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Abstract: Coordinated system control with realistic disturbance is studied. We employ coordinated
vehicles as an working problem. Vehicles attempt to keep a specified formation while avoiding collision
in the presence of disturbance such as a wind gust. State estimators are used to estimate the self-states and
the states of interacting vehicles via communication channels. Estimation performance is incorporated
into control design and plays a central role in control performance. A numerical design approach is used
to overcome limited knowledge about the disturbance and noises. A case study is given to demonstrate
central ideas of the paper.
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1. INTRODUCTION

Disturbance rejection is a standard purpose for the introduction
of feedback control; without plant variability or disturbances,
there might be little purpose in feedback. We study an approach
to the incorporation of disturbance rejection in a coordinated
control problem, where coordination is achieved by limited
communication between systems and the imposition of con-
straints. The framework is easily understood in the context
of coordinated multiple autonomous vehicles, where the state
constraints are not to collide with the other vehicles and where
communicated information is used by cross-estimators to esti-
mate the other vehicles’ states.

The focus of the work in this paper is on the formulation of a
disturbance rejection controller starting from a disturbance de-
scription by data record alone to which is fitted an approximat-
ing state-space model, as opposed to commencing with an exact
description by, say, a state-space, ARMA model, or bounded
sets (Richards and How, 2004). In this way we hope to provide
an approach suited to the rejection of realistic disturbances
such as wind gusts on vehicles; deterministic disturbance cases
were investigated in Francis and Wonham (1976). The con-
tribution is, in the formulation of an estimator, to capture the
predictable component of the disturbance and corresponding
system behaviors well, and then to develop subsequently a
mechanism to adjust the constraints in Model Predictive Con-
trol (MPC) to accommodate the estimator performance. Studies
on coordination such as Richards and How (2004); Dunbar and
Murray (2006); Kuwata and How (2006); Dunbar (2007) were
proposed in a full-information-sharing environment. But our
approach permits the inclusion of limited information sharing
associated not only with the disturbance mentioned above but
also with limited communication and measurement noises. A
fairly complete example is provided using models of hovercraft

⋆ This research was supported by AFOSR Grant FA9550−05−1−0401.

and realistic wind gusts to demonstrate the approach and the
achieved performance. The paper proceeds in several stages.

– formulation of estimators; 1) the self-state estimator of
each vehicle’s own state including its local disturbance
state with driving signals due to the unpredictable dis-
turbance and position measurement errors, 2) the cross-
estimators of the states of other vehicles driven by their
local signals plus communications errors.

– tuning estimator gains to predict the disturbance and the
vehicles’ behavior well, using methods akin to Adaptive
Kalman Filtering (Haykin, 2001), and determination of
the performance of the estimators; this performance is
captured via the worst error bounds of the estimators.

– a case study using realistic disturbance signals and dy-
namic hovercraft models; incorporation of the worst error
bounds into the determination of appropriate constraints
for local MPC.

2. COORDINATED VEHICLE PROBLEM

Vehicles are to follow specified trajectories while attempting to
keep a certain formation. Global formation information is given
by some central authority and individual vehicle position offsets
without disturbances would form a rigid-body-like formation.
Some limited communication is permissible. Here we only
consider the disturbance rejection on the local vehicle.

Consider a fleet of vehicles. We call the i−th vehicle in the fleet
vehicle i. Its dynamic equation is given by

x
i,v
k+1 = Avx

i,v
k + Bvui

k|k + Gvq
i,real
k , (1)

where x
i,v
k is the state vector and ui

k|k denotes the MPC-input

vector ui
k computed at time k. We assume that the dynamics of

each vehicle are linear, time-invariant, identical, and precisely

given by Av, Bv, and Gv. The disturbance q
i,real
k is empirically

measured from nature as time-domain-data sets before the
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estimator and control design processes and it is assumed that

q
i,real
k is the typical disturbance acting on vehicle i. We seek to

describe q
i,real
k by a linear model

x
i,d
k+1 = Ai

dx
i,d
k + Gi

dwi
k,

qi
k = Ci

dx
i,d
k ,

(2)

with the disturbance state x
i,d
k , the output qi

k (same dimension

as q
i,real
k ), and fictitious white noise input wi

k. Since we will

never obtain a perfect model for q
i,real
k , we only aim to obtain

a reasonable model, where the acceptability of a model is

determined by its ability to yield a good prediction of q
i,real
k .

The model (2) is required to

– allow the construction of an observer-based predictor for

q
i,real
k ,

– preserve detectability (preferably observability) of the ve-
hicle model

xi
k+1 = Aixi

k + Bui
k|k + Giwi

k, (3)

where

xi
k =

[

x
i,v
k

x
i,d
k

]

,Ai =

[

Av GvC
i
d

0 Ai
d

]

,B =

[

Bv

0

]

,Gi =

[

0

Gi
d

]

,

position-output : yi
k = Cx

i,v
k ,

measurement : zi
k = Dx

i,v
k + vi

k.

The measurement zi
k is corrupted by bounded random noise vi

k.

Here we assume that the choice of Ai
d , Gi

d , and Ci
d satisfies the

requirements. For clarity, we consider two vehicles (vehicle 1
and vehicle 2) and the formulation is given for vehicle 1. The
design process for vehicle 2 is symmetric; and one can easily
extend the formulation to include more vehicles.

We conclude this section by introducing some notations. For
a vector x, |x| denotes the euclidean norm of x. For a vector

sequence xk, ||xk||p , maxk |xk| is defined. For the state vector

xi
k, x̂i

k+ j|k is the estimation of xi
k+ j for the given measurements

(zi
k) up to time k and its error xi

k+ j−x̂i
k+ j|k is denoted by x̃i

k+ j|k.

There will be superscripts and subscripts with superscripts
meaning ‘of’ and subscripts meaning ‘at’; for example, x̂ℓ

i,k+ j|k

(zℓ
i,k) is the state estimate (measurement) of vehicle ℓ computed

(taken) at (by) vehicle i. We will call x̂i
k+ j|k self-estimates and

x̂ℓ
i,k+ j|k cross-estimates.

3. SELF- AND CROSS-ESTIMATORS

The self-estimator of vehicle 1 is given by

x̂1
k|k=(I−L1D̄)A1x̂1

k−1|k−1+(I−L1D̄)Bu1
k−1|k−1+L1z1

k , (4)

where D̄=[D 0] and L1 is the self-estimator gain. Since (A1,D̄)

is detectable there exists L1 such that (I−L1D̄)A1 is stable. For
cross-estimation, vehicle 1 receives the full-state information
from vehicle 2 via a communication channel;

z2
1,k =

[

x̂
2,v

k|k
+ v

2,v
1,k

x̂
2,d

k|k + v
2,d
1,k

]

.

The vectors ν2,v
1,k and v

2,d
1,k capture the bounded random commu-

nication noises such as quantization errors, packet dropout, and
delay. Then the cross-estimator for vehicle 2 is

x̂2
1,k+1|k=(A2−K2

1 )x̂2
1,k|k−1+Bu2

1,k|k−1+K2
1 z2

1,k, (5)

Fig. 1. The block diagram at vehicle 1. For cross-estimates computation,

vehicle 1 receives the state and control information from vehicle 2. At

the same time, vehicle 1 sends its state and control information to vehicle

2 (omitted in the figure).

where K2
1 is the cross-estimator gain. There exists a stabilizing

K2
1 by the same argument as for the self-estimator case. For

j−step ahead estimation, the input signal u2
1,k+ j−1|k−1

is also

transmitted from vehicle 2 via the communication channel;

u2
1,k+ j−1|k−1 = u2

k+ j−1|k−1 + ν
2, j−1
1,k , j=1,2, . . . ,N−1.

We also consider v
2, j−1
1,k as bounded random communication

noise. Note that the cross-estimator should have used u2
1,k+j−1|k

for j−step ahead estimation at time k. But the control sequence
at time k−1 is transmitted because ui

k+j−1|k is to be computed

after the estimation process. The final control element is taken
to be identical to u2

k+N−2|k−1
since u2

k+N−1|k−1
does not exist.

The error by using the previous control is captured by

η
2, j−1
k = u2

k+ j−1|k −u2
k+ j−1|k−1, j = 1, . . . ,N −1,

η
2,N−1
k = u2

k+N−1|k −u2
k+N−2|k−1.

(6)

The variability (η2, j−1
k ) is assumed to be bounded by the control

constraint to appear later.

3.1 Control Requirement of Estimation

The local control at vehicle 1 has the following no-collision
constraint to avoid collision with vehicle 2;

|ŷ1
k+j|k−ŷ2

1,k+j|k|>‖ỹ
1
k+j|k‖p+‖ỹ2

1,k+j|k‖p, (7)

where ỹk+ j|k,yk+ j−ŷk+ j|k. The constraint (7) means that the
control must be chosen in such a way that the distance between
ŷ1

k+ j|k and ŷ2
1,k+ j|k is greater than the sum of the worst position

error bounds. This can be understood as no overlapping of
two circles around ŷ1

k+ j|k and ŷ2
1,k+ j|k as shown in Fig. 2.

One can also consider the size of the vehicles by adding an
appropriate constant such as width of the vehicles. The right-
hand-side of (7) can be fixed by ‖ỹ1

k+1|k‖p+‖ỹ2
1,k+1|k‖p since the

vehicle is assured of receiving updated measurements before
being required to assert constraint. Here we adopt this idea.
The communication and estimation objective is to ensure that
constraints are not always active. We want to have as small
‖ỹ1

k+1|k‖p+‖ỹ2
1,k+1|k‖p as possible so that the following condition

is met:
‖ỹ1

k+1|k‖p+‖ỹ2
1,k+1|k‖p< d, (9)

where d is the off-set between the vehicles as shown in Fig. 2.
This is the minimum requirement for the estimators. Otherwise
the no-collision constraint will be active even when ŷ1

k+ j|k

and ŷ2
1.k+ j|k are at the target positions. This provides the key

guideline for the estimator design.
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Fig. 2. The graphical description of the control at vehicle 1. The actual vehicle

positions are inside the solid and dashed circles. Then u1
k+ j|k steers ŷ1

k+ j|k
to its target position without overlapping the circles for all j=1,2, . . . ,N

to avoid collision.

3.2 Estimator Gain Tuning and Performance

The gain tuning begins with calculating ỹ1
k+1|k and ỹ2

1,k+1|k as

shown in the following theorems.

Theorem 1. Suppose that vehicle i has the model (3) and a self-
estimator as in (4). If ui

k|k is applied, then the input to output map

q
i,real
k and vi

k to ỹi
k+1|k is given by

[

x̃
i,v

k+1|k

x̂
i,d

k+1|k

]

=

[

Av−Ki,1D −GvC
i
d

Ki,2D Ai
d

]

[

x̃
i,v

k|k−1

x̂
i,d

k|k−1

]

+

[

Gv

0

]

q
i,real
k +

[

−Ki,1

Ki,2

]

vi
k,

ỹi
k|k−1 = [C 0]

[

x̃
i,v

k|k−1

x̂
i,d

k|k−1

]

,

(10)

where Ki=AiLi=[Ki,1T
Ki,2T

]T .

Theorem 2. Suppose that vehicle ℓ has a model as in (3) and its
cross-estimator at vehicle i as in (5). Then the input to output

map from q
ℓ,real
k , ηℓ,0

k , νℓ,0
i,k , νℓ,v

i,k , νℓ,d
i,k , and vℓ

k+1 to ỹℓ
i,k+1|k is given

by (8) with

Kℓ
i =

[

K
ℓ,11
i K

ℓ,12
i

K
ℓ,21
i K

ℓ,22
i

]

, Lℓ =

[

Lℓ,1

Lℓ,2

]

.

Denote ||ỹk+1|k||p evaluated for a single input ek by ||ỹk+1|k||
e
p.

Then the worst error bounds are given by

‖ ỹ1
k+1|k ‖p = ||ỹ1

k+1|k||
q1,real

p + ||ỹ1
k+1|k||

v1

p ,

‖ỹ2
1,k+1|k‖p=||ỹ2

1,k+1|k||
q2,real

p +||ỹ2
1,k+1|k||

η2,0

p

+||ỹ2
1,k+1|k||

ν
2,0
1

p +||ỹ2
1,k+1|k||

ν
2,v
1

p

+||ỹ2
1,k+1|k||

ν
2,d
1

p +||ỹ2
1,k+1|k||

v2

p .

(11)

To compute ‖ỹ1
k+1|k‖p and ‖ỹ2

1,k+1|k‖p, one may use peak-induced

system norms (⋆-norm) (Bu et al., 1996) of (10) and (8) for each
input. This would be useful when the only knowledge about in-

put is its bound. However since q
1,real
k and q

2,real
k are available as

data records, ||ỹ1
k+1|k||

q1,real

p and ||ỹ2
1,k+1|k||

q2,real

p can be obtained

by numerical simulation for given K1 and K2
1 . This usually

achieves less conservative ||ỹ1
k+1|k||

q1,real

p and ||ỹ2
1,k+1|k||

q2,real

p than

computing them via peak-induced system norms. Since the rest
of the inputs are bounded random sequences, for fixed K1 and
K2

1 , the remainder of ||ỹ1
k+1|k||p and ||ỹ2

1,k+1|k||p is calculated via

peak-induced system norms.

Our aim is to design the estimators that achieve small ||ỹ1
k+1|k||p

and ||ỹ2
1,k+1|k||p. We may tune K1 and K2

1 directly by evaluating

the difference in ||ỹ1
k+1|k||p and ||ỹ2

1,k+1|k||p with respect to vari-

ation in the elements of K1 and K2
1 . However, if the dimension

of the gains is high, this method would not be tractable. Fur-
thermore it is hard to tune K1 and K2

1 only over the elements
which are stabilizing. Alternatively since we can approximate
the covariance matrix (R) of measurement and communication
noises (denote R for self- and cross-estimators by R1 and R2

1

respectively), for fixed R1 and R2
1, one may use the Discrete

time Algebraic Riccati Equation (DARE) to obtain stabilizing
K1 and K2

1 . In this case, one should pick Q1 and Q2
1 as the

covariance matrices of the fictitious noise wk in (3) for self-
and cross-estimators. If we limit Q1 and Q2

1 to be symmetric

positive semi-definite then it would be manageable to tune Q1

and Q2
1 by evaluating the difference in ‖ỹ1

k+1|k‖p and ‖ỹ2
1,k+1|k‖p

with respect to variation in the elements of Q1 and Q2
1.

Gain Tuning and Performance Determination of Self-
(Cross-) estimator
For fixed R1 (R2

1),

À make an initial guess of Q1 (Q2
1),

Á solve the DARE to obtain K1 (K2
1 ),

Â evaluate‖ỹ1
k+1|k‖p (‖ỹ2

1,k+1|k‖p) ,

Ã adjust elements of Q1 (Q2
1) and take the same procedure

above (Á∼Â),
Ä evaluate the difference in‖ỹ1

k+1|k‖p (‖ỹ2
1,k+1|k‖p) to determine













x̃
ℓ,v

i,k+1|k

x̂
ℓ,d

i,k+1|k

x̃
ℓ,v

k+1|k+1

x̂
ℓ,d

k+1|k+1













=









Av−K
ℓ,11
i K

ℓ,12
i −GvC

ℓ
d K

ℓ,11
i −K

ℓ,12
i

K
ℓ,21
i Aℓ

d −K
ℓ,22
i −K

ℓ,21
i K

ℓ,22
i

0 0 (I−Lℓ,1D̄)Av −(I−Lℓ,1D̄)GvC
ℓ
d

0 0 Lℓ,2D̄Av Aℓ
d−Lℓ,2D̄GvC

ℓ
d





















x̃
ℓ,v

i,k|k−1

x̂
ℓ,d

i,k|k−1

x̃
ℓ,v

k|k

x̂
ℓ,d

k|k













+









Gv

0

(I−Lℓ,1D̄)Gv

Lℓ,2D̄Gv









q
ℓ,real
k

+







−Bv

0
0
0






η

ℓ,0
k +







−Bv

0
0
0






ν

ℓ,0
i,k +









−K
ℓ,11
i

K
ℓ,21
i
0
0









ν
ℓ,v
i,k+









−K
ℓ,12
i

K
ℓ,22
i
0
0









ν
ℓ,d
i,k +









0
0

−Lℓ,1

Lℓ,2









vℓ
k+1, ỹℓ

i,k|k−1=[C 0 0 0]













x̃
ℓ,v

i,k|k−1

x̂
ℓ,d

i,k|k−1

x̃
ℓ,v

k|k

x̂
ℓ,d

k|k













.

(8)
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the direction of steepest descent. Repeat (Ã∼Ä) until the de-
scent is sufficiently small,
Å check if the final K1 and K2

1 satisfy (9). If so, move on
to the control design. Otherwise use better measurement and
communication systems or d must be increased.

Remarks:

– In Adaptive Kalman Filtering, gains are tuned on-line us-
ing sampled error covariance information. Here‖ỹ1

k+1|k‖p

and ‖ỹ2
1,k+1|k‖p information is used to adjust elements in

Q1 and Q2
1 and, hence, tuning is performed off-line.

– To facilitate the deign process we proposed, one can
use fminsearch in matlab that does not use analytic
gradients.

4. CASE STUDY; FORMATION CONTROL

We demonstrate the incorporation of self- and cross-estimators
into a two-vehicle-formation control problem as depicted in
Fig. 3. Both vehicles are initially on their target positions. The

Fig. 3. A formation of two vehicles and the coordinates.

offset d is 0.6 m. To reveal the control performance effectively,
we consider the following scenario:

– The gusts on vehicle 1 and 2 blow from the negative X

and the positive X directions respectively with slight time
delay,

– The vehicles’ target positions are fixed all time. That is,
their reference trajectories are constant.

One can implement more realistic wind gusts scenarios and
consider time-varying reference trajectories easily. Typical and
representative wind gusts are shown in Fig. 4. The control
objective is to steer the vehicles to their target positions while
avoiding collision in the presence of the disturbance.

4.1 Modeling

We create the discrete-time (0.3 sec sampling time) dynamical
hovercraft model (1) based on HoTDeC (HOvercraft Testbed
for DEcentralized Control, Rubel (2004)). The vehicle model
has the state vector

x
i,v
k =

[

X
i
pk Y

i
pk θ i

pk X
i
sk Y

i
sk θ i

sk

]T
.

The elements X
i
p, Y

i
p, X

i
s, and Y

i
s represent positions and ve-

locities in Cartesian coordinates respectively. The variables θ i
p

and θ i
s are angular displacement and velocity of the vehicles

respectively. Full-vehicle-state measurement is available. Three

0 5 10 15 20 25 30

−3

−2

−1

0

s
tr

e
n

g
th

 (
N

)

gust on vehicle 1

0 5 10 15 20 25 30
0

1

2

3

gust on vehicle 2

time (s)

s
tr

e
n

g
th

 (
N

)

Fig. 4. The wind gust in thrust (N).

control inputs are available to control X, Y, and angular mo-
tions of the vehicle and have the limit defined by

U
i , {u ∈ R

3| |u|∞ ≤ 5}, i = 1,2, (12)

where | · |∞ denotes the vector infinity norm. We model both
disturbances in Fig. 4 as linear system models (2) with the dis-
turbance state vector in R

4. Then the combined vehicle models
for vehicle 1 and 2 are constructed as (3). For computation,
we assume that all the uncertainties are uniformly distributed.
Their boundaries are

|v1
k |∞≤0.01, |ν

2, j−1
1,k |∞≤0.001,

|ν2,v
1,k |∞≤0.001, |ν2,d

1,k |∞≤0.001.
(13)

We also assume that η
2, j
k of (6) has the following limit

|η2, j
k |∞≤10, j = 0,1,2, . . . ,N −1. (14)

The counterparts for vehicle 2 are the same.

4.2 Estimator Design and Performance

The self- and cross-estimators satisfying

‖ỹ1
k+1|k‖p+‖ỹ2

1,k+1|k‖p< d−0.35 = 0.25 (15)

are designed. Here we include the effect of vehicles’ radii (2×
0.175 m). After the tuning process, the achieved worst error
bounds are

‖ỹ1
k+1|k‖p= 0.038, ‖ ỹ2

1,k+1|k‖p= 0.167, (16)

which satisfy the condition (15).

4.3 Incorporation into MPC

The proposed MPC for vehicle 1 is

min
{u1

k|k
,...,u1

k+N−1|k
}

J1
k=

N−1

∑
j=0

(ŷ1
k+ j+1|k−r1)TQc(ŷ

1
k+ j+1|k−r1)

+u1T

k+ j|kRcu1
k+ j|k,

subject to : x̂1
k+ j+1|k=A1x̂1

k+ j|k+ Bu1
k+ j|k,

ŷ1
k+ j+1|k=Cx̂1

k+ j+1|k,

u1
k+ j|k∈U

1,

|ŷ1
k+ j+1|k−ŷ2

1,k+ j+1|k|>‖ỹ1
k+1|k‖p+‖ỹ2

1,k+1|k‖p+0.35.
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Since the limit on |η
2, j

k |∞ is chosen to be 10 as in (14), we do

not need additional control constraints other than U
1 defined in

(12).

Computationally the proposed MPC cannot be solved by stan-
dard quadratic programming due to non-convex nature of the
no-collision constraint. We use a nonlinear optimization solver
such as SNOPT (Gill et al., 2006) to compute a sub-optimal
solution. The simulation is performed with the following pa-
rameters

N = 5, Qc = 100× I, Rc = I, (17)

with appropriate dimensions of identity matrices I. In the next
subsection, every figure but Fig. 6 will be given using (17).

4.4 Result and Discussion
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Fig. 5. Time trajectories of the vehicle 1 (solid lines) and vehicle 2 (dotted

lines) with stared-time (t sec) marks.
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Fig. 6. Time trajectories of the vehicles using Qc = 25 × I and Rc = I.

Trajectories from 20 sec to 30 sec were omitted.

Entire vehicle trajectories with measurement and communica-
tion noises are depicted in Fig. 5. Due to the choice of Qc and
Rc in (17), their overall positions are not too far from their target
positions; if smaller Qc is used, for fixed Rc, the vehicles will
make more dramatic moves to avoid collisions as shown in Fig.
6. In terms of activity of no-collision constraints, since there

0 5 10 15 20 25 30
0.2

0.4

0.6

0.8

1
Time evolution of predicted vehicle separation

j=
1

time (s)

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

j=
5

time (s)

Fig. 7. Activity of one- and five-step ahead no-collision constraints with-

out measurement and communication noises. The solid lines are the

squared-expected distance between the vehicles for the computed input

sequences. If the solid line touches the dashed line [(‖ ỹ1
k+1|k ‖p + ‖

ỹ2
1,k+1|k ‖p +0.35)2] at some moment, it means that the constraint was

active at that time.

are no measurement and communication noises acting in Fig.
7, all active constraints are solely caused by the disturbance

q
1,real
k and q

2,real
k . On the other hand, when the measurement

and communication noises (13) come into play, then the active
constraints are caused by the combination of the disturbance
and the noises. In particular, in the cross-prediction process,

communicated inputs are corrupted by ν
2, j−1
1,k and the errors are
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accumulated as prediction step j increases. As a result, more
active constraints are observed as shown in Fig. 8. This leads
to more conservative control overall as shown in Fig. 9; the
more uncertainty the vehicles have, the more stand-off they
need to avoid collision. In both cases, active constraints are
not observed at one-step prediction stage especially when the
wind gusts are active (0 ∼ 20sec) due to the integral nature of
the vehicle dynamics; extensive first-control-sequence energy is
used to avoid constraint violations at the last prediction stage.
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Fig. 8. Activity of one- and five-step ahead no-collision constraints when

measurement and communication noises are acting.
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Fig. 9. Actual vehicle distance with and without measurement and commu-

nication noises. If the dotted or the solid line is below the dashed line, it

means that collision occurred.

We observe that the actual distances between the vehicles are
fairly above the minimum separation (0.35 m). It is because
that computation of ‖ỹ1

k+1|k‖p and ‖ỹ2
1,k+1|k‖p involves peak-

induced system norms which are usually conservative. This is
more obvious in the cross-estimation part as shown in (16).

5. CONCLUSION AND FUTURE WORK

The disturbance rejection in coordinated systems can be ef-
fectively managed by the self- and cross-estimators and MPC.

With the lack of knowledge about the disturbance and noise,
numerical approach was proposed to obtain satisfactory estima-
tion and control performance. Cross-estimator performance can
be improved in the sense that more communication resources
may lead to a smaller uncertainty region. Also, if the number
of vehicles increases, limited communication resources of the
vehicles matter and we need to manage the resources in an
orderly manner not to harm control performance. Hence further
analysis on the communication resources is necessary.
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