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Abstract: The celebrated small-gain approach to robust control only makes use of the gain
information of uncertainty. This results in a limitation on the achievable control bandwidth
in system design. On the other hand, the alternative passivity approach has only limited
applications. To relax the limitations associated with small-gain and passivity approaches, we
explore the possibility of utilizing both the gain and the phase information of uncertainty in
robust control design. This paper discusses the modeling of uncertainty accounting for both gain
and phase, robust stability conditions and their state space characterization.

1. INTRODUCTION

The celebrated robust control theory of 1980’s and 1990’s
is essentially based on the small-gain approach [Doyle
and Stein (1981); Zhou et al. (1996)]. In this approach
it is assumed implicitly that only the gain information
of uncertainty can be accessed. This approach has seen
a great success in the last two decades and has formed
the backbone of modern robust control designs. But its
limitation has also become clear in practice. Since only the
gain information of uncertainty is made use of, the class of
uncertainty will inevitably be enlarged in such modeling.
A significant consequence is that the obtained robustness
condition necessarily put a quite strong constraint on the
controller gain at the low and middle frequency ranges.
This limits the achievable bandwidth, i.e. fast response of
the feedback systems.

Meanwhile, as a dual to the norm-bounded model of
uncertainty, an uncertainty may be modeled as a positive
real system when its phase is within ±90◦. Then, the
passivity theorem can be applied to the analysis and design
of robust stable systems [Haddad and Bernstein (1991)].
In particular, for parametric uncertainty Popov theorem
can be used for tighter analysis and synthesis [Haddad
and Bernstein (1995)]. However, this class of uncertainty
is quite limited in application.

To resolve the drawbacks of small-gain and passivity
approaches, it is obviously necessary to make full use of
both the gain and the phase information of uncertainty.
Tits et al. (1999) made the first attempt and proposed
the phase-sensitive structured singular value (PS-SSV)
for robust stability analysis. In [Tits et al. (1999)] the
uncertainty is modeled as a bounded class of systems with
phase inside a symmetric interval [−θ(ω), θ(ω)]. This is an
important step forward and effective for robust analysis.
However, PS-SSV is not adequate for robust design. This
is because the range of uncertainty phase is not symmetric
in general, so an irrational transfer function has to be
introduced to turn the range of uncertainty phase into a
symmetric interval.

⋆ This work is partially supported by JSPS Grant (C)18560425.

Moreover, in the aforementioned methods it is assumed
that the gain and/or phase of uncertainty are known over
the whole frequency domain. However, this assumption
may be excessive in some applications, as will be discussed
in Sec. 2.2.

This paper tries to address these issues and puts forward
several fundamental results on the modeling of uncer-
tainty, robust stability condition in the frequency domain
and its state space characterization. Several practical ex-
amples will be used to motivate and to illustrate these
concepts.

Notations: R, C denote the fields of real and complex
numbers respectively. ℜ(x),ℑ(x) are the real part and
the imaginary part of complex x (either scalar or matrix)
and x∗ is its conjugate. The phase angle of x ∈ C is
denoted by arg x. ‖G‖

∞
is the H∞ norm of G(s), 〈u, v〉

the inner product. ⊗ denotes the Kronecker sum. Further
G∼(s) = GT (−s), and the trace of square matrix A = (aij)
is denoted by Tr(A) =

∑n

i=1 aii. Finally H and S+ denote
respectively the space of Hermitian matrices and the space
of positive semidefinite matrices, with suitable sizes.

2. NEW WAY OF UNCERTAINTY MODELING

2.1 Motivation

Let us look at several examples first.

Example 1. The first example is simple an integrator with
an uncertain gain:

P (s) =
1 + k

s
, 0 ≤ k ≤ L. (1)

This plant can be modeled as the following class of plants

P (s) =
1

s
(1 + L∆), 0 ≤ ∆ ≤ 1.

Suppose we use a PI compensator

C(s) = K
s + K/(4ζ2)

s
, K > 0 (2)

to compensate the plant. This 2nd order closed loop
system is stable for any k ≥ 0 as long as K, ζ > 0.
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In order to see what admissible uncertainty bound can
be obtained by the existing robust control methods, we
transform the closed loop system into a negative feedback
interconnection of the uncertainty ∆ and a fixed transfer
function M(s) given by

M(s) = L
C(s)/s

1 + C(s)/s
= L

K(s + K/(4ζ2))

s2 + Ks + (K/2ζ)2
. (3)

The Bode plot for the case L = 1, ζ = 0.3 is illustrated in
Fig. 1. Note that the frequency axis is normalized by K, so
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Fig. 1. Bode plot of M(s) (L = 1, ζ = 0.3)

the frequency bandwidth widens as the gain K increases.

If the uncertainty k is treated by the small-gain approach,
then its robust stability condition is ‖M‖

∞
< 1. Since

‖M‖
∞

= 1.99L, the uncertainty bound is L < 1
1.99 ≈ 0.5

which is obviously extremely conservative. This gigantic
gap is caused by the modeling of the uncertainty: the phase
(i.e. the sign) of gain k was ignored.

For this parametric uncertainty, many other methods such
as passivity theorem, Popov theorem and real-µ analysis
may be applied to estimate the stability margin. First,
since M(s) is not positive real (the phase of M(s) is
less than −90◦ in some frequency band), the passivity
approach cannot be applied directly. Meanwhile, by using
Popov theorem and real-µ analysis the stability bound L
obtained are approximately 0.99 and 2.52, respectively.
Further, for this positive parameter uncertainty PS-SSV
yields a bound better than the real-µ bound.

Example 2. The next system is a frequently encountered
example arising in vibration control such as the head-
positioning of HDD (hard disc drive):

P (s) =
k

s2
+

κ1

s2 + 2ζ1ω1s + ω2
1

+
κ2

s2 + 2ζ2ω2s + ω2
2

. (4)

Here the signs of κ1, κ2 change according to the mechanical
design. It is a well-known fact in vibration control that
the system is much harder to control when κ1, κ2 take
opposite signs (called out-of-phase) [Ono and Teramoto
(1992)]. Meanwhile, when κ1, κ2 take the same sign (in-
phase) a wider control bandwidth is achievable. Clearly,
this difference of achievable performance stems from the
difference in the phases of the last 2 terms.

Usually the 3rd term is regarded as an uncertainty because
its parameters are uncertain, as is the case in HDD control
[Atsumi (2006)]. However, in the small-gain approach the
phase of uncertainty is ignored and the uncertainty is
modeled only by its gain. This inevitably leads to the
extremely conservative result that the best achievable
performance is no better than that of the out-of-phase
uncertainty case.

Further, it is known that the passivity theorem is not
applicable in the out-of-phase case [Atsumi (2006)].

Example 3. As the last example, let us consider the time-
delay systems given in Morari and Zafiriou (1989) which
arises in process systems

P (s) =
ke−θs

τs + 1
(5)

0.8 ≤ k ≤ 1.2, 0.8 ≤ θ ≤ 1.2, 0.7 ≤ τ ≤ 1.3.

When the nominal parameters are chosen as their re-
spective mean values and the uncertainty modeled as a
multiplicative one

1 + W (s)∆(s) =
P (s)

P0(s)
=

k

k0

τ0s + 1

τs + 1
e−(θ−θ0)s, ‖∆‖

∞
≤ 1,

then with the following IMC controller

K(s) =
Q(s)

1 − P0(s)Q(s)
=

τ0s + 1

ǫs + 1 − e−θ0s

1

k0
(6)

the lower bound of ǫ (which is inversely proportional to the
bandwidth) obtained is 0.21 [Morari and Zafiriou (1989)].

However, for this sort of structured uncertainty, mean
value of parameter is in general not a good choice for the
nominal value. It will be shown later that, by minimizing
both the gain and the phase of uncertainty via suitable
selection of nominal parameters, smaller lower bound of
ǫ can be obtained and the bandwidth of the closed loop
system is widened. This sheds new light on the selection
of suitable nominal value rather than the mean value.

2.2 Modeling of uncertainty

Assumption 4. |∆(jω)| is even and arg ∆(jω) is odd in the
frequency ω. ¤

When the uncertainty is an LTI system, this assumption
is satisfied trivially. A class of LTI delay systems is also
included in this class of uncertainties. Owing to this
property, we can restrict the discussions in the positive
frequency domain.

A key observation from the preceding examples is that
the range of uncertainty phase may be obtained to some
extent. So it is reasonable to assume that the uncertainty
satisfies

|∆(jω)| ≤ |W (jω)|, θL(ω) ≤ arg ∆(jω) ≤ θH(ω). (7)

for all frequency ω.

However, the phase information at high frequency domain
may not be so useful for the following reasons:
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Fig. 2. Bode plot of uncertainty

(1) The phase of uncertainty may be too messy to use. For
example, in Example 2 higher order vibration modes
come in at high frequency domain and the phase
bound becomes too wide to be useful in feedback
design.

(2) The main objective of using uncertainty phase is to
widen the control bandwidth. Since the bandwidth in
general can not get so high due to input saturation,
the loop gain inevitably needs to be significantly
rolled-off at high frequency domain so that the phase
becomes irrelevant to stability and performance.

Therefore, a more sensible uncertainty model is

|∆(jω)| ≤ |W (jω)|, ∀ω ∈ [0,∞)

θL(ω) ≤ arg ∆(jω) ≤ θH(ω), ω ∈ [0, ωB ]. (8)

Here ωB may be either the required bandwidth or the
frequency band in which the phase information is reliable.
This type of uncertainty is named as Type 1 uncer-
tainty.

ω
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ω

|W (jω)|

ωB

Fig. 3. Bode plot of type 1 uncertainty

Further, one may even be tempted to ignore the gain infor-
mation of uncertainty below ωB (Type 2 uncertainty):

θL(ω) ≤ arg ∆(jω) ≤ θH(ω), ω ∈ [0, ωB ]

|∆(jω)| ≤ |W (jω)|, ∀ω ∈ [ωB ,∞). (9)

The payoff for such simplification is that the analysis and
design can be significantly simplified.

3. ROBUST STABILITY CONDITIONS

The robust stability of the feedback system in Fig.5 is
considered throughout this paper.
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Fig. 4. Bode plot of type 2 uncertainty
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Fig. 5. Uncertain system

3.1 Type 1 Uncertainty

Theorem 5. Assume that both M(s) and ∆(s) are stable
transfer functions and ∆(s) belongs to Type 1 uncertainty.
Define a set of frequencies as (c.f. Fig. 6)

Ω = {ω ∈ [0, ωB ] : −θH(ω) ≤ arg M(jω) ≤ −θL(ω)} (10)

Then

(1) The closed loop system is robustly stable if

|M(jω)W (jω)| < 1 ∀ω ∈ Ω ∪ (ωB ,∞). (11)

(2) Further, when Ω = ∅ the preceding condition is
necessary and sufficient for the robust stability.

Proof. The closed loop system is stable iff the return
difference R(s) satisfies

R(s) = 1 − M(s)∆(s) 6= 0

on the closed right half plane. When ∆(s) = 0, R(s) = 1.
So due to the continuity of R(s), this stability condition
fails iff

1 − M(jω)∆(jω) = 0 (12)

holds for some uncertainty ∆(s) and at some frequency ω.
This condition is in turn equivalent to

|M(jω)∆(jω)| = 1, arg M(jω) + arg ∆(jω) = 0. (13)

The second equation may be true only when ω ∈ Ω or
ω > ωB . But the first equation does not hold in this
frequency range due to (11). So Statement (1) is obvious.

To show the necessity of Statement (2), one needs to
construct a destabilizing uncertainty in Type 1 uncertainty
when the given condition fails. This can be done in the
same way as the proof of small-gain theorem [Zhou et al.
(1996)]. Suppose |M(jω0)W (jω0)| = 1 at some ω0 > ωB .
Note that the phase of uncertainty is arbitrary in this
frequency domain. We define an angle as φ = arg M(jω0)+
arg W (jω0) and construct an uncertainty

∆(s) = W (s)δ(s)
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Fig. 6. Phase relation for Ω 6= ∅
in which

δ(s) =

{ s − a

s + a
(a =

ω0

tan(φ/2)
> 0), if φ 6= 0

1, if φ = 0.

Obviously |∆(jω0)| = |W (jω0)| and arg δ(jω0) = −φ. So

arg ∆(jω0) = arg W (jω0) − φ = − arg M(jω0)

and (12) holds at ω0. This means that the closed loop
system has an unstable at jω0.

Statement (2) provides a robust stability condition which
puts, separately, phase requirement (Ω = ∅) on M(s) only
at low frequency domain and gain requirement only at high
frequency domain. In particular, at low frequency the gain
of M(s) is not constrained so that there is a high potential
for enhancing the control bandwidth in control design.

Example 6. Let us look at Example 1 once again. Clearly,
arg k = 0◦. In the feedback system of Fig. 5

M(s) = −L
K(s + K/(4ζ2))

s2 + Ks + (K/2ζ)2
,

so its phase angle is 180◦ behind that of Fig. 1 and is
contained in [−180◦,−300◦), or equivalently (60◦, 180◦].
Since 0◦ does not intersect this interval, Ω0 = ∅ for any ωB

including the infinity. Therefore, according to Theorem 5
the robust stability is guaranteed for any gain uncertainty
k ≥ 0 and any controller gain K > 0 which is the best
stability margin compared with the estimates of other
methods shown in Example 1. Further the bandwidth is
proportional to K

√
1 + k ≥ K, so any convergence rate is

achievable by increasing the controller gain.

3.2 Type 2 Uncertainty

Theorem 7. Assume that both M(s) and ∆(s) are stable
transfer functions and ∆(s) belongs to Type 2 uncertainty.
Then the closed loop system is robustly stable iff

Ω = ∅, |M(jω)W (jω)| < 1 ∀ω ∈ (ωB ,∞) (14)

in which the set Ω is as defined in Theorem 5.

Proof. From the proof of Theorem 5, robust stability is
equivalent to that there is no uncertainty ∆(s) satisfying

|M(jω)∆(jω)| = 1, arg M(jω) + arg ∆(jω) = 0 (15)

for any frequency ω. Under the given condition (14), the
second equation in (15) does not hold for ω ≤ ωB and

the first equation fails for ω > ωB . So the sufficiency is
obvious.

Conversely, if the second condition in (14) fails, then one
can always construct an uncertainty in Type 2 uncer-
tainty such that the closed loop system has a pole at
jω0 (ω0 > ωB), just as in the proof of Theorem 5. If
the first condition fails, then there exists a stable ∆(s)
satisfying arg M(jω1) + arg ∆(jω1) = 0 at a frequency ω1

∈ [0, ωB ] and |M(jω1)| > 0 in general. Since the gain of
uncertainty ∆(s) is unconstrained in this frequency band,
this ∆(s) can always be constructed in such a way that
|M(jω1)∆(jω1)| = 1 also holds. This shows the necessity
of the robust stability condition.

Theorem 7 means that the phase robustness condition Ω =
∅ is not so conservative when arbitrary gain uncertainty is
allowed at the low frequency domain.

Example 8. Consider Example 3 once again. Let the nom-
inal parameters corresponding to the nominal plant P0(s)
be denoted by (k0, τ0, θ0). Define the multiplicative uncer-
tainty as

∆(s) =
P (s)

P0(s)
− 1 =

k

k0

1 + τ0s

1 + τs
e(θ0−θ)s − 1.

When the same IMC controller is used, the corresponding
M(s) becomes

M(s) = − K(s)P0(s)

1 + K(s)P0(s)
= − e−θ0s

ǫs + 1
.

It is easy to get

|∆(jω)|=
√

r2 − 2r cos φ + 1

arg ∆(jω) = arctan
sinφ

cos φ − 1/r

|M(jω)|= 1
√

(ǫω)2 + 1

arg M(jω) =−π − θ0ω − arctan(ǫω)

where

r =
k

k0

√

(τ0ω)2 + 1

(τω)2 + 1

φ = arctan(τ0ω) − arctan(τω) + (θ0 − θ)ω.

We have the following observations:

(1) If r < 1 for all ω 6= 0, then cos φ−1/r is dominated by
−1/r and both the value and the variation range of
arg ∆(jω) will be reduced. So to minimize the range
of arg ∆(jω), we should minimize r first. This leads
to the selection of k0 = kmax, τ0 = τmin. Subject to
this choice, the bound of |∆(jω)| is also reduced.

(2) To minimize the variation range of φ due to uncer-
tain θ. a good option is θ0 = θmax+θmin

2 . This con-
tributes to a further reduction of the variation range
of arg ∆(jω).

Through numerical computation, it is found that ǫmin ≤
0.14 for k0 = kmax, θ0 = θmax+θmin

2 , τ0 = τmin. This
minimal ǫ (inverse of the bandwidth of M(s)) is much
lower than the value ǫ = 0.21 obtained based on the small-
gain condition [Morari and Zafiriou (1989)].
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Fig. 7. ǫ = 0.14: Bode plots of ∆(s) and 1/M(s) (bold)

3.3 Characterization of Phase Condition in Frequency
Domain

This subsection discusses how to characterize the phase
robustness condition Ω = ∅ in terms of transfer function
M(s) in the frequency domain. To this end, it is assumed
that

Assumption 9. There exist rational transfer functions
WL(s), WH(s) satisfying

arg WL(jω) = θL(ω), arg WH(jω) = θH(ω) (16)

for all ω ∈ [0, ωB ].

Since the phase angle of a rational function is an odd
function, arg W ∗

L(jω) = arg WL(−jω) = −θL(ω) as well
as arg W ∗

H(jω) = −θH(ω) hold.

Assumption 10. For all ω ∈ [0, ωB ], the phase uncertainty
satisfies

θH(ω) − θL(ω) ∈ [0, π). (17)

This is assumed because otherwise the range of phase
uncertainty will be too wide to be useful in robust control.

−θH

−θL

0

M

Im

Re

nH

nL

W ∗

L

W ∗

H

Fig. 8. Phase condition

Each point ζ in the complex plane corresponds to a 2-
dimensional real vector [ℜ(ζ), ℑ(ζ)]T . So W ∗

L and W ∗

H cor-
respond to [ℜ(WL), −ℑ(WL)]T and [ℜ(WH), −ℑ(WH)]T

respectively. Their normals are given by (c.f. Fig. 8)

nL(ω) = −
[

ℑ(WL(jω))
ℜ(WL(jω))

]

, nH(ω) =

[

ℑ(WH(jω))
ℜ(WH(jω))

]

.

(Note that the difference of signs in the normals stems
from the their directions) Then the half plane above the
line indicated by −θH is characterized by

HH(ω) := {x : x ∈ R
2, 〈x, nH(ω)〉 ≥ 0} (18)

and the half plane below the line indicated by −θL is
characterized by

HL(ω) := {x : x ∈ R
2, 〈x, nL(ω)〉 ≥ 0}. (19)

Under Assumption 10, the intersection of these two half
planes forms a convex cone (illustrated by the gray area
in Fig. 8)

Co{W ∗

H(jω),W ∗

L(jω)} := HH(ω) ∩ HL(ω) (20)

when ω is fixed. Here an abuse of notation is made
for simplicity. A complex number ζ ∈ Co{W ∗

H(jω),
W ∗

L(jω)} means [ℜ(ζ), ℑ(ζ)]T ∈ HH(ω) ∩ HL(ω). This
convex cone rotates with respect to the origin when ω
varies. So it will be called a moving convex cone.

This convex cone is characterized as follows.

Lemma 11. Let ζ be a complex number. The following
statements are equivalent.

(1) ζ ∈ Co{W ∗

H(jω),W ∗

L(jω)}.
(2) ℑ(ζWH(jω)) ≥ 0 and ℑ(ζWL(jω)) ≤ 0.
(3) jζWH(jω) + (jζWH(jω))∗ ≤ 0 and jζWL(jω) +

(jζWL(jω))∗ ≥ 0.

Proof. This follows from [ℜ(ζ), ℑ(ζ)]T ∈ HH(ω)∩HL(ω)
and simple computations such as

[

ℑ(WH)
ℜ(WH)

]T [

ℜ(ζ)
ℑ(ζ)

]

= ℑ(WH)ℜ(ζ) + ℜ(WH)ℑ(ζ)

= ℑ(ζWH) = −ℜ(jζWH) =
−1

2
[jζWH + (jζWH)∗].

From Fig. 8, it is clear that Ω = ∅ iff M(jω) is
outside the gray moving convex cone, i.e. M(jω) /∈
Co{W ∗

H(jω),W ∗

L(jω)} for all ω ∈ [0, ωB ]. So the phase
robustness condition can be characterized as follows.

Corollary 12. Ω = ∅ iff M(jω) /∈ Co{W ∗

H(jω),
W ∗

L(jω)} for all ω ∈ [0, ωB ].

4. STATE SPACE CHARACTERIZATION

The robust stability conditions derived up to now are given
as phase and gain constraints in finite frequency domains.
For synthesis purpose, it is convenient to characterize
this kind of finite frequency domain property in the state
space. This may be achieved based on the generalized KYP
lemma developed by Iwasaki and Hara (2005).

4.1 Preliminaries

A brief review of the generalized KYP lemma will be
provided for the sake of readers.

First of all, an Hermitian function

σ(f,Γ) :=

[

f
1

]

∗

Γ

[

f
1

]

, f ∈ C
m, Γ∗ = Γ (21)

is defined. Then, it is easy to see that

s = jω ⇔ σ(s, J) = 0, J =

[

0 1
1 0

]

. (22)
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Further, |ω| ∈ [ωB ,∞) is equivalent to
[

jω
1

]

∗

Ψ1

[

jω
1

]

≥ 0, Ψ1 =

[

−1 0
0 −ω2

B

]

(23)

and ω ∈ [0, ωB ] is equivalent to

[

jω
1

]

∗

Ψ2

[

jω
1

]

≥ 0, Ψ2 =





−1 j
ωB

2
−j

ωB

2
0



 . (24)

That is, a finite frequency domain can be characterized by

σ(s, J) = 0, σ(s,Ψ) ≥ 0 (25)

in which J is given in (22) and Ψ is a matrix such as Ψ1,
Ψ2 above.

The following generalized KYP lemma provides a state
space characterization for a class of finite frequency prop-
erties of transfer function, which is fundamental for system
synthesis.

Lemma 13. (Theorem 2 of Iwasaki and Hara (2005)). Let
(A,B, C, D) be a (real) state space realization of G(s).
G(s) satisfies

[

G
1

]

∗

Π

[

G
1

]

< 0, Π∗ = Π (26)

for all frequency in the domain given by (25) iff there exist
Hermitian matrices P, Q such that Q > 0 and

[

A B
I 0

]T

(J ⊗ P + Ψ ⊗ Q)

[

A B
I 0

]

+

[

C D
0 I

]T

Π

[

C D
0 I

]

< 0. (27)

When all parameter matrices are real, both P and Q can
be taken as real symmetric.

Further, this equivalence still holds even when the strict
inequalities in (26) and (27) are both replaced by non-
strict inequalities, if (A,B) is controllable. In this case,
Q ≥ 0. 2

Moreover, the lemma below gives the infeasibility condi-
tion for an LMI, which could be proved along the same
line as Meinsma et al. (1997), based on the separating
hyperplane argument.

Lemma 14. (Boyd et al. (1994); Meinsma et al. (1997)).
Let X be a convex cone of matrices and F ∗(X) = F (X) be
affine in X. Then, there is no X ∈ X satisfying F (X) ≤ 0
iff there exists a positive semidefinite Hermitian matrix
W ∗ = W ≥ 0 such that

Tr(F (X)W ) > 0, ∀X ∈ X . (28)

4.2 Robust stability condition in state space

The robust stability conditions derived in the preceding
section will be characterized in the state space in this
subsection.

First, the gain condition |M(jω)W (jω)| < 1 for all ω ∈
[ωB ,∞) is equivalent to that the inequality holds for all
|ω| ∈ [ωB ,∞) since the gain is an even function of ω. This,
in turn, can be written as

[

G1

1

]

∗

E

[

G1

1

]

< 0 (29)

G1(s) = M(s)W (s), E =

[

1 0
0 −1

]

for all frequencies ω in this domain.

The next issue is how to characterize the phase condition
Ω = ∅ in terms of transfer function M(s) in the fre-
quency domain. This is achieved based on Lemma 11 and
Corollary 12. Due to Lemma 11, M(jω) ∈ Co{W ∗

H(jω),
W ∗

L(jω)} iff

jM(jω)WH + (jM(jω)WH(jω))∗ ≤ 0

−jM(jω)WL(jω) − (jM(jω)WL(jω))∗ ≤ 0

hold for all ω ∈ [0, ωB ]. This, in turn, is equivalent to

[

G2(jω)
I2

]

∗

Π2

[

G2(jω)
I2

]

≤ 0, ∀ω ∈ [0, ωB ] (30)

G2(s) =

[

M(s)WH(s) 0
0 M(s)WL(s)

]

Π2 =

[

0 −jE
jE 0

]

. (31)

Then, application of Lemmas 13 and 14 to these frequency
domain conditions yields the state space characterization
for robust stability.

Theorem 15. Suppose that both M(s) and ∆(s) are stable
transfer functions, ∆(s) belongs to Type 1 or 2 uncer-
tainty and Assumptions 4, 9 and 10 hold. Let G1(s) =
(A1, B1, C1, D1), G2(s) = (A2, B2, C2, D2) and (A2, B2)
be controllable. Then the closed loop system is robustly
stable if the following statements hold.

(1) There exist real symmetric matrices P1, Q1 such that
Q1 > 0 and

[

A1 B1

I 0

]T

(J ⊗ P1 + Ψ1 ⊗ Q1)

[

A1 B1

I 0

]

+

[

C1 D1

0 1

]T

E

[

C1 D1

0 1

]

< 0. (32)

(2) There exist real symmetric matrix P2 ≥ 0 and real
skew-symmetric matrix Q2 satisfying

[A2 B2]P2

[

I
0

]

+ [I 0]P2

[

AT
2

BT
2

]

= 0 (33)

[A2 B2]Q2

[

I
0

]

+ [I 0]Q2

[

AT
2

BT
2

]

= 0 (34)

[A2 B2]P2

[

AT
2

BT
2

]

− ωB [A2 B2]Q2

[

I
0

]

≤ 0 (35)

Tr

(

E · [C2 D2]Q2

[

0
I

])

< 0. (36)

Proof. We prove that the gain condition and phase condi-
tion are guaranteed by Conditions (1) and (2) respectively.

(1) The small-gain condition in Theorems 1, 2 is equivalent
to that (29) holds in the domain of (23), which in turn is
equivalent to that (32) has real symmetric solutions P1

and Q1(> 0) according to Lemma 13.
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(2) It suffices to guarantee that Ω = ∅ holds, which
is equivalent to M(jω) /∈ Co{W ∗

H(jω),W ∗

L(jω)} for all
ω ∈ [0, ωB ] (Corollary 12).

Due to the previous argument, M(jω) ∈ Co{W ∗

H(jω),
W ∗

L(jω)} for all ω ∈ [0, ωB ] iff there exist Hermitian
matrices U, V such that V ≥ 0 and F (U, V ) ≤ 0 where

F (U, V ) =

[

A2 B2

I 0

]T

(J ⊗ U + Ψ2 ⊗ V )

[

A2 B2

I 0

]

+

[

C2 D2

0 I

]T

Π2

[

C2 D2

0 I

]

. (37)

Then Ω = ∅ is equivalent to that F (U, V ) ≤ 0 is infeasible
on the space H⊗ S+. So by Lemma 14, this is equivalent
to the existence of an Hermitian matrix

W = P2 + jQ2 ≥ 0

(note PT
2 = P2, Q

T
2 = −Q2) such that

Tr(F (U, V )W ) > 0 ∀U ∈ H, V ∈ S+.

By using the property Tr(AB) = Tr(BA), the following
equivalent condition is obtained easily:

Tr(X · J ⊗ U) + Tr(X · Ψ2 ⊗ V ) + Tr(Y · Π2) > 0 (38)

holds for all (U, V ) ∈ H ⊗ S+, where

X =

[

A2 B2

I 0

]

W

[

A2 B2

I 0

]T

, Y =

[

C2 D2

0 I

]

W

[

C2 D2

0 I

]T

.

Let Xij , Yij denote the (i, j) block of 2 × 2 partitions of
X and Y respectively, each is compatible with the matrix
multiplications in (38). Since X, Y are Hermitian, we have
X21 = X∗

12 and Y21 = Y ∗

12. Then it is easy to get

Tr(X · J ⊗ U) = Tr((X12 + X∗

12)U)

Tr(X · Ψ2 ⊗ V ) =−Tr(X11V + j
ωB

2
(X12 − X∗

12)V )

Tr(Y · Π2) = Tr(j(Y12 − Y ∗

12)E) = jTr(E(Y12 − Y ∗

12)).

As Tr((X12 + X∗

12)U) is an affine function on H, it is
bounded from below iff

X12 + X∗

12 = 0 (39)

which is equivalent to (33) and (34). Then

Tr(X · Ψ2 ⊗ V ) = −Tr((X11 + jωBX12)V ). (40)

Second, since V may be arbitrarily close to 0, (38) holds
for all (U, V ) ∈ H ⊗ S+ only if

Tr(Y · Π2) = jTr(E(Y12 − Y ∗

12)) > 0. (41)

Due to the symmetry of E, Tr(EZT ) = Tr(ZE) = Tr(EZ)
holds for any compatible real matrix Z. Then

Tr(E(Y12 − Y ∗

12))

= Tr(E[ℜ(Y12) −ℜ(Y12)
T ]) + jTr(E[ℑ(Y12) + ℑ(Y12)

T ])

= Tr(Eℜ(Y12)) − Tr(Eℜ(Y12)
T )

+j[Tr(Eℑ(Y12)) + Tr(Eℑ(Y12)
T )]

= 2jTr(Eℑ(Y12)).

So (41) is equivalent to Tr(Eℑ(Y12)) < 0, which is exactly
(36).

Third, since X11 + jωBX12 is Hermitian and Tr((X11 +

jωBX12)V ) = Tr(V
1

2 (X11 + jωBX12)V
1

2 ), (38) holds for
arbitrary V ∈ S+ only if

X11 + jωBX12 ≤ 0. (42)

Taking into account the skew-symmetry of ℑ(X11) and
ℜ(X12) (due to (39)), this condition is equivalent to

ℜ(X11) − ωBℑ(X12) ≤ 0

which, in turn, is equivalent to (35).

Finally, it is obvious that (38) holds when all these
conditions are satisfied. This ends the proof.

5. CONCLUDING REMARK

This paper has explored the possibility of making full use
of both the gain and the phase information of uncertainty,
so as to overcome the limitation of small-gain and passivity
approaches and to achieve the highest possible system
performance in robust control design. To this end, we have
proposed new model of uncertainty accounting for both
gain and phase, robust stability conditions in the frequency
domain and their state space characterization, for SISO
systems. This is a very promising field for robust control
research.

The extension to MIMO systems remains to be an open
problem which is even harder.
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