

1− c2
f c

2
γ

(20)

The linear activation dynamics can be represented by the state-

Fig. 6. Stimulated arm system and linearising controller.

space system [AAAm,BBBm,CCCm], and the relationship between w and
y is then given by

˙̂xxxm(t) = AAAmx̂xxm(t)+BBBm

(

ζ (t)

g(ϑ f (t))

)

, y(t) =CCCmx̂xxm(t)g(ϑ f (t))

where ζ = w+F2(ϑ f ). The transformation xxxm(t) = x̂xxm(t)g(ϑ f )
allows the system to absorb the effect of g(ϑ f ) to become

ẋxxm(t) = (AAAm + IIIg1(t))xxxm(t)+ BBBmζ (t), y(t) = CCCmxxxm(t)

in which g1(t) =
ġ(ϑ f (t))

g(ϑ f (t))
. The effect of g(·) is therefore to

directly move the eigenvalues of its state transition matrix. Let

the arm dynamics be represented by the state-space system
[AAAp,BBBp,CCCp] so that the relationship between y and ϑ f is given
by

ẋxxp(t) = AAApxxxp(t)+ BBBp

(

y(t)−Fa2(ϑ f )
)

, ϑ f (t) = CCCpxxxp(t)

then linearising the complete system at t = t̄ yields

ẊXX =

[

AAAm − IIICCCpAAApxxxp(t̄)g1(t̄) WWW

BBBpCCCm AAAp −BBBpCCCpF ′
2(ϑ f (t̄))

]

XXX

+ [ 0 BBBm ]
T

w̃, ϑ̃ f = [ 0 CCCm ]XXX

where XXX = [x̃xxm(t) x̃xxp(t)]
T , and WWW = IIICCCpAAAp

(

xxxm(t̄)g1(t̄) +

xxxp(t̄)CCCpxxxm(t̄)
(

g2(t̄)−g1(t̄)
2
)

)

+ BBBmCCCpF ′
2(ϑ f (t̄)) in which

g2(t) =
g′′(ϑ f (t))

g(ϑ f (t))
. If the derivatives of the F2(ϑ f ) and g(ϑ f )

are zero for all t, this system corresponds with the desired
relationship

ϑ f

w
(s) =

ω2
n

s2 + 2sωn + ω2
n

·
1

s((ba3 + KM2
)s+ KB2

)
= G(s)

(21)
For this to approximate the system behaviour when the deriva-
tives are non-zero, trajectories must be chosen over which g 1(t),
g2(t) and F ′

2(·) are small. To examine whether the choice of
trajectories and arm dynamics that are used in Section 6 corre-
spond to a model that is well approximated by (21), simulations
have been conducted in which its output is compared with that
of the linearising controller applied to the full model shown
in Figure 5. The applied input, w, has been chosen to result
in approximate tracking of the more rapid of those demands
used. The results are shown in Figure 7, and since the model
outputs are in close agreement, they support the use of G(s)
to approximate the combined linearising controller and arm
system. Care must be taken, however, to ensure that the control
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0.2

0.6

1

1.4

1.8

2.2

Time (s)

A
n
g
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d
)

ϑ
f

*
(t)

output using full model 

output using G(s)

Fig. 7. Comparison of G(s) with full arm model.

schemes designed using G(s) are robust to the modelling error
that exists.

A proportional derivative (PD) controller has been selected to
supply the linearising controller input, w. Its transfer function is
given by C(s) and the resultant system is shown schematically
in Figure 8. The level of stimulation that first produces a
response from the triceps, um, is used to supply an offset so
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Fig. 8. Block diagram of feedback control system.

that the feedback system operates within the torque generating
capabilities of the muscle. The closed-loop system is given

by P(s) = C(s)G(s)
1+C(s)G(s)

, and the feedback controller is tuned

with an emphasis on robustness, since stability is of greater
concern than accurate tracking. To illustrate the role of the
end-effector dynamics on the system bandwidth, Bode plots
of the closed-loop system are shown in Figure 9 for the ratios
b3+KM2

KB2
= 0.03, 0.07, 0.4, 0.8 and 1.5 respectively. These have

been created using the experimentally identified value of ω n =
0.85π , and have been tuned using the standard Zeigler-Nichols
rules. The corresponding closed-loop bandwidths are ω b =
0.53Hz, 0.45Hz, 0.42Hz, 0.23Hz and 0.16Hz, and the models
are termed P0.53, P0.45, P0.42, P0.23 and P0.16. Alteration of
b3+KM2

KB2
cannot produce bandwidths much greater than these,

and the principle objective is to make the task feel natural to
the patient.
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Fig. 9. Bode plots of closed-loop systems.

5.2 Adjoint ILC

The adjoint ILC algorithm is given in discrete form by

vk+1(z) = vk(z)+ β P∗(z)ek(z) (22)

where k is the trial number, P∗(z) is the adjoint of the plant
model, ek = ϑ ∗

f −ϑ f ,k, and vk replaces ϑ ∗
f as the input to the

system shown in Figure 8 (Furuta and Yamakita [1987]). The
monotonic convergence criterion is given by

∣

∣1−β P(e jωTs)P∗(e jωTs)
∣

∣ < 1 (23)

for ω up to the Nyquist frequency. The algorithm has been
found to provide a high level of robustness to plant uncertainty
(Freeman et al. [2005]). Figure 10 shows the monotonic con-
vergence criterion using P0.45 for a variety of β values. For
frequencies where the closed-loop system has a gain close to
unity, approximate convergence will occur in a single trial for
values of β close to one. In practice, however, β is chosen to be
significantly lower in order to increase the system robustness at
the expense of the convergence rate.
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Fig. 10. Monotonic convergence criterion for P0.45.

6. EXPERIMENTAL RESULTS

The subject’s arm model was first identified using tests de-
scribed in Freeman et al. [2008]. In particular FES was applied
to the triceps using a ramp signal, and h IRC(u) and hLAD(t)
were found using deconvolution and an non-linear optimisation
procedure. Stimulation sequences and kinematic trajectories
were then applied to the arm and an LMS optimisation was
used to yield the remaining model parameters. Figure 11 shows
the shape of the reference used to produce the results in this
paper. It is set at an angle of 20◦ from the y axis and extends the
subject’s arm from 55% to 95% of their maximum reach. The
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Fig. 11. Reference trajectory and position of subject tested.

trajectory consists of a 5 second waiting period and a 7.5 second
movement along the reference at a constant speed. Before each
trial began, the subject’s arm was moved to the initial position
by the robot and then released when the trajectory started. The
subject was not shown the trajectory before or during the test
and EMG recordings were inspected to ensure no voluntary
effort was exerted.

The identified value of b3 was 0.27Kgm2, and, following the
discussion in Section 5.1, the values of KB2

and KM2
were

set at 8 Nm/rads−1 and 0.29 Nm/rads−2 respectively and the
controller gains then tuned to produce a closed-loop system
with model P0.45. Figure 12 shows results using the adjoint
algorithm using β = 0.2, and, in order to examine the robustness
of the algorithm, the other models described in Section 5.1 have
also been used. It can be seen that the algorithm is capable of

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

13448



1 2 3 4 5 6 7 8 9 10
0

0.01

0.02

0.03

Trial No.

||
E

rr
o

r|
| 2

 (
m

)

P
0.53

P
0.45

P
0.42

P
0.23

P
0.16

Fig. 12. Adjoint ILC results for the slow trajectory with β = 0.2
and various plant models.

exhibiting robustness to significant model uncertainty. Use of
the actual plant model, P0.45, results in convergence to an l2

error norm of less than 5mm within 4 trials and this level of
error is maintained over the remaining trials. Figure 13 shows
tracking results over the first 5 trials and highlights the mono-
tonicity of convergence. Figure 14 shows the corresponding
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Fig. 13. Experimental tracking of a) ϑ ∗
u (t) and b) ϑ ∗

f (t) using

adjoint ILC for the slow trajectory with β = 0.2.

stimulation input and ILC update. It can be seen from a) that
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Fig. 14. Experimental a) stimulation and b) updated input
results using adjoint ILC for the slow trajectory with β
= 0.2.

ILC causes the stimulation to decrease from the level observed
initially, and leads to its application during the initial 5 second

waiting period. Figure 14 b) illustrates the convergence of the
ILC update.

7. CONCLUSIONS

The feasibility of tracking reaching trajectories using FES ap-
plied to the triceps muscle in combination with robotic assis-
tance has been investigated. Results have shown that a high
level of tracking performance is possible in combination with
a high level of robustness. The results confirm the efficacy
of a combined robotic assistance and stimulation system that
has been designed, and provide justification for it to be subse-
quently used by stroke patients for rehabilitation.
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