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Abstract: The control problem for wheeled systems similar to a mobile robot, a vehicle, a wheeled 
tractor, etc. is studied. These systems belong to the class of nonholonomic mechanical systems. Analysis 
in this paper is limited to kinematic models, and the dynamics of control drives is taken into account. 
Control that stabilizes the motion of a wheeled system along a given trajectory (planar smooth curve) is 
constructed. The stabilizability is substantiated in large with respect to basic variables of the system.  The 
similar fact is confirmed when perturbations are taken into account.  

 
 

1. INTRODUCTION 
 

Kinematic models of nonholonomic mechanical systems 
with rolling are the subject of many studies [Kolmanovsky et 
al., 1995] since they describe the motion of real wheeled 
systems (WS) sufficiently adequately. At present, these 
models are used in solving a large number of control 
problems. Among them are the problems of stabilization of a 
vehicle’s motion on a road, automatic parking and traffic 
planning problems, controllability problems, etc. 
[Kolmanovsky et al., 1995]. There is considerable interest in 
solving many applied WS control problems [Ackermann et 
al., 1995, Cordesses et al., 2000]. 

In this work, the problem of stabilization of WS motion 
along a given trajectory is solved. Such control problems are 
widespread. For example, ensuring the motion along a given 
trajectory is necessary for realization of construction and 
other technological operations (cabling, trenching, etc.). In 
agro-industrial complex the whole range of such operations is 
carried out (ploughing, planting, weeding, etc. [Cordesses et 
al., 2000]). 

The solution of this control problem was obtained under 
natural conditions. The given trajectory of WS motion has the 
shape of a planar smooth curve. Only one control that is the 
control of the WS front axle is used in the system. It is 
assumed that the velocity of the system motion along the 
curve is given (by the driver with the help of manual control 
means - gas, transmission) and only "lateral stability" is 
provided. The specific feature of this work is that the 
dynamics of the front axle drive (actuator) is taken into 
account in a general form, and that the stability of WS motion 
in large is achieved. The similar fact is confirmed when 
perturbations are taken into account. The perturbations are 
related to the state measurement errors. The perturbations are 
also related to side slip of wheels (along their axes). It is 
assumed that slipping can occur due to a slope of the surface 
along which the wheeled system moves.  

It should be noted that the WS trajectory control problem 
being considered is the problem of stabilization of the WS 
state space manifold. The solution to the general control 

problem (for example, point stabilization) encounters known 
difficulties. For example, smooth stationary control laws do 
not provide a possibility of ensuring exponential stability of 
motion of a nonholonomic system in the general case 
[Kolmanovsky et al., 1995]. The smoothness of the control 
law is the significant condition, since it is required to take 
into account the dynamics of the system drives. The 
exponential stability is necessary for compensation for 
different perturbations. 
    The WS dynamics is described in Section 2. The WS 
control problem and the work problem are formulated in 
Section 3. A control law stabilizing the WS motion in the 
absence of perturbations is constructed in Section 4. In 
Section 5, it is shown that this control law admits small state 
system measurement errors and the deviation of the WS 
motion from the given trajectory is small. In Section 6, it is 
also shown that the control law admits small WS wheels slip. 
The deviation tends to zero if the slip value is directly taken 
into account in control law. The simulation results are 
presented. 
 

2. MECHANICAL  WHEELED  SYSTEM  
AS  A  CONTROL  OBJECT 

 
The general schematic diagram of the wheeled system 

under study is shown in Fig. 1. The wheeled system contains 
a body, a driving back axle, and a controlled front axle. The 
state of the back axle is characterized by the angle  a  and the 
coordinates  x,y  in the system {X,Y} of some point  p  of the 
back axle. The state of the front axle is given by the 
controlled angle  b. By taking into account these notations, 
the  WS  motion is described by the system of equations 

cos sinx v a, y v a= = ,  tg( ) /a v b L= ,  ( ), ,b u t=b F . (2.1) 
The first three equations of (2.1) represent the translational 
and angular WS motion. The last equation describes the 
dynamics of the controlled front axle drive,  u  is the control, 
v,L=const>0. The correlation  p∈S  reflects the WS control 
objective, where  S  is the given curve (Fig. 1).  
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Fig. 1. General view of a wheeled system 
    
  The relations (2.1) contain the description of the mechanical 
constraints imposed on the system. The first two relations 
describe the first mechanical constraint. Its meaning is that 
the back  WS  wheels do not slip along the wheels axes. The 
similar second constraint for the front wheels provides 
possibility of construction of the third equation of (2.1). 
   Dynamic WS model (2.1) and its generalizations are being 
studied intensively [Kolmanovsky et al., 1995]. For example, 
in some studies, the inertial properties of the mechanical 
wheeled system were taken into account additionally. This 
provides a possibility of detailed investigation of the effect of 
external forces, for example, wind or inertia forces, on WS 
[Ackermann et al., 1995]. Note that the systems with rolling 
are the classical object of investigation in the framework of 
analytical mechanics of nonholonomic systems [Neimark et 
al., 1967]. 

Note as a rule, that the  WS  drive dynamics has not been 
taken into account directly [Kolmanovsky et al., 1995]. In this 
case, the variable  b  was considered as a control parameter, 
for example, from the class of continuous or smooth 
functions of time [Micaeli et al., 1994]. In this work, the 
drive dynamics is taken into account by the last equation of 
(2.1). Usually, a hydraulic drive is used as the front axle drive 
of a real  WS. In the framework of (2.1), only its most 
general properties are taken into account. In particular, the 
description of the WS drive dynamics contains undefined 
parameters; therefore, the form of the function  F  in (2.1) 
may be unknown. However, it is known that the function  F 
is bounded and satisfies the relations 

( ) ( ), , , , ,≥ − ≤ −F b h t H F b h t H     (2.2) 

, ,∀ ∀ ≤b t u h

b

, . This means that the angular 

velocity    of the controlled  WS  front axle is limited, and 
the control  u,  in essence, may change only the sign of the 
velocity  b .  Property given in (2.2), in one form or another 
expresses the necessary property of any real control unit. 
Thus, the dynamics of  WS  actuator is taken into account in 
the general form. 

, const>=H h 0

 
3. STATEMENT OF THE CONTROL PROBLEM 

 
The original control objective  p∈S  of the wheeled 

system (2.1) is formalized by the relations 
ρ=0,    2 1 2

1 1( , )
min ( ) ( )

x y S
x x y y

∈
ρ = − + − 1 2 ,    (3.1) 

where  (x,y)  are the coordinates of the point  p. The solution 
to problem (3.1) is denoted by  (x*,y*). The point  p* with the 

coordinates  (x*,y*)  lies on the curve  S  and is the closest to 
the point  p  (Figs. 1, 2). Thus, according to (3.1), the WS 
control objective is achieved if   x=x*, y =y*. 
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Fig. 2. Distance  ρ  from the point  p  to the given curve  S. 
    
   The smooth curve  S  in the plane  X,Y  is considered as 
trajectory of the WS motion (Figs. 1, 2). Here, it is assumed 
that the curve S  is defined parametrically, ( ), ( )x yx s y s= Φ = Φ , 

( ) ( )22/ /x yd ds d ds 0Φ + Φ ≠ . The parameter  s  determines the 

coordinates  x  and  y  of points of the curve  S  in the system 
{X,Y}. Quantity  A(s)  is the tangent angle to the curve  S  at 
the point  s.  A*=A(s*), where  s*  is the value of  s  for the 
point  (x*,y*)∈S  that is the closest to the point  (x,y).  The 
curvature  A′(s)  of the curve  S  and its derivative are limited 

, , , const 0, ( ) /A A A A A A A dA s d′ ′ ′′ ′′ ′ ′′ ′≤ ≤ = ≥ = s . (3.2) 
   Note that along with control objective (3.1), other control 
objectives for wheeled systems are considered [Kolmanovsky 
et al., 1995]. For example, the description of the control 
objective different from (3.1) may contain requirements for 
the velocity of motion along the trajectory S. In practical 
problems it is necessary to introduce a number of additional 
limiting conditions (for example, a fixed range of variation of 
the angle  b  of the WS front axle, WS "lateral" acceleration 
[Ackermann et al., 1995], and so on). In automatic parking 
problems, the trajectory  S  is not given. The trajectory is 
constructed (planned) for the initial and final WS positions. 
The orientation of the system’s body, its velocity, and the 
surrounding obstacles, including movable objects can be 
taken into account. 

The WS control problem consists of constructing a 
control law  u=U(x,y,a,b)  which provides stability of motion 
(3.1) of the closed-loop system (2.1). Note that the relation 
(3.1)  ρ=0  determines the set of points on the curve  S  in the 
plane  X,Y. In other words, (3.1) forms a manifold of the state 
space {x,y,a,b} of the wheeled system (2.1). Therefore, in 
this work, the stability of manifold (3.1) of the closed-loop 
system is considered [Matyukhin, 2001]. It is assumed that 
the state  x,y,a,b  of the system is  available with the system 
parameters  v,L, Eqs. (2.1), and the description of the curve  
S. Note that in practice, the description of the curve  S  is 
contained in the WS on-board computer. It can be created 
automatically, for example, in the storage mode. For this 
purpose, the operator leads, e.g., an agricultural tractor along 
the trajectory satisfying the technological operations of field 
preparation [Cordesses et al., 2000]. At this stage, satellite 
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sensors of tractor position are usually used (GPS sensors 
[Rapoport, 2004]). They can be applied further for on-line 
tractor control in an automatic mode.  
   The goal of this work is to investigate the WS control 
problem formulated above. The control law providing 
stability of the WS motion of form (3.1) under these 
conditions is constructed. 
 

4. WHEELED  SYSTEM  CONTROL  LAW  
 

   Let us write the WS control objective (3.1) in the form 
r = 0.           (4.1) 

Here r denotes the abscissa of the point  p  in the system  
{X*,Y*} (Fig. 2). Obviously, ρ=|r|, and the original control 
objective ρ=0 in the form (3.1) follows from the relation 
(4.1). The case in which  r  in (4.1) is uniquely determined is 
considered. Namely, problem (3.1) is solved at some time 
instant before the initial moment t=0, when the motion is 
started. If this problem has several solutions, one of them is 
to be chosen (e.g., arbitrary). For the solution  x*,y* chosen,  
the quantity  s  is denoted by  s*0. Then, for  t>0, problem 
(3.1) is reduced to the following local problem: 

( ) ( )
*1

22* arg min ( ) ( )x y
ds s

s x s y
≤−

= − Φ + − Φ s ,  s*1(t)=s*(t-0).  (4.2) 

With account of proposition (3.2), this problem has a unique 
solution, since the number  d>0  is chosen sufficiently small,  

1/d ′< A

*

. Therefore, for  t≥0, the coordinate system {X*,Y*} 
and  r  in relation (4.1) are uniquely determined. 
 
   Lemma 1. For system (2.1) and the curve  S  satisfying 
conditions (3.2), we have 

*sin( )r v a A= − − ,  * *(1 ) cos( )s r A v a A′+ = − .  (4.3)  
 
   Here, s* is the value of  s=ds/dt  for the point  p*∈S  with 
the coordinates  x*,y*  closest to the point  p  with the 
coordinates  x,y,  A*=A(s*). The idea of the proof of the 
lemma is related to the analysis of the vector equality  

, where  P  and  P+r =*P n P * are the radius vectors of the 
points  p  and  p*  in the system {X,Y} (Fig. 2), n and  τ  are 
the orts of the coordinate system {X*,Y*}.  

By taking into account lemma 1, we construct the control 
law of the wheeled system (2.1) in the form 

( )sign zu h b b= − − ,        (4.4) 
def

tg( ) / ( )z z zv b L a a a= + ϕ − ,     sin .   ( ) ( )
def

*
za A f r− = −

Here, the quantity  az  is determined by the last relation, and 
the second relation determines the quantity  bz. Expressions 
(4.4) allow us to construct the equalities 

( )( ) tg tg / ,z ze e v b b L e a= ϕ + − = − a

)

,     (4.5) 

   r v , sin sin* *
zf ( r ) v (a A ) v (a A= + − − −

where propositions (4.3) of lemma 1 and Eqs. (2.1) should be 
taken into account. The idea is to realize the sliding mode of 
the form  b=bz  in system (2.1) using discontinuous control 
(4.4). In this case, the first relation in (4.5) takes the form  
e=ϕ(e), e=a-az. The function  ϕ(e)  is chosen so that the 
motion  e=0  of this system is exponentially stable, i.e., a≈az. 
Then, the second correlation (4.5) takes the form  r≈vf(r),  

where the function  f(r)  is similar to the function  ϕ(e). This 
implies the stability of the motion  r=0  of (2.1). 
 
   Theorem 1. Assume that for system (2.1), the arbitrary 
numbers  x0,y0,a0,b0 (0<b0<π/2) are given, and the following 
inequalities are valid: 

0 0 0(0) , (0) , (0) , (0) 0≤ ≤ ≤ ≤x x y y a a b b .    (4.6) 

Then there exist numbers ,A A′ ′′  from proposition (3.2) and a 
control of the form (4.4) such that the stability of the motion 
r=0  along the trajectory  S  is ensured. 
 
   The proof scheme of the theorem is given in the Appendix 
and Ref. [Matyukhin, 2006]. The meaning of the theorem is 
that, first of all, that there exists a solution to the WS control 
problem in the general nonlinear formulation. According to 
the theorem, the constraints on the initial values 
(x(0),y(0),a(0),b(0)) are almost absent, and the WS moves 
along the given trajectory  S  for any initial values. Constraint 
(4.6), where 0<b0<π/2, is not restrictive, in particular, from a 
practical point of view. Indeed, the state of the real wheeled 
system required in (4.6) can be realized relatively simply. 
Note also that control law (4.4) depends on  x0,y0,a0,b0  in the 
general case. Therefore, in theorem 1, stabilizability of the 
system in large with respect to basic variables  x,y,a  of WS 
state is established. Constraint (3.2) of the theorem for the 
curvature of the curve  S  seems to be natural. It is related to 
the fact that the control objective should be realizable, i.e., 
some (unperturbed) motion of system (2.1) corresponding to 
the curve  S  should exist. This is possible only if  S is 
sufficiently smooth. 

Note that the control law of the WS does not necessarily 
have discontinuous character of a feedback of type (4.4). A 
continuous WS control law  u=uz can be obtained, for 
example, following the schemes of constructing  bz  and  az  
in relations (4.4). However, in this case, it should be assumed 
that the function  F  is known, unlike the original assumption. 
Moreover, it is possible to take into account the dynamics of 
the  WS  drive in the general form   

( ), ,b F b u t= ,   ( ), , ,u b u U= ψ t .  
Here,  u  is considered as the drive state variable {b,u}. The 
new control  U  should provide  u→uz. 
 

5. ALLOWANCE  FOR  ERRORS  
OF  MEASURING  THE  WHEELED  SYSTEM  STATE  

 
   In the contrast of the last section, the WS control problem is 
solved now with regard for system state measurement errors. 
In distinction to (4.4), the control law 

( )sign zu h b b b= − + ∆ − ,      (5.1) 

 
def

tg( ) / ( )z z zL a a a a= + ϕ + ∆ −v b , si  ( ) ( )
def

*n za A f r r− = − + ∆

includes ∆x,…, considered as the errors of measuring the 
coordinats  x,… The errors is assumed to be smooth and 
bounded 

x∆ ≤ δ ,   y∆ ≤ δ ,  a∆ ≤ δ ,     b∆ ≤ δ ,   (5.2) 

,...,x C y C∆ ≤ ∆ ≤ ,   a C∆ ≤ , δ, С = const ≥ 0. 
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   Theorem 2. Assume that for the system (2.1), the numbers  
ε,x0,y0,a0,b0 (0<b0<π/2)  are given, and  

0 0(0) (0) , ..., (0) (0)x x x b b+ ∆ ≤ + ∆ ≤ b .    (5.3) 

The basic assumption concerning the functions  k, γ, β,  has 
the form 

0( , )k x y ≤ δ ,      (6.3) 

1 1/ , /k x k y∂ ∂ ≤ δ ∂ ∂ ≤ δ ,…, 2 2
2/k y∂ ∂ ≤ δ , Then, there exist numbers ,A A′ ′′  from proposition (3.2), 

numbers  δ  in (5.2) and a control of the form (5.1) such that  / x C∂γ ∂ ≤ ,…, 2 2/ y C∂β ∂ ≤ ,          δi, С = const ≥ 0.  
(0)r r≤ γ ,   0≤t≤τ,  r ,    t≥τ,   ∃γ,τ= const.   (5.4) ≤ ε

Condition (6.3) means that the surface along which the WS 
moves is sufficiently smooth. The number  C  is assumed to 
be given, and the constants  δi  will be chosen for ensuring 
that the WS motion is along the curve  S. Introduced 
assumptions (6.2) and (6.3) correspond to physical reasons of 
slipping under study, which are related to limited slope of the 
surface along which the WS moves.  

 
   The prove of the theorem follows along the lines of 
theorem 1 and is not presented here (see Ref. [Matyukhin, 
2006]). The theorem implies that developed control law (4.4) 
maintains the stability of WS motion when the system is 
subjected to perturbations due to errors of measured state 
variables. Also, it turns out that according to (5.4) the 
deviation  r  from given trajectory  S will be small if the 
measurement error is small according to (5.2). The conditions 
for the initial values of WS state have the form (5.3) of 
nonrestrictive constraints that is they do not virtually exist, 
the case with the theorem 1. 

   These model representations of the phenomenon of the 
slipping of wheeled machines have an approximate character. 
For example, the slip value may increase on wet surfaces, 
which is not taken into account in (6.2), (6.3). To take into 
account this circumstance, the coefficient of friction with the 
road bed is introduced  [Ackermann et al., 1995]. 

  
6. ACCOUNT  FOR  WHEELES  SLIPPING Theorem 3. Let WS equations have the form (6.1), 

numbers ε,x0,y0,a0,b0 (0<b0<π/2) are given, and  
   Note that the ideal WS model (2.1) can be violated, for 
example, if the WS  moves along a surface with a noticeable 
slope. Modern wheeled systems are designated for motion 
along surfaces with a slope of an order of 150 and higher 
[Cordesses et al., 2000]. The reason is related to a slip of the 
WS back wheels along their axes. So the WS slipping 
phenomenon must be taken into account. In this case, the 
equations (2.1) take the following form 

0 0 0(0) , (0) , (0) , (0) 0≤ ≤ ≤ ≤x x y y a a b b . (6.4) 

Then, there exist numbers ,A A′ ′′  from proposition (3.2), 
numbers  δi  in (6.3) and a control of the form (4.4) such that 
the following relations are valid: 

( ) (0)r t r≤ ϒ ,   0≤t≤τ,  ( )r t ≤ ε ,   t ≥τ,    ∃ϒ,τ = const.  (6.5) 
 
   The prove of the theorem follows along the lines of 
theorem 1 and is not presented here (see Ref. [Matyukhin, 
2006]). The basic result of theorem 3 is the substantiation of 
the stability of WS motion under the perturbed conditions. 
The perturbations are related to side slip of wheels (along 
their axes) are considered. It is assumed that the slipping can 
occur due to a slope of the surface along which the WS 
moves. 

   cos sin sin cosx / v a d a, y / v a d a= − = +

(tg ) /a b d v L= − (
,     (6.1)

     ,  ), ,b u t=b F .  
The quantity  d  characterizes the slip of the WS back wheels 
along their axes (Fig. 1). 
   The slipping phenomenon, as a rule, was not taken into 
account, and the perturbed kinematic WS model of the form 
(6.1), in essence, was not studied [Kolmanovsky et al., 1995]. 
To take into account the slipping phenomenon, in some 
studies it was assumed that d=const [Canudas et al., 1995]. 
Unlike these studies, in system (6.1) d is assumed to be a 
function of the WS state, i.e., d=d(x,y,a,b). Note that in the 
general case, the slip characteristic d may depend on the 
inertia arising in sharp turns of the WS [Ackermann et al., 
1995]. This can be described in terms of the forces acting on 
the  WS  that are not contained in model (6.1). 

   Namely, the theorem 3 proves the fact that control law (4.4) 
constructed in the previous section 4 provides a small 
deviation of  r  from a given trajectory  S  according to (6.5). 
For this, it is sufficient that the slip amplitude is small 
according to assumption (6.3). Moreover, the condition of 
(6.3) that is the surface along which WS moves is sufficiently 
smooth is taken into account. Note that  d  is considered as an 
unknown perturbation acting on the system [Malkin, 1952, 
Krasovskii, 1959]. In other words, theorem 3 states the 
stability of WS motion if the perturbations which act 
constantly are taken into account [Matyukhin, 2001]. Note 
also that similar to theorem 1, the constraints on the initial 
values (x(0),y(0),a(0),b(0)) of the system have the form (6.4) 
of unrestrictive constraints, i.e., are practically absent.  

The slip value is described in the form 
sin sind k ( ) ( a= γ − )β .     (6.2) 

To take slipping into account of, we assume that the WS 
moves along a surface close to the plane  X,Y, but not 
coincides with it (Figs. 1 and 2). We denote by  Π  the plane 
tangent to the WS wheels. The angle between the plane  Π  
and the horizontal plane  X,Y  is denoted by  γ.  If  γ=0, it is 
assumed that WS slipping is absent,  d=0, which follows 
from (6.2). The angle β  in (6.2) determines the slope 
direction of the plane  Π (or the orientation of this plane) in 
the system {X,Y}. If  a=β, the back wheels axle is horizontal, 
and WS slipping is absent according to (6.2). The coefficient  
k  in (6.2) determines the slip amplitude and has an 
experimental character. 

 
   6.1  Account of slipping in the control law 
 
   The WS control problem is solved now under the 
assumption that the slip  d  is known. The control law 
explicitly containing the function  d(x,y,a,b) and providing a 
possibility of ensuring asymptotically an exact WS motion 
along the trajectory  S  is constructed. 

     

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

1180



 
 

 

   Note that in the general case,  d  cannot be measured 
directly. In practice, the estimate of the values of  d  can be 
obtained from, for example, measurements of (spatial) 
angular WS position. Here, it is taken into account that the 
deviation of the angular position of the back WS axle from 
the horizontal position provides a possibility of slope 
estimating of the surface along which the WS moves, i.e., 
estimating of the value of the slipping  d. The value of  d  can 
also be estimated using the results of state observation of the 
WS. Taking into account this fact, the control law is 
constructed in the form 
  sign( )zu h ,  b b= − −

def
tg( ) / / ( )z z zL a vd L a a= + + ϕ −v b ,  (6.6) 
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 si .     ( ) ( )

def
* *n cos( )za A d a A f r− + − =−

This law, unlike the control law (4.4), contains  d(x,y,a,b) 
explicitly. In this case, the proposition similar to theorem 1 is 
valid. 

Fig. 3. Trajectory of WS motion from the point  (x,y)=(1,0).  
Velocity  v=2 m/s;  S - sinusoid with an amplitude of 1 m, a 

period of 10 m; slope  d=0.2sin(a)  along the axis X.   
Theorem 4. Assume that the motion equations of the WS 

have form (6.1) and arbitrary numbers  x0,y0,a0,b0 (0<b0<π/2)  
are given, and  

After 15 m, the deviation is smaller than 0.02 m. 
Key:  1. Given trajectory  S; 2. WS trajectory;  

3. Front axle;  4. Slope  
0 0 0(0) , (0) , (0) , (0)≤ ≤ ≤ 0≤x x y y a a b b .  (6.7)  

   The basic result of the simulation is that the WS motion 
turned out to be stable in the sense of theorem 4. Rather short 
transition process is provided in the system for considerable 
slope, when  d =0.2sin(a ). For example, the initial deviation 
r(0) of an order of 1 m was compensated practically already 
after 15 m, and was smaller than 0.02 m. Then, the deviation 
tended to zero (Fig. 3). If the slip characteristic  d  was not 
taken into account in the control law (as in law (4.4) of 
theorem 3), oscillations with an amplitude of 0.06 m arised. 

Then, there exist such numbers  ,A A′ ′′  in (3.2), δi  in (6.3), 
and the control of form (6.6) that the motion r=0 of the 
system is exponentially stable. 
 
   The proof of the theorem is similar to the proof of theorem 
1   and is not mentioned here (see Ref. [Matyukhin, 2006]). 
According to theorem 4, control law (6.6) provides  WS  
stability motion when the slip  d  is taken into account. For 
this, it is sufficient that the slip amplitude is small and the 
surface along which WS moves is sufficiently smooth 
according to assumption (6.3). The difference of theorem 4 
from theorem 3 is that for sufficiently smooth surfaces, an 
exact WS motion is possible due to control (6.6) containing 
the slip  d(x,y,a,b)  explicitly. 

 
APPENDIX 

 
   Scheme of proof of the theorem 1. The idea of the proof is 
connected with the steering of system (2.1), (4.4)  
  cos sinx v a, y v a= = ,  tg( ) /a v b L= , ( ), ,b u t=b F ,    (1) 

 
( )sign zu h b b= − − ,           6.2  Simulation 

 def
tg( ) / ( )z z zv b L a a a= + ϕ − ,    sin  ( ) ( )

def
*

za A f r− = −   The goal of simulation is to illustrate the practical 
orientation of theoretical results presented above. The basic 
simulation result is that the WS motion is stable with account 
of slipping. This is substantiated for dynamical WS 
parameters typical, for example, for agricultural tractors 
[Cordesses et al., 2000]. 

under study to the sliding mode. 
 

Lemma 2. In system (1), the sliding mode of the following 
form arises: 

1(0) (0) , 0z zb b b b t t− ≤ − ≤ ≤ ,  b=bz,  t≥t1.  (2) 
   The system described in (6.1),(6.6) was studied 
numerically. The slope surface was assumed to be flat and 
directed along the axis  X, i.e.  β=0, γ=const, d=0.2sin(a)  
(Fig. 3). The following values of the basic WS parameters 
were chosen: the tractor length  L=3 m, the velocity  v=2 m/s, 
the front axle drive performance  1/b ≤ s . Sinusoids with an 

amplitude of up to 1 m and a period of 10 m (dashed line in 
Fig. 3) were considered as given trajectories  S. The curvature 
radius of these curves reached 3 m, the initial deviation  |r(0)|  
reached 1 m, the deviation |a(0)|  reached  0.3 rad. 

In this mode, the following estimates are satisfied:  
   z zb b< ,   , 0tb b< ≥ ,   , const / 2z = < πb b .    (3) 
 
   The proof of the lemma is given below. In sliding mode (2) 
taking into account (4.5), the following equalities are valid: 

( ), ze e e a a= ϕ = − . This implies 

( )1 1( ) ( ) exp ( )e t e t t t≤ Λ −λ − ,  t ≥ t1.   (4) 

The constants  λ,Λ>0  exist due to the assumed stability of 
the system e ( )e= ϕ . Let us take into account relations (4.5) 
written in the form 

 

≤ − +d r / dt v f R,  1/d e dt R≤ − ϕ + ,   (5) 
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sin sin cos= − − − = ≤* *
zR v (a A ) (a A ) v (a ) e v e ,     To prove (13), let us determine the constant  za  by the 

relations 
1 tg tg /zR v b b L= − . 

/ tg( ) /z zLa v b< 2 ,  0( / 2 ) / 4 / 2zb b= π − < π .   (14) Due to (4), the following relations are valid: 
Here, the assumption of the theorem of the form  0<b0<π/2  is 
taken into account. The details of substantiation of inequality 
(13) are in Ref. [Matyukhin, 2006].  

1 1expd r / dt v f v e( t ) ( ( t t ))≤ − + Λ −λ − .   (6) 

On this basis, the exponential stability of the motion  r=0 of 
system (1) under study, i.e., theorem 1, is established. Thus, 
theorem 1 follows from lemma 2. 

   Thus, lemma 3, lemma 2, and theorem 1 are proved. 
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 ( ) / /′+ + ϕ <z za a a L v H 2

r

,   t ≥ 0.    (11) 
 

Here, the notation ϕ =  is introduced and it is assumed 
that 

/d d′ ϕ

1′ ′ ′ ′ ′′ ′′ϕ ≤ ϕ ϕ ≤ ϕ ≤ < ≤ ≤ ∀, , f f , f f , f f , r , (12) 

where ,..., f ′′ϕ  are constants. The idea of the substantiation of 
inequality (11) is related to analysis of constraints of the form 

, , , 0, , , co≤ ≤ < ≥ =z z z z z za a a a a a t a a a nst . (13) 
Condition (11) obviously follows from inequalities (13) if the 
assumptions (3.2) and (12), where the constants ,za ′ϕ  
sufficiently small, are taken into account.  
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