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Abstract: Easily computable recursive algorithms are proposed for estimating coefficients
of A(z), C(z), and the covariance matrix Rw of wk for the multivariate ARMA process

A(z)yk = C(z)wk on the basis of the noise-corrupted observations ηk
∆
= yk + ǫk. It is shown that

the estimates converge to the true ones under reasonable conditions. An illustrative example is
provided, and the simulation results are shown to be consistent with the theoretical analysis.
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1. INTRODUCTION

There is a vast amount of publications on identification of
ARMA processes, e.g., Box and Jenkins (1970), Brockwell
and Davis (2001), Choi (1992), Hannan (1975), Stoica
(1983), Stoica, Söderström, and Friedlander (1985), and
Stoica, McKelvey, and Mari (2000) among others. The
problem may be dealt with by using various methods
such as Yule-Walker equation, extended least squares,
maximum likelihood, and many others. The problem may
also be solved from the viewpoint of spectral factorization
(Chen (2007b), Claerbout (1966), Lai and Ying (1992),
and Wilson (1969)). However, all works mentioned here
concern the case where the observation data are free of
noise.

In this paper we consider the case where the observation is
corrupted by noise, i.e., we estimate the parameters in an
errors-in-variables (EIV) ARMA process. A survey of EIV
methods is provided by Söderström (2007). A recursive
and strongly consistent estimate is given in Chen (2007a)
for a class of EIV systems.

The multivariate ARMA process considered in the paper
is as follows:

A(z)yk = C(z)wk, yk ∈ R
m, (1)

where the matrix polynomials in backward-shift operator
z

A(z)
∆
= I + A1z + · · · + Apz

p (2)

and

C(z)
∆
= I + C1z + · · · + Cqz

q, zyk = yk−1 (3)

are with unknown coefficients

θT
A

∆
= [A1, . . . , Ap] and θT

C

∆
= [C1, . . . , Cq]

but with known orders (p, q).

Assume the process {yk} is observed with additive noise
{ǫk}
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ηk
∆
= yk + ǫk. (4)

The purpose of the paper is to give recursive estimates for
θA, θC , and the covariance matrix Rw of wk on the basis
of observations {ηk}.

The conditions used in the paper are as follows:

A1. detA(z) 6= 0, ∀|z| ≤ 1, detC(z) 6= 0, ∀z : |z| < 1.

A2. A(z) and C(z) have no common left-factor. The matrix
Cq is nonsingular, and the matrix Ap is also nonsingular
in the case p > q.

A3. {wk} are mutually independent and identically dis-

tributed (iid) with Ewk = 0 and EwkwT
k

∆
= Rw > 0.

A4. {ǫk} is iid and independent of {wk} with Eǫk = 0 and

known EǫkǫT
k

∆
= Rǫ ≥ 0.

Based on the observation data {ηk} the recursive algo-
rithms proposed in the paper for estimating θA, θC , and
Rw are given with the help of stochastic approximation
with expanding truncations (Chen (2002)). The estimates
are proved convergent as time tends to infinity.

The rest of the paper is arranged as follows. In Section 2
the observation process {ηk} is represented as an ARMA
process with some desired properties. In Section 3 the
coefficients θA contained in A(z) are recursively estimated,
while estimates for θC and Rw are given in Section 4. A
numerical example verifying convergence of the algorithms
is given in Section 5. Some concluding remarks are given
in the last section. The results in Section 4 are based on
a convergence theorem, which is presented as Theorem A
in Appendix.

2. REPRESENTATION OF OBSERVATION PROCESS

From (1)(4) it follows that the observation process {ηk} is
generated by the following equation:

A(z)ηk = C(z)wk + A(z)ǫk. (5)
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By A3 and A4 it is clear that ηk is stationary and ergodic.
We now show that ηk can be expressed as a stable ARMA
process of minimum phase with some desired properties.

Lemma 1. Assume A2-A4 hold. Then the observation
process {ηk} can be expressed as an ARMA process

A(z)ηk =D(z)ξk with D(z) = I + D1z + · · · + Drz
r,

r = max(p, q) (6)

satisfying the following conditions:

i) A(z) and D(z) have no common left-factor;

ii) [Ap

...Dr] is of row-full-rank;

iii) detD(z) 6= 0 ∀z : |z| ≤ 1; and

iv) Eξk = 0, EξkξT
k

∆
= Rξ > 0 ∀k, EξkξT

s = 0 if k 6= s.

Proof. By the innovation representation (Anderson and

Moore (1979)) the stationary process ζk
∆
= [C(z)

...A(z)]∆k

with ∆k
∆
= [wT

k , ǫT
k ]T can be represented as

ζk = H(z)ξk

with Eξk = 0, EξkξT
k = Rξ > 0 ∀k, EξkξT

s = 0 if k 6= s,
where H(z) is an m×m−matrix of rational functions with
H(0) = I, and both H(z) and H−1(z) are stable (without
root in {z : |z| ≤ 1}).

Denote by Fk the σ−algebra generated by {∆j , j ≤ k}.
Then, ζk ∈ Fk, and hence ξk ∈ Fk. By stability of H(z),
ζk can be represented as

ζk =
∞
∑

i=0

Diξk−i, D0 = I. (7)

Since ζk
∆
= [C(z)

...A(z)]∆k, ζk is independent of ∆k−i ∀i ≥
r + 1 and hence independent of Fk−i ∀i ≥ r + 1. Conse-
quently, EζkξT

k−i = 0 ∀i ≥ r + 1, and hence

D(z)ξk = [C(z)
...A(z)]∆k, (8)

where D(z) is a monic polynomial of order r. By the
definition of ζk and (5) we derive (6). Noticing that H(z) is
stable and H(z) = D(z), we conclude that D(z) is stable.
It remains to show the properties i)-ii).

i) Assume the converse that there is G(z) with detG(z) 6=
constant such that A(z) = G(z)F (z), and D(z) =
G(z)L(z), where the orders of F (z) and L(z) are less than
r.

Writing the spectral functions of both sides of (8), we have

D(z)RξD
T (z−1) = A(z)RǫA

T (z−1) + C(z)RwCT (z−1),
(9)

or

G(z)[L(z)
...F (z)]

[

Rξ 0

0 −Rǫ

]

[

LT (z−1)
FT (z−1)

]

GT (z−1)

= C(z)RwCT (z−1),

which implies that C(z) also contains a left-factor G(z).
But, this is impossible, because A(z) and C(z) have no
common left-factor by A2. The obtained contradiction
proves i).

ii) Setting Ai
∆
= 0, Cj

∆
= 0 for i > p, j > q, respectively,

we show that [Ar

...Dr] is of row-full-rank.

Assume the converse: there is a non-zero m−vector µ such

that µT [Ar

...Dr] = 0.

Comparing the coefficients of zr in both sides of (9) we
find that

DrRξ = CrRw + ArRǫ. (10)

Multiplying (10) from left by µT and taking notice of
the converse assumption, we derive µT CrRw = 0, and
hence µT Cr = 0 by non-singularity of Rw. Thus, we have

µT [Ar

...Cr] = 0. However, [Ar

...Cr] is of row-full-rank by
A2, and hence µ must be zero. The obtained contradiction

shows that [Ar

...Dr] is of row-full-rank.

If p ≥ q, then r = p and we have shown [Ap

...Dr] is of
row-full-rank. If p < q, then Ar = 0 and the row-full-rank

of [Ar

...Dr] = [0
...Dr] is equivalent to the non-singularity of

Dr. This implies that [Ap

...Dr] is of row-full-rank.

3. ESTIMATION OF A(Z)

In the case where A(z) is stable, the process {ηk} is
stationary and ergodic.

Set

EηkηT
k−i

∆
= Ri. (11)

Write

ϕT
k = [ηT

k , . . . , ηT
k−p+1], ψT

k = [ηT
k , . . . , ηT

k−µ+1],

µ = pm,

EϕkψT
k−r

∆
= Γ =









Rr Rr+1 · · · Rr+µ−1

Rr−1 Rr · · · Rr+µ−2

...
...

...
Rr−p+1 Rr−p+2 · · · Rr+µ−p









, (12)

r = max(p, q),

and

EηkψT
k−1−r

∆
= W = [Rr+1 · · ·Rr+µ]. (13)

From (5) we have

ηk = −θT
Aϕk−1 + C(z)wk + A(z)ǫk. (14)

By noticing E(C(z)wk)ψT
k−1−r = 0 and E(A(z)ǫk)ψT

k−1−r

= 0, multiplying (14) by ψT
k−1−r from the right, and taking

expectation lead to the following generalized Yule-Walker
equation

W = −θT
AΓ,

which is clearly equivalent to

ΓΓT θA + ΓWT = 0. (15)

It is worth noting that the equation (15) is linear with
respect to θA.

Let Mk be a sequence of positive real numbers increasingly
diverging to infinity.
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The matrix coefficient θA is recursively estimated by the
following algorithms:

Γk = Γk−1 −
1

k
(Γk−1 − ϕk−1ψ

T
k−r−1) (16)

Wk = Wk−1 −
1

k
(Wk−1 − ηkψT

k−r−1) (17)

θk =
(

θk−1 −
1

k
Γk(ΓT

k θk−1 + WT
k )

)

· I[‖θk−1−
1
k
Γk(ΓT

k
θk−1+W T

k
)‖≤Mλk

] (18)

λk =
k−1
∑

i=1

I[‖θi−1−
1
i
Γi(ΓT

i
θi−1+W T

i
)‖>Mλi

], λ0 = 0 (19)

with arbitrary initial values Γ0, W0, θ0.

Theorem 1. Assume A2-A4 hold and A(z) is stable. Then

θT
k −−−−→

k→∞
[A1, . . . , Ap] a.s.,

where θk is given by (16)-(19).

Proof. Based on Lemma 1, by Theorem 1 in Stoica (1983)
we conclude that ΓΓT > 0. Then the assertion of the
theorem follows from the convergence theorem of stochas-
tic approximation (Chen(2002)) for the linear regression

function f(θ)
∆
= ΓΓT θ + ΓWT .

Remark 1. In the literature there are many papers on
AR parameter estimates, e.g., Stoica, Söderström, and
Friedlander (1985), but estimates given there mostly are
nonrecursive.

4. ESTIMATION OF C(Z) AND RW

In the last section we have estimated A(z) in (1). It
remains to estimate C(z) and Rw.

In Stoica, McKelvey, and Mari (2000) it was pointed
out that “the parameter estimation of moving-average
(MA) signals from second-order statistics was deemed
for a long time to be a difficult nonlinear problem for
which no computationally convenient and reliable solution
was possible”. In what follows a recursive and easily
computable algorithm is proposed to solve this problem.
Under reasonable conditions the algorithm leads to the
strongly consistent estimates.

Let

ρk
∆
= C(z)wk(= A(z)yk) and EρkρT

k−i

∆
= S

ρ
i , (20)

Sρ(z)
∆
=

r
∑

j=−r

S
ρ
j zj , Sρ ∆

= [Sρ
0 , · · · , Sρ

r ]T (21)

ζk
∆
= D(z)ξk(= A(z)ηk) and EζkζT

k−i

∆
= S

ζ
i , (22)

Sζ(z)
∆
=

r
∑

j=−r

S
ζ
j zj , Sζ ∆

= [Sζ
0 , · · · , Sζ

r ]T . (23)

Write θT
k as

θT
k = [A1k, . . . , Apk] with Aik ∈ R

m×m, i = 1, . . . , p. (24)

Set

ζ̂k
∆
= ηk + A1kηk−1 + · · · + Apkηk−p, (25)

which serves as an estimate for ζk(= A(z)ηk).

Recursively define S
ζ
k

∆
= [Sζ

0k, · · · , S
ζ
rk]T as follows:

S
ζ
ik+1 = S

ζ
ik −

1

k + 1

(

S
ζ
ik − ζ̂k+1ζ̂

T
k+1−i

)

, S
ζ
i0 = 0, (26)

i = 0, 1, . . . , r.

Further, define

S
ρ
k(z)

∆
= S

ζ
k(z) − Ak(z)RǫA

T
k (z−1), (27)

where S
ζ
k(z)

∆
=

∑r
j=−r S

ζ
jkzj with S

ζ
−jk

∆
= S

ζT
jk , and

Ak(z)
∆
= I + A1kz + · · · + Arkzr.

Lemma 2. Assume A2-A4 hold and A(z) is stable. Then
S

ρ
k(z) a.s. converges to Sρ(z), the spectral function of ρk,

as k → ∞.

Proof. Noticing

ζ̂k = ζk + (A1k − A1)ηk−1 + · · · + (Apk − Ap)ηk−p,

and

1

n
‖

n
∑

k≥i,j

(Aik − Ai)ηk−iη
T
k−j‖

≤
( 1

n

n
∑

k≥i,j

‖Aik − Ai‖‖ηk−i‖
2
)

1
2

·
( 1

n
‖

n
∑

k≥i,j

‖Aik − Ai‖‖ηk−j‖
2
)

1
2

−−−−→
n→∞

0 a.s.

by Theorem 1 and ergodicity of {ηk}, i, j = 1, . . . , p, we
find

‖
1

k

k
∑

j=1

ζjζ
T
j−i −

1

k

k
∑

j=1

ζ̂j ζ̂
T
j−i‖ −−−−→

k→∞
0 a.s. (28)

This incorporating with (26) implies

lim
k→∞

S
ζ
jk = S

ζ
j , and lim

k→∞
S

ζ
k(z) = Sζ(z). (29)

Noticing Sζ(z) = D(z)RξD
T (z−1) by (22)(23), Sρ(z) =

C(z)RwCT (z−1) by (20)(21), and Ak(z)RǫA
T
k (z−1) −−−−→

k→∞

A(z)RǫA
T (z−1) by Theorem 1, from (9)(27)(29) we con-

clude the assertion of the lemma.

Define

U(X)
∆
=























I U1(X) · · · Ur(X)

0 I U1(X) · · · Ur−1(X)

...
. . .

. . .
...

I U1(X)

0 · · · 0 I























,

Φ(X)
∆
=





















I 0 · · · 0

0 X(0) 0
...

...
. . .

. . .
. . .

0

0 · · · 0 X(0)





















, (30)

U0(X)
∆
= I, U1(X) = −X(1),

Ul(X) = −X(1)Ul−1(X) − X(2)Ul−2(X) − · · · − X(l),

l = 2, . . . , r.
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It is straightforward to verify that Xρ ∆
= [Rw, C1, · · · , Cr]

T

satisfies the following algebraic equation

Φ(X)X = U(X)Sρ, (31)

where Sρ is given by (21), and the matrix U(X)Sρ is
obtained from U(X)Sρ by replacing its first m×m-matrix
∑r

i=0 Ui(X)SρT (i) with

[(
r

∑

i=0

Ui(X)SρT (i))(
r

∑

i=0

Ui(X)SρT (i))T ]
1
2

and keeping the rest unchanged, i.e.,

U(X)Sρ =























[(
r

∑

i=0

Ui(X)SρT (i))(
r

∑

i=0

Ui(X)SρT (i))T ]
1
2

r
∑

i=1

Ui−1(X)SρT (i)

...
SρT (r)























.

Let νk be a sequence of positive real numbers increasingly
diverging to infinity. The unknown matrix Xρ is estimated
by the following algorithm:

X
ρ
k+1 =



















X
ρ
k −

1

k + 1

(

Φ(Xρ
k )Xρ

k − U(Xρ
k )Sρ

k

)

, if

‖Xρ
k −

1

k + 1

(

Φ(Xρ
k )Xρ

k − U(Xρ
k )Sρ

k

)

‖ ≤ Mνk
,

X
ρ
0 , otherwise,

(32)

νk =
k−1
∑

j=0

I[‖X
ρ

j
−

1

j + 1

(

Φ(Xρ
j )Xρ

j − U(Xρ
j )Sρ

j

)

‖ > Mνj
],

(33)

ν0 = 0,

where Φ(X) and U(X) are given by (30), X
ρ
0 =

[νI, 0, · · · , 0] with ν ≥ 1, S
ρ
k = [Sρ

0k, . . . , S
ρ
rk]T is defined

from (27) with S
ρ
k(j) being the coefficient of zj in S

ζ
k(z)−

Ak(z)RǫA
T
k (z−1) and S

ρ
k(−j)

∆
= S

ρT
k (j), and U(Xρ

k )Sρ
k is

formed in the same way as U(X)Sρ for (31) but with X
and Sρ replaced by X

ρ
k and S

ρ
k , respectively.

Theorem 2. Assume A1-A4 hold. Then {Xρ
k} produced

by (25)–(27), (32), and (33) converges to J
∆
= {X ∈

R
(m(r+1)×m) : Φ(X)X = U(X)Sρ}: X

ρ
k −−−−→

k→∞
X ′ρ ∆

=

[X ′ρ(0), · · · , X ′ρ(q)]T a.s., and X ′ρ ∈ J. In other words,
{Xρ

k} converges to a solution to (31). Further, X ′ρ(0) =
Rw, X ′ρ(i) = Ci, i = 1, · · · , q, whenever det(I+X ′ρ(1)z+
· · · + X ′ρ(q)zq) 6= 0 ∀z : |z| < 1.

Proof. By Lemma 2 the assertions of the theorem follow
from Theorem A in the Appendix.

5. NUMERICAL EXAMPLE

Consider the following EIV ARMA process:

yk + A1yk−1 = wk + C1wk+1,

ηk = yk + ǫk,

where

A1 =

[

0.5 1
0 −0.5

]

, C1 =

[

0.6 1
0 0.3

]

, (34)

wk ∈ N (0, Rw), ǫk ∈ N (0, Rǫ), Rw =

[

2 0
0 1

]

, Rǫ =

[

1 0
0 1

]

,

{wk} and {ǫk} are sequences of iid random vectors, and
they are mutually independent.

The spectral function Sρ(z) of ρk is expressed by Sρ(z) =
C(z)RwCT (z−1). Therefore, by (34)

Sρ(z)

=

[

1 + 0.6z z
0 1 + 0.3z

] [

2 0
0 1

] [

1 + 0.6z−1 0
z−1 1 + 0.3z−1

]

(35)

However, it is straightforward to check that
[

1 + 0.6z z
0 1 + 0.3z

] [

2 0
0 1

] [

1 + 0.6z−1 0
z−1 1 + 0.3z−1

]

=

[

1 +
5

3
z z

0 1 + 0.3z

]

[

0.72 0
0 1

]

[

1 +
5

3
z−1 0

z−1 1 + 0.3z−1

]

.

(36)

It is seen that the factorization (35) corresponds to the
stable C(z) with C1 given in (34), while the factorization
given at the right-hand side of (36) corresponds to an
unstable C(z) with

C1 =

[

5

3
1

0 0.3

]

, Rw =

[

0.72 0
0 1

]

.

According to (16)-(19) for estimating θA and (25)-
(27),(32)(33) with ν = 1 in X

ρ
0 for estimating θC and Rw,

more than 20 samples have been computed. As expected,
the estimates for the elements a11, a12, a21, a22 of A1

converge to the true ones for all samples. It turns out that
all estimates for elements of C1 and Rw converge to the
stable factorization.

For an arbitrarily chosen sample Fig.1, Fig.2 and Fig.3
respectively demonstrate the estimates (denoted by dot-
ted lines) for A1, C1 and Rw (denoted by solid lines),

while Fig.4 shows the square errors 1
k

k
∑

i=1

‖θ − θi‖
2 of the

estimates, where θ denotes A1, C1, and Rw, respectively,
while θi denotes the corresponding estimate at time i.

500 1000 1500 2000 2500 3000
−1

−0.5

0

0.5

1

1.5

a
12

 

a
11

 

a
21

 

a
22

 

Fig.1 Estimates for A1
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Fig.2 Estimates for C1
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Fig.3 Estimates for Rw
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1
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Fig.4 Square errors of the estimates

6. CONCLUDING REMARKS

In the special case where the observation noise ǫk ≡ 0, the
problem is reduced to the widely-studied identification of
ARMA processes. However, for the multivariate ARMA
process there is no recursive method for identifying its
coefficients in time series analysis until the recent work
Chen (2007b), while for ELS (extended least-squares)
used in systems and control for recursively identifying
an ARMA process, the restrictive SPR (strictly positive
realness) condition is normally required.

In this paper the observation is allowed to be noisy, and
the estimation problem is more complicated in comparison
with Chen(2007b). Nevertheless, the recursive estimates

are given for the unknowns of an EIV ARMA process, and
they are proved to be convergent.

The numerical simulation is fully consistent with the
theoretical analysis.

In A4 it is required that the covariance matrix Rw of
the observation noise is available. How to remove this
undesirable condition belongs to further research.

Acknowledgement The author would like to thank Mr.
Wenxiao Zhao for his skilled computer simulation.

Appendix

Consider the stationary MA process zk = C(z)wk with

EzkzT
k−i

∆
= S(i), where C(z) =

∑q
i=0 Ciz

i with C0 = I,

Ewk = 0, and EwkwT
k = Rw.

Let {Sk} be a matrix sequence converging to S
∆
=

[S(0), S(1), · · · , S(q)]T : Sk −−−−→
k→∞

S a.s., and let {Mk} be

a sequence of positive real numbers increasingly diverging
to infinity.

The following algorithm is used to estimate X∗ ∆
=

[Rw, C1, · · · , Cq]
T :

Xk+1 =



















Xk −
1

k + 1

(

Φ(Xk)Xk − U(Xk)Sk

)

, if

‖Xk −
1

k + 1

(

Φ(Xk)Xk − U(Xk)Sk

)

‖ ≤ Mσk

X0, otherwise,

(37)

σk =
k−1
∑

j=0

I
[‖Xj−

1
j+1

(

Φ(Xj)Xj−U(Xj)Sj

)

‖>Mσj
]
, σ0 = 0,

(38)

where X0
∆
= [νI, 0, · · · , 0] with ν ≥ 1, Φ(X), U(X), and

U(Xk)Sk are given by (30)(31) with X, Sζ replaced by Xk

and Sk, respectively.

The following theorem is proved in Chen (2007b).

Theorem A. Assume {ǫk} is iid and Cq is nonsingular.
Then {Xk} produced by (37)(38) converges to an X ′ ∈

G
∆
= {X ∈ R

(m(q+1)×m) : Φ(X)X = U(X)S} a.s., and
X ′ = X∗ whenever detC(z) 6= 0, ∀z : |z| < 1, and
det(I + X ′(1)z + · · · + X ′(q)zq) 6= 0 ∀z : |z| < 1, where
X ′(i) are sub-matrices of X ′T = [X ′(0), X ′(1), · · · , X ′(q)].
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