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Abstract: An iterative approach for the determination of an input-output inversion feedforward
control law for residual vibration reduction is proposed in this paper. In particular, point-to-
point motion planning of vibratory servosystems is considered. The method aims at estimating
recursively the parameters of the system in order to determine the exact command input to
be applied to the control system in order to achieve a predefined motion without oscillations.
In this context, a gradient based minimisation of the integrated square error cost function is
performed. Simulation results show the effectiveness of the methodology.

1. INTRODUCTION

It is well-known that a major source of limitation of the
performance of positioning servosystems is the presence of
elasticity in the transmissions that introduce vibrations.
This generally implies that the working cycle time has to
be increased in order for the residual oscillation to vanish
after the point-to-point motion has been accomplished.
As a solution to this problem, two strategies can be imple-
mented: the closed-loop feedback control, which is based
on the use of an appropriate sensor in order to measure the
vibration, and the open-loop control which consists of an
adequate shaping of the command input and requires the
knowledge of the system model. In the first case, a rele-
vant technique proposed recently is the wave-based control
(O’Connor (2006, 2007b,a)), which is based on considering
the actuator motion as launching a mechanical wave into
the elastic system while, at the same time, absorbing the
motion which, due to the elasticity, later returns to the
actuator. The sensor is therefore placed as close as possible
to the actuator, namely, as close as possible to the interface
between the actuator and the flexible system.
In the context of open-loop control, the most well-known
technique is the input shaping, which has been developed
starting from the nineties (Singer and Seering (1990);
Singhose et al. (1994, 1997)). It consists of convolving
a sequence of impulses, also known as the input shaper,
with a desired system command to generate the system
command that is then actually used to drive the system.
The robustness of the system is addressed by using a larger
number of impulses and this leads to an increasing of the
motion time, because of the convolution process.
An alternative open-loop approach is that based on system
inversion (Piazzi and Visioli (2000, 2001a)) which consists
in first defining a desired motion of the load (without
oscillations) and by subsequently determining the input
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function that causes the desired motion by inverting the
dynamics of the system.
In any case, it is obvious that any open-loop approach
relies on the availability of an accurate model of the sys-
tem. In order to estimate correctly the model parameters
in the context of the inversion-based methodology, an
iterative approach is presented in this paper. The proposed
technique aims at estimating the parameters of the system
(namely, those of the motor and of the elastic transmis-
sion) in order to minimise the integrated square error
cost function, where the error considered is the difference
between the obtained system transient response and the
one that is desired (Piazzi and Visioli (2007)). A gradient-
based minimisation is used for this purpose and the pro-
cedure exploits the use of a sensor that measures the load
position. Once the optimal command input function is
determined, the open-loop approach is applied.
The paper is organised as follows. In Section 2 the system
model is described and the problem is formulated. The
iterative methodology is described in Section 3. Simulation
results are given in Section 4 and conclusions are drawn in
Section 5.

2. PROBLEM FORMULATION

Consider a motion control system where a point-to-point
motion of a load from position y0 to position y1 has to
be performed. Without loss of generality we will assume
y0 = 0 hereafter. The load is connected to an actuator by
means of an elastic transmission. Thus, the control scheme
is the one depicted in Figure 1, where the actuator position
x is controlled by means of a unity-feedback Proportional-
Integral (PI) controller. If the actuator is a torque-piloted
motor, it can be described by means of the following
transfer function:

M(s) :=
X(s)

I(s)
=

1/Dm

s
(

Jm

Dm
s + 1

) (1)
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where i is the input torque, Jm is the motor inertia and
Dm is the viscous friction coefficient. The PI controller
transfer function is

C(s) = Kp

(

1 +
1

Tis

)

(2)

where Kp is the proportional gain and Ti is the integral
time constant. Note that a PI controller has been consid-
ered for simplicity but the method proposed in this paper
can be applied with any controller structure.
The transmission (assuming a linear motion of the load)
can be modelled as a spring in parallel with a damper and
it is described by the following transfer function (Piazzi
and Visioli (2000))

F (s) =
Y (s)

X(s)
=

cs + k

ms2 + cs + k
(3)

where m is the mass of the load, k is the stiffness constant
and c the damping coefficient. Note that, in routine
operation, the position y of the load is not measured. The
closed-loop system transfer function is therefore

T (s) :=
X(s)

R(s)
=

C(s)M(s)

1 + C(s)M(s)
(4)

and the overall control system transfer function is

H(s) :=
Y (s)

R(s)
= T (s)F (s). (5)

Now, denote as M̂(s; ρM ) the estimated transfer function
of the (unknown) “true” motor transfer function M(s)
parameterised by the parameter vector ρM = [Jm Dm]T

and denote as F̂ (s; ρF ) the estimated transfer function of
the (unknown) “true” transmission transfer function F (s)
parameterised by the parameter vector ρF = [m c k]T .

As a consequence, Ĥ(s; ρ) denotes the estimated transfer
function of the (unknown) “true” overall control system
H(s), where ρ = [Jm Dm m c k]T .
The command input function r(·) is determined by means
of an input-output system inversion approach, which con-
sists in defining a priori the desired load motion function
yd(t) and then in obtaining r(t; ρ) by inverting the esti-

mated dynamics Ĥ(s; ρ). From a practical point of view,

because the system Ĥ(s; ρ) has a relative order equal to
three, in order to obtain a continuous command input
function, the desired output function has to be continuous
until the third order (Piazzi and Visioli (2001b)). Further,
a transition time τ has to be defined, i.e., the desired
output function is defined as

yd(t) :=

{

0 for t < 0
y01(t) for 0 ≤ t ≤ τ
y1 for t > τ

(6)

where y01(t) is the desired transition function between the
constant values 0 and y1. The general procedure, which
involves a numerical computation, to determine r(·) such
that the desired output function is obtained, can be found
in (Pallastrelli and Piazzi (2005)). It is worth stressing that
when the selected desired output function is a polynomial
function (Piazzi and Visioli (2001b)) (at least of seventh
order), an analytical solution can be found (Piazzi and
Visioli (2005)) and this fact can be exploited in speeding
up the computational time and most of all in avoiding
numerical problems.
Since the system transfer function H(s) (5) has two
negative zeros (one of the PI controller and one of the

C(s) M(s)signal
command

generator
F(s)

r i x y
1

y

y
0

Fig. 1. The considered control system.

transmission transfer function), r(t) is defined over the
time interval [0, +∞) and therefore, in order to practically
use it, it is necessary to truncate it. Thus, the input
function exhibits a post-actuation time interval (see for
example (Zou and Devasia (2004))).
In any case, since the input-output inversion procedure has
necessarily to be applied to the estimated transfer function
Ĥ(s; ρ), which may encompass structured (parametric)
uncertainties, the desired output function is not actually
obtained in general. In other words, by applying the
determined command input r(t; ρ) to the true system, the
obtained system output y(t; ρ) is not equal to yd(t).
For this reason, an iterative strategy is proposed in order
to find the optimal parameter vector defined by

ρ
∗ := arg min

ρ

J(ρ) (7)

where J(ρ) is the following integral criterion (Ho et al.
(2003); Crowe and Johnson (2005)):

J(ρ) =
1

2Tf

∫ Tf

0

(y(t; ρ) − yd(t))
2dt (8)

where Tf is the control interval (which might be practically
selected as the sum of the transition time τ and of the
post-actuation time interval).

3. ITERATIVE FEEDFORWARD TUNING

For the purpose of solving the optimisation problem (7),
we propose to place an additional sensor in order to mea-
sure the position of the load (note that this measure is not
use for feedback control) and then to employ a gradient-
based minimisation, namely, the following expression can
be used after the ith iteration:

ρ(i + 1) = ρ(i) − γiR
−1

i

∂J

∂ρ
(ρ(i)) (9)

where γi is a positive real scalar that determines the step
size and R is some appropriate positive definite matrix.

3.1 Generating the cost function gradient

The computation of the cost function gradient is therefore
necessary in order to apply the gradient search (9). From
(8) it follows that

∂J

∂ρ
(ρ(i)) =

1

Tf

∫ Tf

0

e(t; ρ(i))
∂e(t; ρ(i))

∂ρ
dt (10)

where
e(t; ρ) = y(t; ρ) − yd(t). (11)

It can be noted that e(t; ρ(i)) is immediately available after
an experiment has been performed. In order to determine
an expression of the first derivative of the error signal,
since an analytical expression cannot be derived in general,
it is convenient to consider the Laplace transform of the
functions considered, namely,

E(s; ρ) = Y (s; ρ) − Yd(s) = H(s)R(s; ρ) − Yd(s). (12)
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By considering that R(s; ρ) has been obtained by inverting

the system Ĥ(s; ρ), we can write

R(s; ρ) = Ĥ−1(s; ρ)Yd(s) =
[

1 + C(s)M̂ (s; ρM )

C(s)M̂(s; ρM )F̂ (s; ρF )

]

Yd(s)
(13)

and, hence, we obtain, after trivial calculations:

dE(s; ρ)

dρ
=

H(s; ρ)Yd(s)

C(s)M̂2(s; ρM )F̂ 2(s; ρF )
·

(

−F̂ (s; ρF )
∂M̂(s; ρM )

∂ρ
(14)

−M̂(s; ρM )
∂F̂ (s; ρF )

∂ρ
(15)

−C(s)M̂2(s; ρM )
∂F̂ (s; ρF )

∂ρ

)

. (16)

At this point it is worth considering the three addenda
(14)-(16) separately. Indeed, (14) can be rewritten as

−H(s; ρ)Yd(s)
∂M̂(s; ρM )

∂ρ

1

C(s)M̂2(s; ρM )F̂ (s; ρF )

·
1 + C(s)M̂(s; ρM )

1 + C(s)M̂(s; ρM )
=

= −
∂M̂(s; ρM )

∂ρ

1

1 + C(s)M̂(s; ρM )

1

M̂(s; ρM )
Y (s; ρ)

=: P1(s; ρM )Y (s; ρ)
(17)

The, (15) can be rewritten as

−H(s; ρ)Yd(s)
∂F̂ (s; ρF )

∂ρ

1

C(s)M̂(s; ρM )F̂ 2(s; ρF )

·
1 + C(s)M̂(s; ρM )

1 + C(s)M̂(s; ρM )
=

= −
∂F̂ (s; ρF )

∂ρ

1

1 + C(s)M̂(s; ρM )

1

F̂ (s; ρF )
Y (s; ρ)

=: P2(s; ρ)Y (s; ρ)

(18)

Finally, (16) can be rewritten as

−H(s; ρ)Yd(s)
∂F̂ (s; ρF )

∂ρ

1

F̂ 2(s; ρF )

·
1 + C(s)M̂ (s; ρM )

1 + C(s)M̂ (s; ρM )
·
C(s)M̂(s; ρM )

C(s)M̂(s; ρM )
=

= −
∂F̂ (s; ρF )

∂ρ

1

F̂ (s; ρF )
T̂ (s; ρM )Y (s; ρ)

=: P3(s; ρ)Y (s; ρ).

(19)

It turns out that, by considering the corresponding time-
domain signals, the term ∂e(t; ρ)/∂ρ can be computed
by determining the response of the systems P1(s; ρM ),
P2(s; ρ), and P3(s; ρ) to the obtained output y(t; ρ) and
by adding the results.

3.2 Algorithm

Based on the above considerations, given the estimated
system transfer functions M̂(s; ρM ) and F̂ (s; ρF ), a con-

troller transfer function C(s) and a desired output function
yd(t), the overall Iterative FeedForward Tuning (IFFT)
algorithm for residual vibration reduction can be outlined
as follows.

IFFT algorithm

(1) Choose a parameter vector ρ.
(2) Determine the command input function r(t; ρ) by

applying an input-output inversion procedure to
the closed-loop system Ĥ(s; ρ) with output function
yd(t).

(3) Run a closed-loop system experiment with command
input r(t; ρ) and measure the load position y(t; ρ).

(4) Record the system output y(t; ρ) and determine the
error signal e(t; ρ) = y(t; ρ) − yd(t).

(5) Determine ∂e(t; ρ)/∂ρ as the response of the system
P1(s; ρM ) + P2(s; ρ) + P3(s; ρ) (see (17)-(19)) to the
signal y(t; ρ).

(6) Calculate the cost function gradient (10).
(7) If ‖∂J(ρ(i))/∂ρ‖ > ε then update the parameter

vector ρ by applying formula (9) and go to 2.
(8) Apply the determined command input r(t; ρ∗) repeat-

edly in the routine system operations (the measure of
y(t) is no more necessary).

Note that, although the algorithm converges to the set
of stationary points of the criterion (8) (see Section 4),
the termination condition at step 7 is employed in order
to avoid a infinite number of iterations. In this context
the user-chosen parameter ε allows to handle the trade-
off between the number of iterations and the achieved
performance.

4. PRACTICAL ISSUES

A few practical issues have to be addressed for an effective
implementation of the procedure described in Section 3.
First, it has to be stressed that, since all the adopted
signals are bounded, the convergence properties of the al-
gorithm can be derived by following an analysis analogous
to the one of the Iterative Feedback Tuning methodology
(Hjalmarsson et al. (1998); Hjalmarsson (2002)). Further,
the considerations made in (Hjalmarsson et al. (1998);
Hjalmarsson (2002)) regarding the choice of the sequence
of matrices Ri in (9) apply also for the IFFT technique.
It is also worth stressing at this point that the presence of
measurement noise (which has not been taken into account
explicitly in the previous analysis) can be addressed by an
appropriate filtering of the data. Note that a standard off-
line filtering technique can be employed.
The IFFT algorithm has been devised on the basis that
only structured uncertainties are taken into account ex-
plicitly. In any case it has to be considered that the
presence of the feedback controller reduces the effects of
the motor unstructured uncertainties at low frequencies
where the determined command input has its frequency
content (Piazzi and Visioli (2006b)). In this context a role
is played by the transition time τ (see (6)) that allows also
to handle the actuator constraints (and therefore to avoid
detrimental nonlinear effects). This is also the reason for
which it is not necessary to include a term related to the
control effort in the considered cost function (8).
Finally, note that, in order to provide a useful tool for
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Fig. 2. The load motion obtained by using the desired
output function as a command input.

the application of a the input-output inversion procedure
(step 2 of the algorithm), a Matlab toolbox has been
implemented (Piazzi and Visioli (2006a)).

5. SIMULATION RESULTS

5.1 Example 1

As a first illustrative example we considered the system
shown in Figure 1 with Jm = 0.00011, Dm = 0.0034,
m = 1, c = 0.22 and k = 3.05. As a desired output function
(see (6)), for a transition from 0 to y1 = 1, a seventh-order
polynomial has been selected, namely,

y01 = −20
t7

τ7
+ 70

t6

τ6
− 84

t5

τ5
+ 35

t4

τ4
(20)

where τ = 2. In order to evaluate the significance of
the elasticity, the load positon obtained when the desired
(smooth) output function is employed as a command input
is shown in Figure 2, where the residual vibration emerges
clearly. Then, the iterative procedure has been applied,
starting from an initial estimate of the parameters ρ(1) =
[0.0002 0.004 1.2 0.1 5]T . The command input function
and the load motion obtained at the first iteration are
plotted in Figures 3 and 4 respectively. By setting for any
i γi = 10−3 and

R
−1

i = diag(10−3, 10−3, 1, 1, 10)

at the tenth iteration the command input and the
load motion shown in Figures 5 and 6 respectively
has been obtained. The improvement is evident and it
is confirmed by the values of the cost function J(ρ)
at the different iterations shown in Figures 7. The
parameters vector at the tenth iteration is ρ(10) =
[0.00028 0.004 1.2 0.08 4.99]T demonstrating that a small
change in the parameters might have a significant effect
on the performance achieved.

5.2 Example 2

As a second example, we consider the same system
of example 1, but in this case the initial parameters
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Fig. 3. Command input at the first iteration - example 1.
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Fig. 4. Load motion at the first iteration for example 1.
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Fig. 5. Command input at the tenth iteration - example 1.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

11832



0 10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

time [s]

lo
a

d
 p

o
s
it
io

n

Fig. 6. Load motion at the tenth iteration - example 1.
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Fig. 7. Cost function - example 1.

vector is ρ(1) = [0.0001 0.002 0.9 0.1 5]T . Results
are shown in Figures 8-12 and in this case ρ(10) =
[0.00089 0.0016 0.87 0.09 5.05]T . It turns out that also
in this case the IFFT procedure is capable to reduce the
residual vibration significantly.

6. CONCLUSIONS

A methodology for the residual vibration reduction in vi-
bratory servosystems has been presented in this paper. In
particular, a suitable inversion-based feedforward control
law is determined by means of an iterative gradient-based
optimisation procedure. Although the devised tecnique
yields in general to a local optimum, it appears that just
a few iteration are necessary to improve significantly the
performance of the servosystem.
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