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Abstract: This paper formulates a framework for mission-oriented robot control. The benefit of
this approach is multifacet. First, it suggests a promising direction for managing the complexity
of encoding control policies. Second, it establishes a natural connection between feedback control
and planning. Third, it allows the analysis of the time-to-mission-accomplishment distribution
with almost minimum probabilistic information. This framework has been applied to the domain
of robot soccer as a test of effectiveness. The resulting system competed at par in a simplified
game setting against the strategy of a former championship team in the International RoboCup
Competition.

1. INTRODUCTION

The past decade has seen some encouraging progress on
applied autonomous robotics. However, as the problem
domain expands, it becomes more and more difficult to
achieve richer and more reliable behaviors without a wider
recognition of and more practical solutions to the com-
plexity issue associated with such systems. Although the
artificial intelligence community has produced very im-
pressive results on planning and learning, those techniques
typically run into complexity problems when extended to
the domain of autonomous robot control. This is in large
part due to the continuous and uncertain nature of the
work space of autonomous robots.

In this paper, we formulate a framework for mission-
oriented robot control that is motivated by the consid-
eration of complexity issues. We will call the control
policies within this framework order-based policies, where
the “order” is related to the concept of “priority”. We
do not use the widely used term “priority-based action
selection” here because there are many differences. The
policies discussed in this paper are hierarchical. But dif-
ferent from the conventional hierarchical approach, they
have the novel feature that the higher level (to be made
precise in this paper) does not directly reference the sen-
sory inputs or even the state. Instead, the higher-level
decision is formulated as nothing more than an ordering
of the lower-level actions. The immediate consequence is
that the number of policy candidates becomes determined
by the number of lower-level modules. In other words, the
richness of the lower-level becomes the main tuning-knob
of the complexity/richness of the overall control policy.
This tuning-knob helps us concentrate on a small pool of
meaningful policy candidates on one hand, while allows
all feasible policies to be included on the other. Moreover,
it allows complexity to be adjusted at small increments.
Thus, it appears to be an ideal tuning-knob for managing
complexity.

We further show the advantage of the proposed frame-
work from two additional aspects. First, we analyze the

1 Both authors gratefully acknowledge support from the Air Force
under grant F49620-02-1-0388 and from the NSF under grant ECS-
0329743.

performance of the order-based policies in the presence of
uncertainties. This turns out to be an interesting exercise,
which led us to discover a criterion for comparing the con-
vergence rates of stochastic processes with uncertain and
time-varying transition probabilities. Second, we demon-
strate the effectiveness of our approach by competing it
against the legacy code of the former Cornell University
RoboCup Team, who had won four Championships in the
International RoboCup Competition, F180 (Small Size)
League 2 .

Many researchers have suggested interesting formulations
of autonomous robot control. Some studied the linguistic
aspect, see for example Andersson and Hristu-Varsakelis
(2003); Brockett (1990); Egerstedt (2003); Manikonda
et al. (1998). The elementary actions (EAs; to be formally
introduced later) in the present paper play a role similar
to that of the “atoms” in Andersson and Hristu-Varsakelis
(2003). Both of them are building blocks of the overall
control law. However, the atoms are designed to be exe-
cuted in explicitly prescribed sequences, with each atom
knowing when to terminate itself. This approach resembles
people’s common experience with programming languages.
However, in the field of autonomous robot control, this
approach cannot avoid complicated coupling among the
designs of the atoms. In contrast, the EAs formulated in
this paper know explicitly when they are ready to take
charge, and they are terminated when a more preferable
one becomes ready. These EAs are still arranged into
strings, in which the order reflects priority of execution,
but the actual sequence of their execution is implicit and
depends on how the uncertainties play out.

Other important works on robot control architectures in-
clude Brooks (1991); de Sevin and Thalmann (2005); Isla
et al. (2001); Lehman et al. (2006); Suh et al. (2004);
Bryson (2002), just to name a few. First, consider the
well-known subsumption architecture described in Brooks
(1991). Aside from its underlying vision for the evolution of
intelligent robot research and purely from an engineering
standpoint, the subsumption architecture organizes behav-
ior modules in a way such that all modules have access to
the sensory inputs and make decisions in parallel, while

2 The code was adapted by one of its original designers for a 2-on-2
game. The actual competition was 5-on-5.
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some relatively sophisticated modules may choose to “sub-
sume” the decisions made by the more primitive modules.
This parallel decision making and overriding mechanism
is in a way related to the order-based approach that we
propose here. However, there are many differences. Most
importantly, in what we propose, which module gets to
override another has nothing to do with their levels of
sophistication, but is based on their individual goals. The
arbitrator is what we call the “higher level”, which can
make its core decisions off-line (or at least at a much slower
time scale than that of the lower level).The framework that
we propose also shares a similar spirit with the priority-
based architectures in Isla et al. (2001); Lehman et al.
(2006); de Sevin and Thalmann (2005); Suh et al. (2004)
in that they all formulate lower-level control modules
to include some forms of preconditions. But the current
paper went further to incorporate partial probabilistic
information of the outcomes of the lower-level modules.
Furthermore, the probabilistic information that we assume
is almost minimum for enabling rigorous analysis.

2. COMPLEXITY OF AUTONOMOUS ROBOT
CONTROL

The autonomous robot control system that we consider
resides in a larger system depicted in Figure 1. Let’s call
this larger system the world. Let x ∈ X be the state

Autonomous

Robot Control

Robot
Dynamics

Dynamics of

the world

Sensor/Observer

Actions of other intelligent agents

Our robot

Fig. 1. The world of our robot.

vector of the world from the perspective of one robot,
which typically includes the position and velocity of every
relevant object as well as the states of the robot’s own
dynamics (e.g., the voltage applied to its motors). In
practice, x is almost always digitized, and so we will
assume. We also assume that x only contains components
observable and relevant to this robot.

Let x = (x(1), x(2), . . . , x(N)), where each x(i) is a binary
digit. The domain of x is thus X = {0, 1}N . For control,
let u ∈ U be the command issued by the robot to its
actuators. We also assume that the command is a binary
word u = (u(1), u(2)), . . . , u(M)), hence U = {0, 1}M . We
will call x and u the state word and command word,
respectively. We assume that the lengths of the state and
command words are minimum for the precision needed.
Without introducing hierarchies or any other method for
managing complexity, the overall control law of the robot
is a mapping

u = f(x) : X → U . (1)

2.1 Notions of Complexity

Definition 1. Let B ⊆ UX be a candidate set for the overall
control policy. The coding complexity within B, denoted by
CC(B), is the minimum length of the binary block code
that encodes the set B. I.e., CC(B) = log2 |B|, where | · |
denotes the cardinality of the set.

Clearly, the coding complexity so defined is also the
amount of information (in bits) needed for the process
of selecting one control law within an a priori range of
candidates.

The coding complexity needs to be distinguished from
the specification complexity defined in Egerstedt (2003).
Focusing on a framework where the control of a robot
mission is a string over a motion alphabet (which is similar
to the collection of elementary actions considered in later
parts of this paper), specification complexity is defined as
the length of the string multiplied by the base-2 logarithm
of the cardinality of the motion alphabet. The difference
between these two notions of complexity lies largely in the
frameworks of the control laws on which we concentrate.
Both frameworks provide ways of managing complexity. In
Egerstedt (2003), this is done by managing the length of
the control string that accomplishes the mission, whereas
in this paper, complexity is managed by manipulating the
collection of elementary actions.

Another relevant notion of complexity is the amount of
computation needed for an algorithm to find the optimal
behavior within B, which depends on the design method-
ology and might be called design complexity. At most, it is
on the order of |B|, in which case the algorithm conducts
an exhaustive search (e.g., a dynamic programming policy
iteration). At least, it equals the coding complexity, which
means the optimal behavior is available somewhere, and
we simply need to copy it to the robot. This might be
the case when the reference of the robot behavior is how
a human expert would behave. In this paper, we mainly
consider managing the coding complexity, while the design
complexity is likely to be managed simultaneously.

2.2 Limitation of Complexity Reduction by Introducing
Layers

This subsection motivate our study by analyzing the
limitation of managing complexity by merely introducing
layers.

For the control law in equation (1), the candidate set is

UX , whose cardinality is (2M )2
N

. The coding complexity is
thus CC(UX ) = M ·2N . For problems that are of practical
interest, M and N can easily be over one hundred, which
makes the coding complexity extremely large. Moreover,
N (the length of the state word) contributes to this
complexity much more significantly than M (the length
of the command word) does.

The primary approach for dealing with complexity has
been formulating hierarchical structures. (We will use the
words “hierarchy”, “layer”, and “level” interchangeably.)
The idea of the conventional hierarchical approach is that
the lower level controls will respond to the changes of
certain state variables such that the dynamics associated
with these variables can be neglected at the higher level.
At the same time, the lower level would provide a set
of control modules, which constitute a reformulated and
likely more compact set of commands for the higher level
to use.

Consider a two-layer case. Let the lengths of the state
words at the higher level and the lower level be N1 and
N2, and let there be L lower-level modules available in the
command set of the higher level. Here, both N1 and N2
are less than N , although N1 + N2 is usually greater than
N . The number L is usually much smaller than both 2M

and 2N . The coding complexity of this two-layer system
is CC(2-layer policies) = 2N1 log2 L + L · M · 2N2 , which
is often much lower than that of the original system since
N1, N2 < N . Moreover, the second term might be replaced
by a much smaller quantity. This is because the lower-level
modules may be designed analytically, and the analysis
may result in efficient parameterizations of their candidate
sets. Suppose the lower-level modules are fixed a priori.
Denote the candidate set of the overall control under this
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assumption by B1. The coding complexity of the system is
then given by the first term only, i.e., CC(B1) = 2N1 log2 L.
This can also be thought of as the coding complexity of
the upper layer.

Although CC(B1) is certainly much less than CC(UX )),
is this complexity usually moderate enough? Under the
conventional hierarchical approach, the state variables ref-
erenced by the higher-level typically include the velocities
and positions of all robots and objects in the robot’s world
plus an array of internal states. Consider a seemingly
simple case with 6 robots and 2 moving objects, assuming
all positions and velocities are recorded with 8 bits for
minimally acceptable precision. Then, N1 = 128, and the
corresponding coding complexity is on the order of 2128, or
1039. In other words, if the mission control policy is to be
specified as a look-up table, then about 1039 binary entries
need to be filled.

3. ORDER-BASED CONTROL POLICIES

In this section, we formulate a class of mission control
policies which we call order-based policies. Our approach
may be used to dramatically reduce the coding complexity
of the policy. It also provides a way of fine-tuning the
coding complexity after an initial policy design. What we
propose involves a lower level and a higher level. The
lower level produces elementary actions (EAs) together
with their preconditions, postconditions and assessments
of their minimum probabilities of “succeess”. The higher
level on the other hand produces a mission-accomplishing
policy through ordering the EAs. To distinguish the lower-
level controls and the overall control, we will call the lower-
level ones “control laws”, and call the overall control a
“control policy”.

3.1 Elementary Actions

Here, an EA is a 5-tuple (f, φ, ψ, p̂,Θ). Recalling that
x ∈ X is the digitized state of the robot’s world, the
function f(x) : X → U is a lower-level control law that
produces the command word directly fed to the actuators.
Denote the state evolution under f by F (x,w, τ) : X ×Ω×
R

+ �→ X , where w is a random process in the probability
space Ω. That is, x(t+τ) = F (x(t), w, τ) when the control
law f is applied.

The functions φ : X �→ {true, false} and ψ : X �→
{true, false} correspond to precondition and postcondition,
respectively. The precondition φ(x) equals true if this EA
is admissible at x, and false otherwise. The postcondition
ψ(x) indicates the nominal result that the EA is designed
to achieve, with ψ(x) = true when x is in the nominal
range of the terminal state of this EA. The number p̂ is a
level of probability, and the number Θ is a finite duration
in time. Taken together, the execution of the control law
f with initial state in φ−1(true) satisfies 3 :

(1) The system will not go to ruin under f , where “ruin”
is defined as a domain R, a subset of X that is disjoint
from both φ−1(true) and ψ−1(true), and such that
when x enters R, it becomes infeasible for any control
law to drive x out of R.

(2) The system state x will enter ψ−1(true) from φ−1(true)
in less than Θ units of time with a probability greater
than p̂. More precisely, for all t,

Pr

(

∃δ ∈ (0, Θ),
φ(F (x(t), w, τ)) = true for 0 ≤ τ < δ,
and ψ(F (x(t), w, δ)) = true

)

> p̂. (2)

3 Here φ−1(true) and φ−1(false) denote the preimage of true and
false, respectively, although φ−1 as a function might not exist. The
same is true for ψ−1.

In plain words, when admissible, an EA is safe and has a
chance to succeed in some given time. We will call p̂ the
minimum success probability, Θ the nominal duration, and
φ−1(true) the admissible domain of this EA. When we say
an EA is taken, applied, or active, it should be understood
that the associated control law u = f(x) is applied.

The ideas of preconditions and postconditions in the de-
terministic context are standard in Artificial Intelligence.
But they have not been widely adopted in the control of
mechanical systems such as autonomous robots. This is
to a large extent due to the uncertainties associated with
such systems. The inclusion of a success probability helps
us connect AI-type planning with feedback control under
uncertainties. This point will be explored in Section 4 and
5.

3.2 Order-Based Policies and Their Coding Complexity

We next construct the order-based policies using the EAs
and their preconditions.

Suppose the mission is to drive the system such that a
boolean-valued function φ∗(x) : X �→ {true, false} becomes
true, after which the mission ends. Suppose we have an
ordered set of EAs, A = {EA1, EA2, . . . , EAL}, and for
all x ∈ X and φ∗(x) = false, there is an EA, EAi ∈ A such
that φi(x) = true. That is, there is always an admissible
EA before the mission is accomplished. A feedback policy
can be constructed via the algorithm shown in Figure 2,
which we will call Algorithm 1.

Start, setting

Return

x

i−1         i

i=K

φ (   )?

φ (   )?

∗

i

true

false

x

x

f (x)
i

Report success

false

true

Fig. 2. Flowchart of Algorithm 1.

In effect, the control policy is

u = fi(x) if φi(x) = true, and
φi+1(x) = . . . = φL(x) = φ∗(x) = false.

(3)

For this policy to be well-defined, we assume for all x ∈
X − R and φ∗(x) �= true, there is at least one index
i = 1, . . . , L such that φi(x) = true.

Here, the ordering of the EAs can be understood as a
notion of priority, with a higher index associated with a
higher priority. In other words, this policy picks an EA
to apply if this EA is admissible and no EA with higher
priority is admissible. Note that each order-based policy
candidate corresponds to a permutation of A (although
not necessarily a unique permutation).

Certainly, given a fixed set of EAs, order-based policies do
not cover all possible feedback policies. We will not discuss
this in detail here due to the space limitation. However, one
can expand the range of achievable behaviors by splitting
one EA into two or more and inserting them to different
places in the ordered EA set. This translates to a way of
managing complexity.
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3.3 Managing Complexity/Richness

First, as shown in Section 2.2, given a set of EAs, A =
{EA1, EA2, . . . , EAL}, the coding complexity under the
conventional hierarchical approach is

CC(B1) = 2N1 · log2 L,

where N1 can be easily over one hundred. Now, if we
focus on the order-based policies, the range of candidates,
denoted by B2, has cardinality no greater than the total
number of permutations of A. The coding complexity is
then

CC(B2) ≤ log2 L! < L · log2 L.

To compare CC(B1) and CC(B2), note that 2N1 is the
cardinality of the discretized state space, which is usually
extremely large (1039 in the example in Section 2), whereas
L is usually much smaller, likely in the tens. Thus, focusing
on order-based policies gives us a very substantial reduc-
tion of complexity. Of course, this would not be meaningful
if we have also thrown away what the system is designed to
be capable of. We will address this concern in later sections
with very reassuring evidences.

Second, it is possible to manage complexity (or richness)
within order-based policies by “splitting” the EAs. That
is, from one EA, (f, φ, ψ, p̂, Θ), one may derive two EAs
without redesigning the control law: (f, φ′, ψ′, p̂′,Θ′) and
(f, φ′′, ψ′′, p̂′′,Θ′′). Developing systematic schemes for do-
ing this is a promising subject for future research. For now,
first note that any control policy in AX1 can be achieved
as an order-based policy by splitting the initial EAs in
the afore mention way. In the extreme case, the original
domain of each EA would be chopped into singletons. (Of
course, this is not what we intend to do.) More interest-
ingly, note that the minimum increment of complexity due
to splitting an EA is log2(L + 1)! − log2 L! = log2(L + 1),
which is on the magnitude of one-Lth of the original com-
plexity. In comparison, under the conventional hierarchical
approach, the richness of the control policy is typically
enhanced by augmenting the state space (increase the
precision of existing state variables or adding new internal
states). By adding a single digit to the state word, the cod-
ing complexity increases to 2N1+1 log2 L, which is a two-
fold increase. Thus, working with order-based framework
provides a much better way for fine-tuning the richness of
the system behavior.

4. TIME-TO-ACCOMPLISH ANALYSIS

To analyze the time-to-accomplish in the presence of
uncertainties, probabilistic information of the robot and
its environment is needed. But complete knowledge of
such information would be unrealistic to assume. Here, we
only use the minimum success probabilities of the EAs.
This led us to consider processes with uncertain transition
probabilities.

Let us first cite a result from Li et al. (2007a). Consider
a stochastic process with L + 1 possible states, where
the state L + 1 is absorbing, i.e., when the system state
reaches L + 1, it will remain at that value perpetually
without control. Let π(k) = (π1(k), . . . , πL(k))T , where
πi(k), i = 1, . . . , L is the probability of reaching state i
at time k, and let π∗(k) be the probability of reaching
the absorbing state by time k. Let P (k) be the transition
probability matrix with the row and column corresponding
to the absorbing state removed. P (k) is thus a sub-
stochastic matrix. This shall be understood when we
mention probability transition matrices in what follows.
Thus

π(k + 1) = P (k)π(k), π∗(k) = 1 − 1T π(k). (4)

Note that the transition probability matrix is possibly
time-varying.
Definition 2. (Progressivity). Consider two L × L sub-
stochastic matrices P1 and P2. We say that P2 is strictly
more progressive than P1, denote by P2 ≻ P1, if qT (P2 −
P1) < 0 (elementwise) for any vector q = (q1, q2, . . . , qL)T

such that q1 > q2 > . . . > qL > 0.

Definition 3. (Sortedness). For a constant probability tran-
sition matrix P , let ρ = (ρ1, ρ2, . . . , ρL)T be the nonnega-
tive left eigenvector associated with the maximal eigen-
value r, i.e., ρT P = rρT . We say that P is sorted if
ρ1 > ρ2 > . . . > ρL.

Lemma 1. [Li et al. (2007a)] Let P̂ be a constant matrix
that is irreducible, sorted, and has a maximal eigenvalue
r < 1. If P (k) ≻ P̂ for all k ≥ 0, then (1 − π̂∗(k))r−k → 0
for t → ∞.

We are now ready to analyze the time-to-accomplish of the
order-based policies.
Theorem 1. Consider an ordered set of L EAs executed via
Algorithm 1 (which constitute an order-based policy). Let
the mission be to render a boolean-valued function φ∗(x)
to become true. If for each index i = 1, . . . , L, there is a
i < i′ ≤ L + 1 such that ψi(x) = true implies φi′(x) = true

(or φ∗(x) = true if i′ = L + 1), then this mission is
accomplished w.p.1 for any initial condition x0 ∈ X −R.
Further, the probability of mission-not-accomplished by
time t, as t → ∞ is less than

rt/ΘM ,

where 0 < r < 1 is the maximal eigenvalue of the matrix

P̂ =











1 − p̂1 1 − p̂2 1 − p̂3 · · · 1 − p̂k
p̂1 0 0 · · · 0
0 p̂2 0 · · · 0
...

. . .
...

0 . . . p̂k−1 0











,

and ΘM = max{Θ1, Θ2, . . . ,ΘL}. (Recall that the p̂i’s and
Θi’s are the minimum success probabilities and nominal
durations of the EAs.)

Proof:(Only a sketch due to page limit.) The execution of
a policy based on a set of L EAs generates a symbolic
sequence s(k) : R

+ �→ {1, 2, . . . , L, L + 1}, which records
the EAs actually taken to accomplish the mission. When
the mission starts, s(0) is generated to record the first EA
applied. Each next symbol is generated when the policy
switches to a different EA, or the EA currently applied
reaches its nominal duration. Mission accomplishment is
recorded as s(k) = L + 1, and is an absorbing state of
the sequence. Let tk be the time when the kth symbol is
generated. Then,

tk

k
≤ ΘM . (5)

The probability transition of s(k) can be written in the
form of (4):

φ(k + 1) = P (k, x0)φ(k), ψ(k) = 1 − 1T φ(k),

where φ(k) is a L-dimensional vector recording the prob-
ability distribution of s(k) over 1 through L, and ψ is the
probability of the mission being accomplished by time tk.
One can show that the EAs having minimum success prob-
abilities translates to that P (k) is strictly more progressive

than P̂ for all k.

The matrix P̂ is also sorted. To see this, let r be the
maximal eigenvalue of P̂ . From the property of irreducible
matrices, r is greater than the maximal eigenvalue of any
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principal submatrix of P̂ (see Minc (1988)). Thus r > 1−

p̂1. One may verify that the eigenvector of P̂ associated
with r is q = (q1, q2, . . . , qk)T , with

q1 = 1,

qi = 1 − (1 − r)
ri−2 + ri−3p1 + . . . + p1p2 · · · pi−2

p1p2 · · · pi−1
,

i = 2, . . . , k.

Using 1 − p1 < r < 1 and with some tedious calculations,
it can be shown that q1, q2, . . . , qk is indeed a decreasing
sequence. So, the process s(k) converges to L + 1 in
probability at a rate greater than that of rk. Almost sure
convergence to mission accomplishment follows based on
the well-known Borel-Cantelli Lemma (Feller (1968)).

Since P (k, x0) may approach P̂ under the hypothesis of
this theorem, the bound is tight if the nominal durations
of the EAs are uniform.

5. CONNECTION TO PLANNING

The simplest notion of a plan is a sequence of actions
that each paves the way for the subsequent ones and
finally leads to a goal. Formally, consider again a mission
represented by the boolean-valued function φ∗(x). By a
plan for this mission, we mean a finite sequence of EAs,
EA1, EA2, . . . , EAL, such that

(1) Given x, ψL(x) = true implies φ∗(x) = true.
(2) Given x, ψi(x) = true implies φi+1 = true, i =

1, . . . , L − 1.

Assume for all x ∈ X − R such that φ∗(x) = false, there
is an index i ∈ {1, 2, . . . , L} such that φi(x) = true. This
plan will achieve the mission w.p.1 when executed through
Algorithm 1, according to Theorem 1.

However, a single plan like this may not be enough. Very
often, we humans keep a Plan A and a Plan B, or even a
Plan C and a Plan D, etc. The hypothesis of Theorem 1
leaves enough room for integrating multiple plans. Namely,
if a collection of plans covers all possible state values
(each individual one does not have to), and if we merge
the plans while maintaining the relative order of the EAs
within the individual plans, then the merged sequence
satisfies the hypothesis of Theorem 1. See Figure 3. Note
that this allows more than one way of merging multiple
plans. To further determine the optimal merged sequence,
we will need to gather more information of the transition
probabilities. The concept of sortedness will also be useful
for optimizing the merged sequence. This idea will be
explored in our future work.

Plan B:  EA   , EA    , EA

Plan A:  EA    , EA    , EA    , EA1,A               2,A              3,A              4,A

EA   , EA   , EA   , EA   , EA   , EA

1,B             2,B              3,B

1                2                 3                4                5                6

(EA   = EA    )2,A               2,B

Fig. 3. Merging multiple plans. Note that if an EA shows
up in the merged sequence more than once, only the
highest indexed appearance needs to be kept.

6. THE TWO-ON-TWO ROBOT SOCCER
EXPERIMENT

The system used for this experiment was contributed by
the former Cornell University RoboCup Team, who had

won four Championships in the International RoboCup
Competition, F180 (small size) League. The legacy control
code (written in C++) is composed of five layers:

• Local control. A loop directly connected to the wheel encoders,
the gyroscope, and the motors, etc.

• Trajectory generation. Moving from one point to another with
obstacle avoidance.

• Skills. Scripts for shooting the goal, making passes, maneuver-
ing with the ball, etc.

• Roles. Similar to the skills, but somewhat more complicated,
sometime calling upon multiple skills.

• Role assignment. This is the highest layer, which assigns roles
to the robots in play. This was done by a very large piece of
code (over 1000 lines).

The legacy code has a total of more than 30 active skills
and roles, which are not equipped with preconditions and
postconditions. In general, the control laws at all layers
directly reference the position and velocity of the ball and
of every robot in the field. See Sherback et al. (2006) for
more information on the Cornell RoboCup system.

Our new order-based control code has only three layers:
local control, elementary actions (EAs), and action plan.
The local control was the same as the legacy code, but the
EAs and the action plan are almost all new. If we try to
link them to the structure of the legacy code, the EA-layer
combines trajectory generation, skills, and roles, and the
action plan replaces role assignment. The new code is much
more transparent, while at the same time, it competed at
par against the legacy code in a 2-on-2 game. 4

6.1 EAs for robot soccer

The EAs of the new program have roughly the same
level of complexity as the skills in the legacy code. Our
progress in designing the EAs has been reported in Li
and D’Andrea (2006). Note that these EAs are designed
analytically, which confirms our view of the sources of
complexity (Section 2.2). The EAs used in our new control
code are:

• Defense
• Wander around a certain point in the field
• Acquire ball to maneuver
• Acquire ball for passing to a teammate
• Acquire ball for shooting the goal
• Maneuver the ball to a certain area
• Pass the ball to a teammate
• Shoot the goal
• Avoid collision

Recall that the reduction of complexity with the order-
based policies rely on the assumption that the number of
bits for encoding the EAs is much less than the number of
bits for encoding the state of the robot’s world. Here, we
only use 9 EAs, which takes 4 bits to encode. The state
in this case includes the position, orientation, and velocity
of the robots (4 of them), and the position and velocity
of the ball, plus various internal states. At least 112 bits
are needed if the positions, orientations, and velocities are
encoded with 8 bits each, not counting the internal states.

Somewhat more programming is needed to write the
preconditions though. To give a glimpse of what the
preconditions look like, the precondition of acquire-ball-
for-shooting-the-goal (function φ(x) of that EA) returns
true for one robot when:

(1) the ball is not out of bounds,
(2) no teammate is in possession of the ball,
(3) “me” is in the best position to get the ball,

4 In fact, the new program is also capable of playing an exciting 5-
on-5 game, as was the format of the International RoboCup Compe-
tition. But due to the cost of fabricating and maintaining additional
hardware, we have run the 5-on-5 game only in simulations.
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(4) no player on the opposing team is in possession of the ball, and
(5) no player on either team is blocking the path for “me” to shoot

the goal.

Programming the preconditions was not very difficult since
it simply spells out what the control laws have already
assumed.

6.2 Order-Based policy for robot soccer

For each player, our new policy arranges the EAs in the
following order:

(1) Wander around a designated point in the field
(2) Acquire ball to maneuver
(3) Maneuver the ball to a designated area
(4) Acquire ball for passing to a teammate
(5) Pass the ball to a teammate
(6) Defense
(7) Avoid collision
(8) Acquire ball for shooting the goal
(9) Shoot the goal

Although it appears simple, this sequence can be inter-
preted as a combination of multiple plans.

Plan A: Wander around −→ Acquire ball to maneuver −→ Ma-
neuver to an area that has advantage for either making a pass
or shooting the goal −→ Acquire ball for shooting the goal −→

Shoot the goal.
Plan B: Acquire ball for passing −→ Pass the ball to teammate

−→ Teammate acquires ball for shooting −→ Teammate shoots
the goal.

Plan C: Defense (taking the ball away from the opponent) −→

Acquire ball for shooting the goal −→ Shoot the goal.
Plan D: Same as Plan A, but add Avoid collision after maneuver-

ing.

The interpretation in terms of plans is not unique, and
indeed, the actual sequence of actions may not follow
any of these plans. The ordering of the EAs can also be
modified to generate different robot behaviors in the game.
For example, we can lower the indices of “defense” and
“avoid collision” for a more aggressive game play.

6.3 Experiment result and discussion

We have run the new control program against the legacy
program with actual robots in the 2-on-2 game several
times, and the matches seemed close. See Li et al. (2007b)
for a 5-minute clip in which the new program won by 5
to 4. The new program did not always win, though. We
combined the scores of several pieces of experiment 5 with
a total time of 18 minutes, and the legacy code won by
20 to 18. But in any case, it was clear that they were
competing at the same level. Considering that the legacy
code belongs to one of the best teams in robot soccer, this
is an intriguing result.

So far, we have not applied the analysis of sortedness
to this soccer game because we have not implemented
any statistical measurement of the transition probabilities.
But this certainly can be done using various techniques
(e.g., particle filtering). We leave it to future work. We
also have not implemented the management of complexity
in this experiment. As explained earlier in this paper,
the management of complexity can be done by splitting
the EAs. This is analogous to the human intellectual
activity of discovering concepts, which have the function
of distinguishing between situations that were previously
treated as one. This is also a rich and promising topic for
future research.

5 The experiment was interrupted at times due to the need for hard-
ware maintenance. The 5-minute clip is the longest uninterrupted one
among these pieces.

7. CONCLUSION

This paper formulated a scheme of layered autonomous
robot control, which has the novel feature that the upper-
layer policy is an ordering of the lower-layer modules, not a
function of the state of the robot’s “world”. This approach
was motivated by the need for managing complexity. We
further discussed performance analysis within the pro-
posed scheme given partial (almost minimum) probabilis-
tic information. Experiment result based on a 2-on-2 soccer
game was also provided, in which our new code competed
at par against the legacy code of the former championship
team of the International RoboCup Competition.
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