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Abstract: This paper presents the design and experimental evaluation of a two-degree-of-
freedom discrete-time µ-controller for a laboratory two-rotor aerodynamic system with ten
uncertain parameters. The controller implemented is of 24th order and ensures robust stability
and robust performance of the closed-loop sampled-data system. This controller is realized on
a PC by using the Real Time Workshop of MATLAB R©with a sampling frequency of 100 Hz.
The experimental results are close to the results predicted by using the linearized model of the
system and highlight many of the difficulties associated with the practical implementation of
robust control laws.
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1. INTRODUCTION

The real implementation of robust control laws is useful in
teaching the modern Robust Control Theory. Such imple-
mentation allows to attract the students attention to the
theoretical and practical difficulties associated with the
realization of high-order controllers in presence of uncer-
tainties, nonlinearities, disturbances and noises. The com-
bined usage of theoretical methods, software for computer-
aided design and sophisticated laboratory equipment helps
to build the necessary knowledge and engineering abilities
for control of complex systems.

This paper presents the design and experimental evalu-
ation of a two-degree-of-freedom discrete-time µ-controller
for a laboratory two-rotor aerodynamic system with ten
uncertain parameters. The controller implemented is of
24th order and ensures robust stability and robust per-
formance of the closed-loop sampled-data system. This
controller is realized on a PC by using the Real Time
Workshop of MATLAB R©with sampling frequency of 100
Hz. The experimental results are close to the results pre-
dicted by using the linearized model of the system and
highlight some of the difficulties associated with the im-
plementation of robust control laws. The controller design
and implementation are used in the laboratory exercises
in a course on Robust and Optimal Control, taught in the
Technical University of Sofia.

2. SYSTEM DESCRIPTION

The two-rotor aerodynamic system (TRAS) is shown in
Figure 1. There are two propellers at the both ends of
a beam, driven by DC motors, joined to the base with
an articulation. The main propeller controls the beam

Fig. 1. Two-rotor aerodynamic system

position in the vertical plane, while the tail propeller
controls the beam position in the horizontal plane. There
are two counter-weights fixed to the beam that determine
the stable equilibrium position. The system is balanced in
such a way, that when the motors are switched off, the
main rotor end of beam is lowered. The control actions
are the motor supply voltages. The measured system
outputs are the two angles of beam deviation in the
horizontal plane (azimuth angle) and in the vertical plane
(pitch angle). The motor control is realized in pulse-width
modulation (PWM) mode.

The TRAS control consists in stabilization of the beam in
arbitrary (in the practical limits) desired position (pitch
and azimuth) or tracking of a desired trajectory. In the
design of robust control systems one usually implements
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controllers obtained by H∞ design or µ-synthesis, see Zhou
et al. (1995). In this paper we present the results from µ-
synthesis only, which has the advantage that it guarantees
the achievement of robust performance of the closed-loop
system.

3. DERIVATION OF THE UNCERTAINTY MODEL

In the design of robust control laws it is advisable to use
linearized models in which it is easy to set the uncertainty
in specific parameters. For this aim the models, obtained
by analytic linearization, are very appropriate.

In the given case the plant nonlinear model is provided
by the manufacturer of the laboratory set-up in the form
of nonlinear differential equations and algebraic relations
as well as in the form of Simulink R©model, see Anon1
(2006). The model of the two-rotor aerodynamic system
is linearized analytically under the usual assumption for
small deviations of the variables, describing the system
behavior, around their trim values.

Fig. 2. Linearized model of the two-rotor aerodynamic
system

The linearized TRAS model is shown in Figure 2 where
the subindex nom denotes the nominal value of the corres-
ponding variable. The input variables are the voltages uh

and uv of the tail rotor and main rotor motors and output
variables are the azimuth angle αh and pitch angle αv.
The moments Mhd and Mvd are the disturbances acting

on the system. The plant is two-channel and there is an
interaction between the two channels. In order to reveal
in full the dynamic behavior of the plant it should be
considered as multivariable, i.e. the two channels can not
be considered as independent.

Table 1. System parameters

Symbol Description

Ih moment of inertia of the tail rotor

Jh moment of inertia with respect to the vertical axis

Iv moment of inertia of the main rotor

Jv moment of inertia with respect to the horizontal axis

kHh
velocity gain of the tail rotor

kFh
thrust coefficient of the tail rotor

kHv
velocity gain of the main rotor

kFv
thrust coefficient of the main rotor

kfh
friction coefficient in the vertical axis

kfv
friction coefficient in the horizontal axis

khv coefficient of the cross moment from tail rotor

to pitch

kvh coefficient of the cross moment from main rotor

to azimuth

Rv coefficient of the return torque

lm length of the main part of the beam

lt length of the tail part of the beam

The parameters of the linearized model are defined in
Table 1.

The coefficients kHh
, kFh

, kHv
, kFv

are determined
by linearization of the the corresponding rotor static
characteristics, obtained experimentally. The gain Rv is
the coefficient of the return torque corresponding to the
forces of gravity and depends nonlinearly from the pitch
angle αv. After the linearization, this gain is obtained as
Rv = k1 sin(αv,nom) − k2 cos(αv,nom) where k1 and k2

are constants. The inertial moment around the vertical
axis, Jh, is also a nonlinear function of the pitch angle
and is obtained as Jh = k3 cos2(αv,nom) + k4, where the
coefficients k3 and k4 are determined by the mass and
geometric sizes of the beam and devices mounted on it.

Table 2. Parameters of the linearized model

Parameter Value Units

Ih 1/37000 kgm2

Iv 1/6100 kgm2

Jv 3.00581 × 10−2 kgm2

kfh
5.88996 × 10−3 Nms/rad

kfv
1.27095 × 10−2 Nms/rad

khv 4.17495 × 10−3 Nm

kvh −1.78200 × 10−2 Nm

kHh
9.83891 × 103 rad/s

kFh
2.12932 × 10−5 Ns/rad

kHv
4.87457 × 103 rad/s

kFv
3.07723 × 10−4 Ns/rad

lm 0.202 m

lt 0.216 m

k1 5.00576 × 10−2 Nm

k2 9.36008 × 10−2 Nm

k3 2.37904 × 10−2 kgm2

k4 3.00962 × 10−3 kgm2

The nominal values of the model parameters are given in
Table 2.
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As uncertain parameters in the mathematical description
of the aerodynamical system we consider the moment of
inertia Jh in respect to the vertical axis, the thrust coeffi-
cients kFh

, kFv
of both rotors, the velocity gains kHh

, kHv

of the two rotors, the friction coefficients kfh
, kfv

, the cross
moment coefficients kvh, khv, as well as the coefficient
Rv of the return torque, all together 10 parameters. The
uncertainties in the moment of inertia Jh and in the coef-
ficient Rv are due to their dependence on the pitch angle
αv, the uncertainties in the coefficients kFh

, kFv
, kHh

,
and kHv

are introduced as a result of the measuring and
approximation of the static characteristics of the rotors,
the uncertainties in the coefficients kfh

and kfv
are due to

the errors in determination of the friction moments, and
the uncertainties in the coefficients kvh and khv result from
simplification of the aerodynamic interaction between the
two channels. Further on we assume that the moment of
inertia Jh and the coefficients kFh

, kFv
, kHh

and kHv
are

known with errors up to 10 % while the rest coefficients -
with errors up to 5 %.

The ten real uncertain parameters are set by using the
function ureal from Robust Control Toolbox, ver. 3, see
Balas et al. (2006). The uncertain TRAS model is obtained
on the basis of the block-diagram, shown in Figure 2,
implementing the function sysic from the same toolbox.
As a result one finds an uncertain state space object.

The uncertain TRAS system is described as a control plant
by the equation

y = G

[

Md

u

]

,

where

y =

[

αh

αv

]

, u =

[

uh

uv

]

,Md =

[

Mhd

Mvd

]

.

Fig. 3. Uncertain model of the TRAS system

The uncertain model of the two-rotor aerodynamic system
is shown in Figure 3.

Let us introduce the representation

G = [Gd Gu]

such that
y = GdMd + Guu.

In the last expression Gd is the plant transfer function
in respect to disturbances and Gu is the plant transfer
function with respect to control.

The frequency response plot of the uncertain plant singular
values, obtained from the transfer function Gu, is shown
in Figure 4.

4. µ-SYNTHESIS OF A DISCRETE-TIME
CONTROLLER

The block-diagram of the closed-loop system that includes
the uncertain TRAS model, the feedback and the con-
troller, as well as the elements reflecting the performance
requirements, is shown in Figure 5.

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

−140

−120

−100

−80

−60

−40

−20

0

20

40

60

Singular Value Plot of G

Frequency (rad/sec)

M
a

g
n

it
u

d
e

 (
d

B
)

Fig. 4. Frequency response characteristics of the uncertain
plant

Fig. 5. Block-diagram of the closed-loop system with
performance requirements

The system has reference inputs (r), input disturbances
(d) and noise (n) introduced in measurement of the angles
αh and αv. (Here and further on the disturbance vector is
denoted for brevity by d.) The TRAS uncertain model is
the state space object G.

The system has two output signals (ey and eu). The
block M is the ideal dynamics model that the designed
closed-loop system should match to. The feedback of the
system is realized by the vector yc = y + Wnn, where the
measurement noise n is a random vector with unit 2-norm
and Wn is the transfer matrix of the noise shaping filters.

The transfer function matrix M of the ideal matching
model is chosen as diagonal in order to suppress the
interaction between the two channels and is taken as

M(s) =

[

wm1 0
0 wm2

]

where

wm1 =
1

1.5s2 + 1.2s + 1
,

wm2 =
1

2.0s2 + 1.6s + 1
.

In the choice of this model it was assumed that the azimuth
dynamics is faster than the pitch dynamics.
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The noise transfer function matrix is taken as

Wn(s) =

[

wn 0
0 wn

]

where wn = 10−2 s
s+1

is a high pass filter whose output is

significant above 10 rad/s.

To obtain good performance of the system responses we
shall implement a two-degree-of-freedom controller, see Gu
et al. (2005). The control actions are generated according
to the expression

u = [Kr Ky]

[

r
−yc

]

= Krr − Kyyc,

where Ky is the output feedback transfer function matrix
and Kr is the pre-filter transfer function matrix.

The control actions are realized by a computer in real time
with sampling frequency fs = 100 Hz. For this reason the
µ-synthesis is done for this sampling frequency.

Let us denote by P (z) the transfer function matrix of
the discretized eighteen-input eighteen-output open-loop
system, that consists of the plant model plus the weighting
functions and let the block-structure ∆P is defined as

∆P :=

{[

∆ 0
0 ∆F

]

: ∆ ∈ R
10×10, ∆F ∈ C

6×4

}

The first block of the matrix ∆P , the block ∆, corresponds
to the parametric uncertainties, included in the model of
the aerodynamic system. The second block ∆F is a ficti-
tious uncertainty block, used to include the performance
requirements into the framework of the µ-approach. The
inputs of this block are the weighted error signals ey and
eu, and the outputs are the exogenous signals r, d and n.

The aim of the µ-synthesis is to find a stabilizing controller
K, such that for each frequency ω ∈ [0, π/Ts], where
Ts = 2π/fs, the structured singular value µ satisfies the
condition

µ∆P
[FL(P,K)(jω)] < 1,

where FL(P,K) is the closed-loop transfer function mat-
rix. The fulfilment of this condition guarantees the robust
performance of the closed-loop system, i.e.
∥

∥

∥

∥

[

Wp(SoGuKr − M) WpSoGd −WpSoGuKyWn

WuSiKr −WuSiKyGd −WuSiKyWn

]
∥

∥

∥

∥

∞

< 1
for all uncertainties ∆ with ‖∆‖∞ < 1, where Si and So are
the input and output sensitivity functions, respectively.

The µ-synthesis is done for several performance weighting
functions that ensure a good balance between system per-
formance and robustness. On the basis of the experimental
results, we choose the performance weighting function

Wp(s) =







8.4 × 10−2 80s + 1

80s + 10−3
−0.01

0.03 7.5 × 10−1 500s + 1

500s + 10−3







and the control weighting function

Wu(s) =







4.8 × 10−5 0.05s + 1

10−4s + 1
0

0 2.304 × 10−4 0.1s + 1

10−4s + 1






.

The frequency responses of the inverse performance and
control weighting functions are given in Figures 6 and 7,
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Fig. 6. Inverse performance weighting functions
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Fig. 7. Inverse control action weighting functions

respectively. The control weighting functions are chosen as
high pass filters with appropriate bandwidth in order to
impose constraints on the spectrum of the control actions.

The experiments with the control laws designed shows that
the behavior of the real closed-loop system is very sensitive
to the weighting functions used. That is why the precise
tuning of the weighting functions requires a large volume
of experiments.

The µ-synthesis is performed by using the function dksyn

from Robust Control Toolbox. Five iterations are per-
formed that decrease the maximum value of µ to 0.997.
The final controller obtained is of 24th order. At first
glance, the order of this controller is very high, which
eventually makes difficult its real time implementation.
In fact, the experiments show that with the relatively low
sampling frequency and fast processor, the implementation
of this controller does not create difficulties. That is why
controller order reduction is not necessary.

The frequency response of µ, corresponding to the robust
performance analysis, is shown in Figure 8. Obviously,
the closed-loop system achieves robust performance, which
also guarantees robust stability of this system.
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Fig. 8. Closed-loop system robust performance
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Fig. 9. Transient responses of the uncertain linear closed-
loop system

The transient responses of the sampled-data closed-loop
system, obtained for different random values of the uncer-
tain parameters, are shown in Figure 9.
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Fig. 10. Control actions of the uncertain linear closed-loop
system

The control actions for different values of the uncertain
parameters are shown in Figure 10.

The experiments with the controller designed show a
strong influence of the control action constraints (the
actuators saturation) on the performance of the closed-
loop system. In some cases the usage of weighting functions
ensuring very good transient responses of the linear closed-
loop system leads to generation of auto-oscillations in the
real system and loss of stability. A very serious influence
on the dynamics of the closed-loop system may have the
noises at the actuator inputs, whose level is very high in
the case under consideration. This justifies the inclusion
of the noises in the controller design.
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Fig. 11. Singular value plot of the closed-loop system

The frequency responses of the singular values of the
closed-loop transfer function matrix for random values of
the plant uncertain parameters are shown in Figure 11. It
is seen that as a result of achieving robust performance,
the closed-loop system frequency responses are close to
these of the model (shown with dashed lines).
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Fig. 12. Singular value plot of the sensitivity function

The frequency response plot of the singular values of dis-
turbance transfer function matrix (output sensitivity func-
tion So) is shown in Figure 12. (The inverse performance
functions are shown with dashed lines.) The disturbance
attenuation is more than 100 times (40 dB).
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Fig. 13. Frequency response of the noise-to-control contour

The frequency response of the noise-to-control contour
(Figure 13) shows that one may expect high level of the
noises at the actuator inputs.

The experiments with the controller designed are done by
using the laboratory set-up, shown in Figure 1 along with
a PC with MATLAB R©, ver. 7.1. The generation of the C
driving program is done by using the Real Time Workshop,
see Anon2 (2006). For this aim a Simulink R©model of the
closed-loop system is used with built-in driver for interface
with the plant.
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Fig. 14. Experimental transient responses

The experimentally obtained transient responses of the
closed-loop system, controlled in real time with the µ-
controller designed, are shown in Figure 14. The compar-
ison with the transient responses of the linear closed-loop
system given in Figure 9 shows a good coincidence between
the theoretical and experimental results.

The experimentally obtained control actions are shown in
Figure 15. Due to the high level of the noises at the actu-
ator inputs, the control actions are severely contaminated
by errors.

To extract the true actuator inputs, the control signals
are filtrated by using first order Butterworth filter. The
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Fig. 15. Experimental control actions (noisy data)
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Fig. 16. Experimental control actions (after filtration)

corresponding results are shown in Figure 16 and are close
to the theoretical results shown in Figure 10.
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