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Abstract: Sensitivity properties of the Davison type integral controllers for time-delay plants are discussed 
on the assumption that the observer gain matrix is fixes and the cheap control is used to determine the 
feedback gain matrix. It is shown that the Davison type integral controller can be expressed as a limit of 
the standard predictor-based LQG controller. The explicit representation of the asymptotic sensitivity 
matrix is obtained by a simple limiting procedure for the standard problem. A numerical example is 
presented to illustrate the difference from the standard predictor-based LQG controller. 

 

1. INTRODUCTION 

Integral control of a time-delay plant is often required in 
various fields of control applications especially in process 
control. Although various design techniques are currently 
available, the classical LQG technique is still attractive to 
design a controller with modest controller complexity.  

For time-delay plants, Watanabe (1985) has proposed an 
integral controller which has the robust servo-mechanism 
structure proposed by Davison (1976). The controller is 
constructed based on the separation principle. The LQG 
theory can be used to determine the feedback gain matrix and 
the observer gain matrix. However, since the structure of the 
controller is different from the standard predictor-based LQG 
controller, the existing results of asymptotic properties for the 
predictor based LQG controllers (e.g., Lee et al., 1988, Kwon 
et al., 1988, Wu et al., 1996) can not directly be applied.  

The performance limitations of the Davison type controllers 
for lumped non-minimum phase plants have been discussed 
in the time domain and the frequency domain by Qiu and 
Davison (1993) and Ishihara et al. (2006), respectively. These 
results show that the Davison type controllers possess unique 
characteristics that can not be obtained as a simple special 
case of the LQG controllers. 

The purpose of this paper is to clarify the asymptotic 
sensitivity properties of the Davison type integral controllers 
for time-delay plants. We focus our attention to the 
sensitivity properties at the plant output side when the cheap 
control is used. Our key observation is that the design of the 
Davison type integral controller can be regarded as a reduced 
order controller design for the extended plant. By applying 
our recent result (Ishihara and Zheng, 2005) on the relation 

between full order observers and reduced order observers, we 
can express the Davison type controller as a limit of the 
standard predictor-based LQG controller. By a simple 
limiting procedure, we can obtain the explicit representation 
of the asymptotic sensitivity matrix from the known LQG 
result. In addition, as a merit of our approach, we can easily 
identify the estimation problem related to the obtained 
asymptotic sensitivity matrix.  

This paper is organized as follows: Section 2 introduces the 
Davison type integral controllers for time-delay plants with 
some preliminary observations. In Section 3, the explicit 
expression of the asymptotic sensitivity matrix is obtained. In 
Section 4, the related estimation problem is discussed. A 
numerical example is presented in Section 5. Concluding 
remarks are given in Section 6 

2. PROBLEM FORMULATION 

2.1 Davison Type Integral Controller 

Consider a time-delay plant 

x ( ) ( ) ( ), ( ) ( ),t Ax t Bu t y t Cx tτ= + − =

( ) n

 (1) 

xwhere t R∈ ( ) mR∈
( ) my t R∈ τ

( , , )

 is a state vector, u t is an output 
vector, is a control input and  is a time-delay. It 
is assumed that A B C

0s =

( )

 is a minimal realization without 
zero at the origin ( ) and is minimum phase.  

As a basic integral controller design, the method proposed by 
Watanabe (1985) is adopted with slight modifications. 
Assume that the plant state x t is estimated by a full order 
observer 

[ ]ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ,x t Ax t Bu t K y t Cx tτ= + − + −  (2)  
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where K is an observer gain matrix. Consider the extended 
system consisting of the plant and the integrators  

  (3) ( ) ( ) ( ), ( ) ( ),t t u t t Hξ Φξ Γ τ η ξ= + − =

( ) mt R∈

t

[ ]( ) ( ) ,( )

.

t x t t

where  is a state vector of the integrators and  η

 0
, , 0

0 0

A B H I
C

Φ Γ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥ ⎣ ⎦⎣ ⎦ ⎣ ⎦

ξ η ′′ ′

ˆ( ) ( / )u t F t t

 (4) 

The output feedback regulator is constructed for the extended 
system using the separation principle. The control input is 
given by 

 ξ τ= − +

ˆ( / )t tξ τ+

 (5) 

where F is a stabilizing state feedback gain matrix and 
 is a prediction of ( )tξ τ+ based on the input-

output data up to time t. The prediction is given by 

 ( ))
t

teΦ σˆ ˆ( / ) ( ( ) ,
t

t t e t u dΦτ

τ
ξ τ ξ Γ σ σ

−
+ +

[ ]x

−∫  (6) 

where  

 . (7) [ ]ˆ ˆ( ) ( ) ( )t x t tξ η ′′ ′

The structure of the output feedback regulator for the 
extended system is shown in Fig. 1. 

Define the partition of the state feedback matrix F as 

 F F Fη=

0Ae

I
e

τ

Φτ
⎡ ⎤

⎥=
⎥

⎣ ⎦

. (8) 

Noting that the matrix exponential in (6) is written as 

 , (9) ( )0

AC e d
τ σ σ

⎢
⎢ ∫

we can express the Laplace transform of (5) as 

 1ˆ( ) ( )yM x s F y s N
sτ= − − −( ) ( ) ( ),u s s u sτ

( )0

A A
x

 (10) 

where 

 M F e F C e d
ττ σ

τ η σ+ ∫ , (11) 

 

( )
1

0

1 .s A

B

F e C e d B

τ
τ

ττ σ
η σ

− − −

−

⎛ ⎞ ⎡ ⎤+ − −⎜ ⎟ ⎣ ⎦⎝ ⎠

− ∫

m+

[ ]
0

( ) ( ) ( ) ( ) ,
( )1( ) ( )sI A

x yN s F F C I e sI A
s

s

 (12) 

Moving the integrators in the extended system to the 
controller part and inserting the reference input in (10), we 
can obtain the Davison type integral controller as Fig. 2.  

2.2 Davison Type Integral Controller as a Reduced Order 
Controller Design 

From the construction of the Davison type integral controller 
described in the previous section, we have the following 
observation.  

 
Extended System

A

B C

State 
Predictor

Observer

∫ ∫

se Iτ− ( )y t ( )tη

ˆ( )x tˆ( / )x t tτ+

ˆ( / )t tη τ+

xF−

Fη−

se Iτ− ×
Py( )u t 

 

 

 

 

 

 

Fig. 1. Structure of the output feedback regulator for the 
extended system with the time-delay 

  
Plant

(A,B,C )

Observer

--
∫ Fη

se Iτ−

se Iτ−( )N sτ

Mτ

( )r t
( )u t

ˆ( )x t

( )y t

× Py

 

 

 

 

 

 

Fig. 2.  Structure of the Davison type integral controller for 
the time-delay plant 

 

The dimension of the lumped part of the extended system in 
Fig. 1 is n while that of the controller in Fig. 1 is n which 
is the dimension of the lumped part of the plant. This means 
that the Davison type integral controller is designed as a 
reduced order controller for the extended system. After the 
design, the augmented integrator in the extended system is 
moved to the controller part for the implementation.  

The above observation suggests that the Davison type 
integral controller in essence has characteristics of a reduced 
order controller. 

2.3 Asymptotic Sensitivity by Cheap Control  

Assume that the state feedback matrix F in (5) is determined 
by the quadratic performance index 

J q t t u t Ru t dtη η η
∞

′ ′+∫
0q > 0R >

1
c

 (13)  

where  and . The optimal feedback gain matrix F 
is given by 

F R PΓ− ′

cP
1 0.c c c cP P P R P qH HΦ Φ Γ Γ−′ ′ ′+ − + =

, (14)  

where  is a solution of the Riccati equation 

  (15) 

Our purpose is to clarify the asymptotic sensitivity properties 
at the point Py in Fig. 2 as the weight q tends to infinity with 
the fixed observer gain matrix K.  
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Note that the sensitivity properties of the Davison type 
integral controller at the point P in Fig. 2 are equivalent to 
those at the point  in Fig. 1. 

y
Py

3. ASYMPTOTIC SENSITIVITY PROPERTIES 

3.1 Fictitious Integral Controller 

Consider the control system in Fig. 1. The controller transfer 
function matrix from the output to the control 
input u t can be expressed as  

( )y t
( )

11

1

( ) ( ) ( )

( ) (1/ ) ,

sC s I N s M sI A KC Be

M sI A KC K F

τ
τ τ

τ η

−− −

−

⎡ ⎤− + + − +⎣ ⎦
⎡ ⎤− +⎣ ⎦

  (16) 
s+

where Mτ and are defined in (11) and (12), 
respectively. 

( )N s

( )t

τ

Recently, Ishihara and Zheng (2005) have shown that, for a 
given reduced order observer based controller, we can always 
find an equivalent controller including high gain full order 
observer. A brief summary of the result is given in the 
Appendix A. Applying this result to the observation given in 
2.2, we reveal the asymptotic sensitivity properties.  

First, we construct a controller including a high gain full 
order observer for the extended system. 

For the extended system described by (3) and (4), we 
consider the standard predictor-based regulator including a  
full order observer for the extended state ξ : 

 , (17) ˆ ˆ ˆ( ) ( ) ( ) [ ( ) ( )]f f f ft t u t K t tξ Φ ξ Γ τ η Ηξ= + − + −

where fK is an observer gain matrix. Note that 
includes the estimate of ˆ ( )f tξ ( )tη as well as that of ( )x t

ˆ( ) ( / )fu t F t tξ τ= − +

( / ) ( ) ( )f f
t

t t e t e u d
τ

.   

The control input for the fictitious controller is given by 

 , (18) 

where is the prediction ˆ ( / )f t tξ τ+

( )ˆ ˆ
t

tΦτ Φ σ ξ τ ξ Γ σ σ
−

+ + ∫

( )t

− . (19) 

The structure of the above controller is shown in Fig. 3.   

For the control system in Fig. 3, the transfer function matrix 
from η to u t can be expressed as  ( )

 
{

}
( ) 1

11

1

( ) )
)

( ) .

sI
f

f

f f

C s sI

Fe sI K K

Φ τ

Φτ

Φ Γ
Φ Η Γ

Φ Η

− − −

−−

−

−

+
− +

( )
( )f

( )

(
(sI

I F I e
Fe sI KΦ τ− −

⎡ ⎤− + −⎣ ⎦
+ −  (20) 

Now we give an explicit procedure for constructing the 
fictitious integral controller equivalent to the controller (16). 

Proposition 1: Consider the controller (20) with the fixed 
feedback gain matrix F and the special choice of the observer 
gain matrix 

 
Extended System

A

B C

State 
Predictor

Observer for
Extended System

∫ ∫

se Iτ−

( )y t ( )tη

ˆ( , )x t σ

ˆ( , )tη σ

xF−

Fη−

se Iτ− ×
Py( )u t

×Pη

Fictitious Controller

 

 

 

 

 

 

 

 

Fig. 3.  Structure of the fictitious controller   

 

 
A I K

K
CK I

λ
λ

λ
+⎡ ⎤

⎢ ⎥+⎣ ⎦

λ
( , )λ

( , ) /fC s sλ

, (21) 

where is a positive scalar and K is the observer gain matrix 
used in the controller (16). Let fC s denote the controller 
transfer function matrix (20) with (21). Define the controller 
given by as the fictitious integral controller. Then 

 1 ( , ) ( ) ,fC s C s
s

λ →

λ → ∞

,

 (22) 

as pointwise in s.                                                        

The matrix (21) is obtained from the Proposition A in the 
Appendix A by choosing 11A A= 0,A = 12  21A C=

0A = L K=

→ ∞ λ → ∞

λ

λ → ∞
q → ∞

q → ∞

λ
q → ∞ λ → ∞

 and 
22  with in (A.6). The proof is almost similar to 

the Proposition A but requires somewhat different matrix 
calculation due to the structural difference. The outline of the 
proof is given in the Appendix B.   

Note that the fictitious integral controller consists of the 
integrators in the extended system and the controller (20) 
with (21). 

3.2  Asymptotic Sensitivity Matrix 

Consider two limiting operations q  and   for 
the fictitious integral controller. It is known that the feedback 
gain matrix F depends linearly on q for sufficiently large q. 
In addition, by the definition (21),  appears in matrix 
bilinear form in the denominator and numerator matrices in 
the controller transfer function matrix (20) with (21). It can 
be shown that the two operations are interchangeable for a 
fixed s so that identical result is obtained irrespective of the 
order of the operations.  

Proposition 1 guarantees that the desired asymptotic 
sensitivity matrix is obtained by applying followed 
by since it is equivalent to the direct approach using 
the transfer function matrix (16) with .  

We take a reverse approach. Fixing in the controller (20) 
with (21), we apply as a first step followed by . 
For the first step, we can use the result of the standard 
predictor-based LQG controller (Wu et al., 1996) as follows,   

Lemma 1: Consider the predictor-based LQG controller 
given by (17)-(19) with the observer gain matrix (21) for the 
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fixed . Assume that the state feedback gain matrix F is 
determined by the quadratic performance index (13). As 

, the sensitivity matrix at the point P

λ

q → ∞ η in Fig. 3 
approaches   

  { }( ) 1
0( ) ( ) ( ) ( ),sI

fs I I e sI sΦ τ
τΣ Η Φ Κ λ Σ− − −⎡ ⎤+ − −⎣ ⎦  (23) 

where 

  (24) 1
0 ( ) [ ( ) ( )]fs I sI KΣ Η Φ −+ − 1λ −

λ → ∞

q → ∞
Py

( ) ( )

is the sensitivity matrix of the observer (17).                        

As the second step, we can easily show the following result 
by letting in (23) and (24).  

Proposition 2: Consider the Davison type integral controller 
shown in Fig. 2 with the full order observer gain matrix K 
and the state feedback gain matrix F determined by the 
quadratic performance index (13). As , the sensitivity 
matrix at the point in Fig. 2 approaches  

 ( ),s V sτ τΣ ∗

( )
1( ) )

.s A

V s I A K

e I C e d K

τ

ττ σ σ

−

−

−

⎡ ⎤− + ∫

⎤⎦

ω

0
( ) ,j Aj I e I C e d K

τ
ωτ σ

τΣ ω σ∗ − ⎡ ⎤⎛ ⎞≈ − +⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦∫

0
( ) ( ) ,Aj I j e C e d K

τ
ωτ σ

τ τΠ ω Σ ω σ∗ ∗ ⎡ ⎤⎛ ⎞− ≈ +⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦∫

0=

( ) ( ), ( ) ( ),t t t H tξ Φξ μ τ ξ= + =

( )t
sΘ  (25) 

where  

  (26) 

( ) (sI AI C I e sτ− −⎡ ⎤+ −⎣ ⎦

0⎢ ⎥⎣ ⎦

11( ) ( )s I C sI A KΘ
−−⎡ + −⎣

and 

  (27) 

is the sensitivity matrix of the observer (2).                          

From the above result, we readily have the following 
approximations in high frequency region. 

Corollary 1: For sufficiently large ,  

  (28) 

    (29) j I−

where is the complementary sensitivity matrix.  ( )jτΠ ω∗

( )V s
(0) 0V = 0τ ≥

Remark 1: It can easily be checked that τ defined in (27) 
satisfies τ for all , which guarantees the integral 
action in the controller. 

Remark 2: For the delay-free case ( ), it follows from 
(27) that 0 for all s, which implies that the zero 
sensitivity for all frequencies is asymptotically achieved for 
arbitrary choice of the observer gain matrix K.  In our view, 
this result is plausible from the fact that the Davison type 
integral controller is equivalent to the fictitious integral 
controller including a high gain full order observer. This 
property has been pointed out by Ishihara et al. (2006).  

0τ =
( )V s

Remark 3: For the standard LQG controller including full 
order observer with finite observer gain, the asymptotic 
complementary sensitivity always has roll-off in high 

frequency region. The expression (29) shows that the 
Davison type integral controller does not have this property. 
The difference arises from the fact that the Davison type 
integral controller is equivalent to the fictitious integral 
controller including a high gain full order observer.  

4. RELATED ESTIMATION PROBLEM 

It is well known that, for the standard LQG controller, the 
asymptotic sensitivity properties achieved by the cheap 
control is related to the estimation error dynamics of the 
observer (e.g., Stein and Athans, 1987). For the predictor-
based LQG controller, Wu et al. (1996) have discussed 
related estimation problem. For our problem, their result can 
be stated as follows. 

Consider the estimation problem with the observation delay: 

  (30) 

H are defined in (4) and ( )tξ , and μwhere Φ τ+
τ

( )λ

ˆ ˆ ˆ( ) ( ) ( ) ( ) ( )ft t K t tξ Φξ λ μ τ Ηξ⎡ ⎤= + + −⎣ ⎦
ˆ( )t

is the 
observation vector with the observation delay . Using the 
observer gain matrix fK used in (23), we can construct a 
filtering type observer for (28) as 

 , (31) 

( )tξ is an estimate of where ξ based on the data up to 
time . Define the prediction values of t τ+ ( )t ( )tξ and μ  
based on the observation up to time t as 

ˆ ˆ( ) ( )p t e tΦτξ ξ τ− ˆˆ ( ) ( ),p pt t,   μ Ηξ τ−

ˆ ( )p tξ ˆ ( )p t

 (32)  

respectively.  

The dynamic system generating the prediction error has the 
following feedback properties. 

 Lemma 2: Define the prediction errors of  and μ  
for the estimation problem (30) as 

ˆ( ) ( ) ( )p ps s sξ ξ ξ− ˆ( ) ( ) ( )p pt t tμ μ μ−

( ) ( ) ( ), ( ) ( )p p p pt t t t sξ Φξ ν μ τ Ηξ= + + =

( ) ( ) ( )pt s tτ

, , (33)  

respectively. Then the prediction errors are generated by the 
feedback system consisting of two subsystems  

 , (34) 

ν Ξ μ= −  (35)  

where  

{ } 1( ) 1( ) ( ) ( ) ( ) .sI
f fs e K I H I e sI KΦτ Φ τ

τΞ λ Φ λ
−− − −⎡ ⎤+ − −⎣ ⎦

λ → ∞

  

  (36) 
The subsystem (34) corresponds to an open loop error 
dynamics while the subsystem (35) is an error compensator 
with the infinite-dimensional frequency-shaped feedback gain 
matrix (36). For the feedback system, the sensitivity matrix at 
the output of the system (34) is given by (23) and (24).      

Letting  in the expression (36), we can identify the 
prediction error dynamics corresponding the asymptotic 
sensitivity matrix (25) . 
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Proposition 3:  Consider the estimation problem where the 
prediction errors are generated by the two subsystems 

  
( ) ( ) ( ), ( ) ( ) ( ),
( ) ( ),

p p x p p

p p

x t Ax t t t Cx t t
t t

ην η ν
μ τ η

⎧ = + = +⎪
⎨ + =⎪⎩

 (37) 

 1

0

( )
( ) ( )

( )

Ae Kτ⎡ ⎤
x

pA

t
V s t

t I C e d K
τ

τσ
η

ν
μ

ν σ
−⎡ ⎤ ⎢ ⎥= − ⎛ ⎞⎢ ⎥ ⎢ ⎥+⎣ ⎦ ⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦∫

 (38) 

where ( )V sτ is defined by use of (26) as 

 1

( )s
0s =

( )sτ

( ) ( )V s V s
sτ τ= . (39) 

Then, the sensitivity matrix at the output of the subsystem 
(37) coincides with (25).                                                        

The above result gives a simpler feedback system which 
provides the same sensitivity properties as the asymptotic 
sensitivity properties of the Davison type controller. However, 
the prediction error dynamics is rather complex compared 
with the standard LQG controller. 

Remark 4: As pointed out in Remark 1, Vτ defined in (26) 
has always has a zero at so that s in the denominator of 
(39) is cancelled by the zero of V  at . 0s =

 Remark 5: In the case that the matrix  A is non-singular, it is 
easy to show that the matrix ( )V sτ defined in (39) can 
explicitly be given as 

 
1

1 1

( ) ( )[ ( ]

) ,s A

V s h s I C K

e C sI e A K
τ τ

τ τ

−

−

= +

+ − −

)

( ) (

sI A

A I− −

−
 (40) 

 where  

 . (41) ( ) (1 ) /sh s e sτ
τ

−−

5. NUMERICAL EXAMPLE 

Consider a simple time-delay plant given by 

 
5se( )

(1 10 )(1 60 )
G s

s s
=

+ +

[ ]0.017 0.017 0
, , 1 0

0 0.1 0.1
A B C

− −⎡ ⎤ ⎡ ⎤
= = =⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦

W BB

−

. (42) 

As a realization of the lumped part of (42), we choose 

 . (43) 

The observer gain matrix K is determined as the Kalman 
filter gain for the dynamic noise covariance matrix 

ρ ′= with the positive parameter ρ and the observation 
noise variance V . 1=

1, 10

The magnitude characteristics of the asymptotic sensitivity 
(25) and the corresponding complementary sensitivity are 
shown in Fig. 4 for three Kalman filter gain matrices 
corresponding to
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Fig. 4.  Asymptotic feedback properties for the example 

 

region as expected from (29), which has been pointed out in 
Remark 3. 

For a finite q, the complementary sensitivity has 40dB/dec 
roll-off in the frequency region higher than a frequency 
determined by q. Note that the convergence to the asymptotic 
sensitivity function or the complementary sensitivity function 
occurs frequency-wise. We confirm numerically that the 
convergence as q occurs from low frequency with 
significant differences in high frequency region.    

→ ∞

Although care should be taken in interpreting the asymptotic 
properties in high frequency region, the asymptotic 
sensitivity and the complementary sensitivity provide useful 
information for the choice of the observer gain matrix K.  

6. CONCLUSIONS 

Our recent result (Ishihara and Zheng, 2005) has been used to 
reveal the asymptotic sensitivity properties of the Davison 
type integral controllers for time-delay plants.  

It is an interesting future problem to compare the result with 
the other type of integral controller designs (e.g., Ishihara et 
al., 2005, Ishihara and Guo, 2007, Wu et al., 2007).  
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APPENDIX A. REDUCED ORDER OBSERVER AS A 
HIGH GAIN FULL ORDER OBSERVER  

Consider the state estimation problem for the plant 

 x t Ax t Bu t y t Cx t= + =

( ) n

 (A.1) 

where x t R∈ ( )u t R∈ ( )y t R∈, and . Assume that the 
state vector and the matrices are given in the partitioned form 

m m

( )

.

x t
  

[ ]1 2 ( ) ,x t

11 12 1

21 22 2

, , 0
A A B

A B C

( )x t

I
A A B

⎡ ⎤ ⎡ ⎤ ⎡ ⎤= = =⎢ ⎥ ⎢ ⎥ ⎣ ⎦⎣ ⎦ ⎣ ⎦

′′ ′

 (A.2) 

For the state space representation (A,1), we can easily 
construct a reduced order observer as 

 , (A.3) ( ) ( ) ( ) ( )L L Lz t z t y t u tΦ Θ Γ= + +

1̂ ( )
ˆ( ) ( ) ( )

( ) 0
x t I L

 x t z t y t
y t I

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= = +⎢ ⎥ ⎢ ⎥ ⎢ ⎥

( )z t ∈
( )n m m− ×

11 21 1 2

11 12 22 21

, ,
.

L L

L

  
A LA B LB
A L A LA LA L

Φ Γ
Θ

− −
+ − −

ˆ( ) ( )Fx t= − ˆ( )

 (A.5) 

Ishihara and Zheng (2005) have shown that, for a given 
reduced order observer based controller, we can always find 
an equivalent controller including a high gain full order 
observer. The result is formally stated as follows. 

Proposition A: Assume that the reduced order observer with 
the matrix L is given.  Consider the controller generating the 
control input u t , where x t

( )

( )1 11 12

2 21 22

( )
( )

( )
L

L
L

K

is the state estimate 
given by the reduced order observer. Let C s denote the 
controller transfer function matrix of the reduced order 
observer based controller. Construct the full order observer 
with the observer gain matrix 

I A L A
K

K I A L A
λ λ

λ
λ λ

+ +⎡ ⎤⎡ ⎤
= ⎢ ⎥⎢ ⎥ + +⎣ ⎦ ⎣ ⎦

λ
ˆ( ) ( )Fx t= − ˆ ( )

, (A.6)  

where L is a design parameter of the given reduced order 
observer and is a positive scalar. Consider the controller 
given by fu t , where fx t

( )K λ ( , )λ

( , ) ( )fC s C sλ →

λ → ∞

0K

 is a state estimate 
obtained by the full order observer with the observer gain 

L . Let fC s denote the controller transfer function 
matrix of the full order observe based controller. Then 

        , (A.7) 

as pointwise in s.                                                        

APPENDIX B. OUTLINE OF THE PROOF OF 
PROPOSITION 1 

 Define  

I K
T

⎣ ⎦ ⎣ ⎦ ⎣ ⎦
( )n mR −

, (A.4) 

where is a state vector of the observer, L is an 
matrix and 

 
I

⎡ ⎤
⎢ ⎥
⎣ ⎦

10
,f K K

A KC

. (B.1) 

Then it can easily be checked that 

K T T
C I

Φ Η
λ

−−⎡ ⎤
− = ⎢ ⎥−⎣ ⎦

( ) 1

1
1

1 1 1

( ) 0
.

( ) ( ) ( )

f

K K

sI K

sI A KC
T T

s C sI A KC s I

Φ Η

λ λ

−

−
−

− − −

− +

⎡ ⎤− +
= ⎢ ⎥+ − + +⎣ ⎦

1

1

( )

( ) ,
f fFe sI K K

 (B.2)  

  (B.3) 

Using the above matrix identities and the expression (9) for 
the matrix exponential, we can easily show that the 
numerator matrix in (20) satisfies 

 
sM sI A KC K F

Φτ

τ η

Φ Η −

−

− +

→ − + +

λ → ∞

 (B.4) 

 as pointwise in s. By similar straightforward matrix 
calculation, we can show that the denominator matrix in (20) 
converges to that of (16). Consequently, the relation (22) can 
be proved.  
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