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Abstract: To overcome sluggish load disturbance response for industrial/chemical processes with slow
time constant(s), an improved design for on-line autotuning of proportional-integral-derivative (PID)
controller is proposed in this paper, based on relay identification of the widely used first-order-plus-dead-
time (FOPDT) process model. Using the fitting conditions established for process response at the
oscillation frequency under a relay test, the identification algorithm is transparently developed. An
analytical controller tuning method is then developed using an asymptotic constraint established thereby
for reducing the influence of the slow process time constant on load disturbance rejection. Illustrative
examples are given to show the effectiveness and merits of the proposed algorithms.

1. INTRODUCTION

Sluggish load disturbance response is usually resulted for
processes with slow time constant(s), as widely recognized in
the process industry. To deal with this problem, model-based
controller tuning methods have been effectively developed
(Morari and Zafiriou, 1989; Seborg, Edgar, and Mellichamp,
2003). Recently improved methods for tuning the
proportional-integral-derivative (PID) controller, which is
most commonly used in engineering practice, can be found in
the literature (Piazzi and Visioli, 2006; Leva, Bascetta and
Schiavo, 2005; Sree, Srinivas and Chidambaram, 2004;
Skogestad, 2003; Ho et al., 2003; Sung, Lee and Park, 2002;
Lee and Edgar, 2002; Hwang and Hsiao, 2002; Tan, Lee and
Jiang, 2001). For such a controller design, a low-order
process model is needed, of which the first-order-plus-dead-
time (FOPDT) model structure is mostly used since it can
effectively reflect the fundamental characteristics of process
response, in particular for the low frequency range primarily
referred to controller tuning (Astrém and Higglund, 1995;
Yu, 2006). Relay identification for obtaining low-order
process models has received increasing attention in the
process control community (Atherton, 2006; Hang, Astrom
and Wang, 2001), owing to that such an identification test
can be performed online while preventing process response
from drifting too far away from the operational level required
therein. Based on a single run of unbiased relay feedback,
Luyben (2001) proposed a FOPDT modeling method by
defining curvature factors for the relay response shapes of
stable and unstable processes; Vivek and Chidambaram
(2005) reported another FOPDT identification algorithm
using the Fourier analysis of the process relay response;
Huang, Jeng and Luo (2005) developed a simple formulation
of FOPDT model for on-line tuning of PI/PID controllers.
Based on a single run of biased relay test, Shen, Wu and Yu
(1996) gave a FOPDT modeling method according to the
sustained oscillation conditions from the describing function
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analysis; Wang, Hang and Zou (1997) derived a FOPDT
algorithm using the algebra properties of periodic oscillation;
Kaya and Atherton (2001) developed a FOPDT identification
method based on the so-called A-locus analysis.

In this paper, two identification algorithms are respectively
derived according to whether an unbiased or biased relay test
is used. Based on the internal model control (IMC) theory,
(Morari and Zafiriou, 1989), a modified IMC filter design is
proposed to derive the PID controller within the framework
of a unity feedback control structure. As a result, apparently
improved disturbance rejection performance can be obtained.

2. RELAY IDENTIFICATION ALGORITHMS

In a relay feedback test for identification, the relay function is
usually specified as

u+
u(t) = {u

where u, = Au+u, and u_=Au— u, denote, respectively,
the positive and negative relay magnitudes; £, and &
denote, respectively, the positive and negative relay switch
hysteresis. Note that letting u, =—u_ and ¢, =—¢_leads to
an unbiased relay function.

Jor {e(t)>¢e }or{e(t)=2¢ andu(t )=u,} (1)
for {e(t)<e tor{e(t)<e andu(t )=u_}

When the process response moves into the limit cycle under
relay feedback, the process output becomes a periodic
function with the oscillation angular frequency, @, =27/ P,.
By using the idea of time shift, we may view it as a periodic
signal from the very beginning, so its Fourier transform can
be derived as

o R i, 1 los+R, oy
Y(jw,) = Zlvlinwzvjo v, (e dr = }vlgzvjtm y(t)e dt (2)
where y_ (1) = y(t) for e[z, ,) and ¢ may be taken as

any relay switch point in steady oscillation, such that the
influence from the initial response can be excluded.
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Similarly, it follows that

U(j@,)= lim Nj “u(t)e ™ de 3)

Thereby, the process frequency response at @, can be
obtained as

1 +P, .
T (e dt .
G(]a)u) Y(]C()u) L,s — Aue./(ﬂu (4)

UGe) [ e dr

Note that the Laplace transform for the relay response can be
actually decomposed as

Ys)=[)"y

where ¢ denotes the moment after which y(r) becomes a
periodic signal. The second integral in (5) can be derived as
“y()ede+-

..‘:o_ y(t)e™dt = J.t"‘“w“ y(t)e "dt +J-tm1+2P

_(1+ePa+—2Ps+ )J.
1_ —MP,s

e " ‘[ fos1 +Fy
e fs s

osl

(t)e"'dt + j{” y(t)e dt Q)

y(t)e“'dt

"y(t)e dt

nBs

For Re(s) >0, there exists ¢+ — 0 as n — . Hence, we

can obtain for Re(s) >0 that

Y(s)= j y(t)e’”dt+ luj y(t)e dt (6)

Likewise, the Laplace transform of the relay output for
Re(s) >0 can be derived as

1 -[tosl +
—Ps
—e v i

Therefore, the process transfer function for Re(s) >0 can be
obtained as

g u(He™'dt @)

U(s)= jo’ u(t)e 'de + 1

ys) (- ) j y(t)e dr + j b e de

UGs) (1—c P‘)J' u(t)e” *’dz+j
By substituting s = oz + j, into (8) we can obtain
(=e )|

e )j [u(t)e ™ Je ™ dt + j

G(s)= (3)

“u(t)e™dt

Y(t)e ™ ] f"”dt+j (e Je ™ dt

G(jo, +a)—
[u@)e™™ Je’ ™ dt

)
where ¢ e (0,00) may be viewed as a constant shift operator
of Laplace transform. Note that G( jo,+a)—0/0 as o —>eo.
It is therefore suggested to choose ¢« with a numerical
constraint of mm{\u(z +P)e 1*”\ \ W1, +P)e et )l} >107,
such that both the initial and steady responses of y(¢) and
u(t) under relay feedback can be effectively included in the

computation of (9).

To identify a FOPDT model generally in the form of

—0s
G - ke

m

(10)

7s+1

we can establish two fitting conditions by substituting (10)
into (4), i.e.,

k, _ 1D

2 2 Au
JT@r +1
-6, —arctan(tw, ) = @, (12)
By substituting (10) into (9) and letting G( jo, +a)= Aaej% R
we obtain another fitting condition,

—a
ke

Jar+1) + @)

For the case that a biased relay test is used, the process gain
can be derived as

N e
J' e u(t)dt

t0$

4 (13)

k =G(0)= (14)

Accordingly, the other two model parameters, 7 and @, can
then be derived from (11) and (12), respectively.

For the case that an unbiased relay test is used, the three
model parameters, k,»T and @, can be derived by solving
(11-13) together. To perform numerical computation possibly
involved thereby, iterative algorithms such as the Newton-
Raphson method may be used, and correspondingly, a relay
response fitting constraint can be adopted to determine a
suitable solution, i.e.,

ZN:[)?(kTS +t )-y(kT. +t )/ N<&e (15)

k=1

where y(kT, +1,)) and y(kT, +t,) denotes respectively the
model and process responses, 7, is the sampling period and
N=P /T, and ¢ is a user-specified fitting threshold that
may be set between 0.01% ~1% .

2. PID TUNING METHOD

Consider the unity feedback control structure shown in Fig.1,

Fig. 1. Unity feedback control structure

where C is a PID controller as mostly used in practice, d,
and ¢ denote, respectively, load disturbances injected at the
process input and output sides, and d indicates the load
disturbance with a transfer function of G In many industrial
cases, the influence of d may be transformed into d to be
treated (Seborg, Edgar and Mellichamp, 2003).

It is well known that the IMC theory has been successfully
applied to PID tuning within the framework of a unity
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feedback control structure (Skogestad and Postlethwaite,
2005; Braatz, 1995). The key to the use of IMC theory for the
closed-loop controller design lies with the choice of a
suitable IMC filter to construct the desired closed-loop
complementary sensitivity function. Given a process model
G,=G,G, , where G, is an all-pass portion and G, a
minimum-phase portion, the IMC-based complementary
sensitivity function can be ascertained as

T=G,f (16)

where f* denotes the IMC filter. A conventional IMC filter
of type I, f(s)=1/(As+1)", is generally chosen for step
changes in set-point and load disturbance, and type II,
f(s)=(nAs+1)/(As+1)", is for ramp changes, where n is
an integer large enough to make f/G,, proper. Most of
existing IMC-based tuning methods are based on the filter
type I, since a step change in set-point or load disturbance
can be physically regarded as a summation of sinusoidal
signals of different frequencies. The key feature of IMC filter
type I is that it can lead to the H, optimal performance
objective for step change in set-point and the load
disturbance acting on the process output side (i.e., d, shown
in Fig.1). However, for a load disturbance that seeps into the
process, denoted as ¢, in Fig.1, the corresponding transfer
function is in the form of

H, =GSd, (17)

where S =1-T is the sensitivity function. It can be seen that
the time constant(s) of G is enclosed in the characteristic
equation of H, , and therefore, affects the achievable
disturbance rejectlon no matter how the IMC filter is tuned
in T . This can be used to explain why the recovery trajectory
of the disturbance response is subject to ‘a long tail’, i.e.,
sluggish load disturbance suppression, for a process with
slow time constant(s).

To reduce the influence arising from the slow process time
constant(s) to the load disturbance response, a good idea is to
eliminate the corresponding pole(s) from the characteristic
equation of the above load disturbance transfer function, as
illustrated by Horn et al. (1996) for cancelling the slowest
pole with rational approximation. It is thus expected that
1-T (i.e., §), rather than T, has the corresponding zero(s)
to cancel the slow pole(s) of G , such that the load
disturbance response is governed only by the time constant of
T (i.e., an adjustable parameter in the IMC filter). The
numerator of 1 -7, however, is unavoidably involved with
time delay factor(s) for a process with time delay, so it cannot
be factorized to make exact zero-pole cancellation with the
denominator of G . The following asymptotic constraint is
therefore proposed to realize the above idea based on the
identified FOPDT model of (10),

lim (1-7)=0 (18)

s—=-1/7

Correspondingly, the conventional IMC filter is rectified as

(19)

as+1

Jrive =m

where ¢ is an additional parameter used for satisfying the
above asymptotic constraint. It follows from (10), (16) and
(19) that

_(as+he” (20)
BME (As+1)?
Substituting (20) into (18) yields
_e
=r[1—(ﬁ—1)2e 7] (21)
T

It is seen that o is a function of 4 . Hence, there is
essentially a single adjustable parameter, 4, in the proposed
IMC filter.

According to the nominal closed-loop relationship
_ G.C
1+G.C

we obtain by substituting (10) and (20) into (22) the desired
closed-loop controller,

(22)

_ (as+D)(zs+1) (23)
k[(As + 1) —(as+1)e™”]
It can be verified from (23) that
limC =co 24)
Hence, this controller has a property of integral for

eliminating the steady-state error. To approximate it in a PID
form for implementation, we hereby adopt the analytical
approximation approach used in the recent literature (e.g., Liu
etal.,2005a,b). Let C=M /s, it follows that

C:—[M(O)+M(0) +— (O) st +

+--] (25)
Accordingly, the first three terms in the above Maclaurin
expansion constitute a PID controller, i.e.,
Copy =k, P 7,8 (26)
where k_=M’(0) and 7, =1/M(0) and 7, = M"(0)/2 . The
pure derivative in (26) can be practically implemented by
cascading with a first-order low-pass filter in which the time
constant can be chosen as (0.01~ 0.1)7, -

It should be noted that the rational high order approximation
formula proposed in Liu ef al. (2005a) in terms of the linear
fractional Padé expansion may be used for obtaining further
enhanced control performance.

Combining (21), (23) and (25), we can also see that the
proposed PID controller is essentially tuned by the single
adjustable parameter, 4., of the proposed IMC filter.

To explore the quantitative relationship between the
disturbance response peak (DP) of a FOPDT process shown
in (10) and the single tuning parameter A, of the proposed
PID controller, we may normalize the process model of (10)
by scaling the Laplace variable as s = s, i.e.,
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-5

a =kpef

"5+l

27

By substituting the scaled Laplace variable into (23), we can
find that the tuning parameter is correspondingly scaled as
A /7 to obtain the same control effect. That is to say, using
A /7 for (27) can obtain the same DP with (10) in terms of
A . Hence, we can study the quantitative relationship
between DP/kp, Al and @/, regardless of the variation
of 7. Based on numerical computations and simulations, the
result for a unity step change of the load disturbance added to
the process (shown as 4, in Fig.1) is plotted in Fig.2.

S
0.8
= S
IS
S

0.6t
DP/Kp
0.4

0.2

Fig. 2. Disturbance response peak for FOPDT process

According to the small gain theorem (Zhou, Doyle and
Glover, 1998), the closed-loop system shown in Fig.1 holds
robust stability if and only if

L
Al

where A=(G-G,)/G, denotes the mismatch between the
model and the real process. Given an upper bound of this
mismatch, the admissible tuning range of A can be
numerically determined by substituting (22) into (28). For
instance, in the case that there exists the process time delay
uncertainty A, which may be converted to A(s)=e™* -1,

the robust stability constraint for tuning A, of the proposed
PID controller can be ascertained by substituting (22) and (26)
into (28), i.e.,

I7|l. < (28)

29)

| GG |1
114G, Cop | [ 1]

Based on the quantitative relationship given in Fig.2, it is
suggested to tune A =7 in the first place. Then by
monotonously varying 4 online, the best trade-off between
the nominal performance of the closed-loop system and its
robust stability can be conveniently obtained.

4. ILLUSTRATION

Example 1. Consider the first-order process widely studied
in the literature (see, e.g., Shen, Wu and Yu, 1996; Vivek and
Chidambaram,2005).

e—2.s‘

T 10s+1

By using a biased relay test, Shen, Wu and Yu (1996) derived
the process model, G_=0.999¢>"* /(8.118s+1) . Vivek
and Chidambaram (2005) obtained the process model,
G, =0.9467¢ /(9.50285+1) , from an unbiased relay
feedback test. For comparison, unbiased (u, =—u_ =1.0)
and biased ( u, =13 and y =-0.7 ) relay tests with
g, =—¢€ =0.2 and r=0.1 are respectively performed, for
which the intermediate values of the limit cycle for model
identification are listed in Table 1.

1

Table 1. Limit cycle data

Example Relay Limit Cycle
£ 4, 9, 4,
Unbiased | 14.4 | 0.2234 | -2.2203 |0.1706
1 Biased 15.57] 0.2405 | -2.1371
oy, =0.045% | 14.03 | 0.2182 | -2.2506
2 Biased 14.38| 0.7051 | -2.9108
3 Unbiased [26.08 ] 0.1831 | -2.0573 ]0.1233

Consequently, the proposed algorithm for unbiased relay test
results in the model, G_=1.0048¢7>"** /(10.049s+1) , and
the proposed algorithm for biased relay test gives
Gm=1.0001e’2‘°°55 /(10.001s+1) , both of which indicate
good identification accuracy.

Suppose that a random noise of N (0,512v =0.045%) is added
to the process output measurement and feedback under the
above biased relay test, causing the noise-to-signal ratio
(NSR) to be 10%. Based on the statistical averaging of 10
steady oscillation periods for computation, the intermediate
values of the limit cycle obtained thereby are also listed in
Table 1. Correspondingly, the proposed algorithm for biased
relay test results in G =1.0236¢""7"/(10.2331s+1) ,
indicating good identification robustness.

Example 2. Consider the high-order process studied in the
recent literature (Wang et al., 1997; Kaya and Atherton, 2001)

_(=s+De”
T (s+1)

By using a biased relay test, Wang et al. (1997) derived a
FOPDT model, G, =1.00e™*** /(2.995+1) , and Kaya and
Atherton (2001) gave the model, G, = 1.00e7%% /(22925 +1)
both of which had shown their superiority over many other
relay identification methods. For comparison, the biased
relay test in example 1 is performed and correspondingly, the
proposed algorithm results in the FOPDT model,
G, =1.0001e %" /(2.3017s+1). The Nyquist plots of these
FOPDT models are shown in Fig.3. It can be seen that further
improved fitting is captured by the proposed model. Note that
the model response obtained hereby coincides with the real
process at the oscillation frequency, i.e., (-0.686, -j0.1628), as
shown in Fig.3.
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08— — ; T T— Real process the proposed PID tuning method holds robust stability well in
Y g = — Proposed the presence of the severe process uncertainty.
L A I
| ¢ 0.1 ; . . .
N ——__—_—————— (a) —— Proposed
Im ---- Skogestad
01628 |- G- -t - mmmm b 0.08 —mee IMC i
R i N S il A 0.06} i
B N N i . e 5
£ 0.04 1
08F — - - - - NG T S — — — — = - - 0]
1 1 ‘ ‘ 1 0.02 1
0.686 0.4 0 0.5 1 1.2
Re 0
Fig. 3. Nyquist plots for example 2
0.0 20 40 60 80 100 120
. . Time (sec)
Example 3. Consider the second-order process studied by
Skogestad (2003) (b) 05 — Proposed
---- Skogestad
L IMC
G- ¢
(20s+1)(2s+1) =
For improving disturbance rejection performance, a modified u_%’
IMC design for tuning the closed-loop PID controller was £
developed in Skogestad (2003), of which the controller 3
parameters are listed in Table 2. For illustration, an unbiased
relay test as in example 1 is performed, of which the limit
cycle data are listed in Table 1. Accordingly, the proposed ‘ ‘ ‘ ‘ ‘
identification algorithm results in the FOPDT model, % 20 40 60 80 100 120
G, =0.98¢77 /(21.8291s5+1) . Based on this model, the Time (sec)

proposed PID tuning method is used with A =0.9 to obtain . . .
the same DP with that of Skogestad (2003) for comparison. Fig. 4. Nominal disturbance response for example 3
The corresponding controller parameters are listed in Table 2,

together with the conventional IMC-based PID parameters (a) 012

—— Proposed
obtained in terms of the exact process model, 1=0.45 and 0.1} o ﬁ\'ﬂ‘ggesmd
the Maclaurin expansion.

0.08
Table 2. PID tuning methods 5 006
Controller Parameters O 0.04r
Methods
k, T, 7, 0.02f
Proposed | 13.6248 | 0.4129 | 16.263 0
Skogestad | 12.5 0.8 20 -0.02; 20 2 ‘ o 50 100 120
IMC  |11.6614| 19 |[22.8324 Time (se0)
(b) 02 ‘ ‘ ‘ " [— Proposed
The closed-loop system response for a step change of load 0 ---- Skogestad ||
disturbance injected into the process is shown in Fig.4. Itcan ~ (}{ = MC
be seen that, to obtain the same DP, the proposed tuning _
method has reduced the recovery time by almost 80 percent é
in comparison with the conventional IMC filter, and by 2
almost 50 percent in comparison with Skogestad (2003). :g)
To demonstrate robust stability of the proposed tuning
method, assume that there exists 20% error in modelling the
original SOPDT parameters. The worst case is that the

process time delay is actually 20% larger while the two time K 20 40 Timzo(sec) 80 100 120
constants are actually 20% smaller. The corresponding load . .
disturbance response is shown in Fig.5, which indicates that ~ Fig. 5. Perturbed disturbance response for example 3
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5. CONCLUSIONS

Based on relay identification of the widely used FOPDT
process model, an improved PID autotuning method has been
developed. The proposed identification algorithms can be
used for both unbiased and biased relay tests, and can result
in improved fitting for the process frequency response
compared to some existing FOPDT identification methods
recently developed, in particular for the referred low
frequency range for controller tuning. By proposing a
modified IMC filter to reduce the influence of the slow
process time constant on the load disturbance response, the
corresponding PID controller in a unity feedback control
structure has been analytically derived using the Maclaurin
approximation. An important merit of the proposed PID
design is that there is essentially a single adjustable
parameter, which can be monotonously tuned on-line to meet
the best compromise between the nominal closed-loop
performance for load disturbance rejection and its robust
stability. The quantitative tuning relationship between this
adjustable parameter, DP, and the identified FOPDT model
parameters has been given for practice reference.
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