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Abstract: This work introduces an integrated MPC controller. The integrated MPC consists of three modules: an 
MPC control module, an online identification module and a control monitor module. The three modules work together 
coherently in real-time; it can perform automatic controller commissioning and automatic controller maintenance. In 
MPC commissioning, the online identification module and the MPC control module work together and perform 
various steps in MPC implementation automatically. When the MPC controller is online, the control monitor module 
continuously monitors the MPC performance and model quality. When control performance degradation and 
considerable model error are detected, monitor module will start the maintenance by activating the online 
identification module. The identification module will re-identify the model and replace the old model. A prototype of 
the integrated MPC controller has applied successfully to two PTA units and the result will be reported.  

 

1. INTRODUCTION 

In the last two decades, model predictive control (MPC) 
technology has been widely applied in the refining and 
petrochemical industry (Cutler and Hawkins, 1988 and Qin 
and Badgwell, 2003) and is beginning to attract interest from 
other process industries. MPC technology can bring 
tremendous benefit for process industries by improving 
product quality and safe operation, reducing energy and 
material costs as well as pollution. Dynamic models play a 
central role in the MPC technology. The most difficult and 
time consuming work during an industrial MPC project is 
modelling and identification (Richalet, 1993, Zhu, 1998). In 
MPC maintenance, the main task is model re-identification. 
Besides model identification, understanding MPC control 
theory and tuning methods and control performance is not an 
easy task. This makes skilled MPC control engineers very 
scarce. Due to these technical and manpower difficulties, 
MPC applications in other (non-petrochemical) process 
industries are very limited. In the last 10 years, work has 
been done in the MPC industry to improve the efficiency and 
accuracy in model identification. See Zhu (1998), Celaya et. 
al. (2004, 2005), Mantelli et. al. (2005) and Kalafatis et. al. 
(2006). Also, the user-friendliness of MPC software packages 
has been improved considerably. Even so, the MPC 
technology is still at the hands of few skilled control 
engineers and cannot be used by non control experts. In MPC 
applications, it is greatly desired to reduce the technical 
difficulties and the cost of manpower.  
“Get the design right, the rest is automatic”. In this work, we 
will develop an integrated MPC controller that, for a given 
MPC design, can perform controller commissioning and 
maintenance automatically. In Section 2, the architecture of 

the integrated MPC is introduced and motivated. In Section 
3, the three modules of the integrated MPC controller are 
discussed and their integration is explained. In Section 4, an 
industrial case study, two PTA unit applications, are 
presented. Section 5 is the conclusion. 
  

2. ARCHITECTURE OF THE INTEGRATED MPC 

At present, a common MPC project approach has following 
steps:  
1)  MPC controller design and benefit analysis. In this step, 

MVs (manipulated variables), DVs (disturbance 
variables) and CVs (controlled variables) are selected and 
their control requirements specified.  

2)  Pre-test. In this step, short step tests are performed to 
obtain rough estimated of process settling time and some 
model gains.  

3)  Identification test and model identification. The test is 
often done manually, in single variable and in open loop 
although some automated test methods are emerging 
recently.  

4)  MPC controller tuning and simulation.  
5)  MPC controller commissioning. In this step, the MPC 

controller is commissioned by gradually turning on each 
MVs and CVs. 

6)  MPC controller maintenance. After some time of 
operation, the control performance degrades due to 
process changes. The main task of maintenance is to re-
identify the process model and to re-commission the MPC 
controller.  

 
The biggest problem of the conventional MPC technology 
that follows this approach is its high costs. Highly skilled 
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control engineers with many years of experience are needed 
to perform the steps and each step cost considerable time and 
effort. Different software packages are used in different steps, 
which is not convenient for the user.  
The integrated MPC controller introduced here can 
automatically and efficiently perform MPC implementation 
and maintenance, that is, steps 2) to 6) mentioned above. The 
integrated MPC controller consists of three modules: 1) an 
MPC control module (will be referred as control module), 2) 
an online identification module (will be referred as 
identification module) and 3) a control performance 
monitoring module (will be referred as monitor module). 
Figure 1 shows the block diagram of the integrated MPC 
controller.  
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Figure 1. Block diagram of the integrated MPC 

 

Integrated MPC control means automatic MPC 
implementation and automatic maintenance. Assume that an 
MPC controller design is given. During the MPC 
implementation, the online identification module performs 
automated plant test and automatic model identification. 
During the plant test, when some identified models have 
good quality for control according to model validation, they 
will be used in the MPC controller and the corresponding 
manipulated variables (MV) and controlled variables (CV) 
will be turned on. As the test continues, more and more 
models will be loaded in the MPC controller and MVs and 
CVs turned on. When all expected models become good and 
used in the MPC controller, the identification module will 
stop and the MPC commissioning is finished. For an online 
MPC controller, the monitoring module continuously 
monitors its performance. When the MPC monitor detects 
considerable control performance and model quality 
degradation, it will activate the online identification module 
and plant test and model identification will start while the 
MPC controller is still on. During the test and identification, 
poor models will be gradually replaced with the new and 
good ones. When all the poor models are replaced, the 
identification module will stop and the MPC maintenance is 
finished.  
 
The integrated MPC performs plant test, model identification, 
control simulation and control commissioning in a parallel 
manner and, therefore, it considerably reduce the cost MPC 
deployment. Most of the time, plant tests are in closed-loop; 
open loop test time can be kept minimal. Hence disturbance 

to process operation is reduced. Almost all steps in MPC 
commissioning and maintenance are done automatically and 
it can be used by non control experts such as operators. 
Hence the cost of manpower is reduced.    

3. THE THREE MODULES 

The three modules will be described briefly and more details 
can be found in cited literature. 

3.1  Identification Module 

The identification module uses the so-called asymptotic 
method (ASYM); see Zhu (1998). The approach is based on 
the asymptotic theory of identification; see Ljung (1985). The 
technical detail of the method has been discussed in Zhu 
(1998, 2001). Here, we will outline how to use the method to 
achieve automated online identification of industrial 
processes. 
 
1) Test signal design and identification test 
The spectra of the optimal test signals can be derived using 
the asymptotic theory. The spectra of the test signals is 
realised by modified GBN (generalised binary noise) signals. 
The character of a GBN signal can be determined by its 
average switch time and its amplitude. The amplitudes of 
GBN signals are determined by a priori knowledge of the 
process. A test program carries out plant test automatically by 
writing out the test signals. In general, all MVs will be 
excited (tested) simultaneously. During the plant test, an MV 
can be switched from open loop to closed-loop test.  
 
2) Parameter estimation and order selection 
The parameter estimation is done in two steps: 1) Estimate a 
high order ARX (equation error) model and 2) Perform 
frequency weighted model reduction. It can be shown that 
this approach can result in maximum likelihood estimate, that 
is, most accurate model for the given data. It can also be 
shown that the estimation will give unbiased model for 
closed-loop test. The best order of the reduced model is 
determined using a frequency domain criterion. The basic 
idea of this criterion is to equalise the bias error and variance 
error of each transfer function in the frequency range that is 
important for control.  
 
3) Model validation 
Based on the asymptotic theory, a 3σ error bound can be 
derived for each transfer function of the identified model.  
 
Grading the models. This is done by comparing the relative 
size of the bound with the model over the low and middle 
frequencies. More specifically, identified transfer functions 
are graded in A (very good), B (good), C (marginal), and D 
(poor, or, no model exists). A grade and B grade models can 
be used in the controller. C grade and D grade models are 
treated as follows: 
 
1) Zero them when there are no models expected between 

the MV/CV pairs. 
2)  If a transfer function is expected, modify the ongoing test 

in order to improve the accuracy of these models.  
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There are several ways to modify the ongoing test for 
improving model quality: 1) Increase the amplitudes of test 
signals will in general decrease model errors; 2) increase the 
test time will reduce model errors; 3) change the average 
switch time of GBN signals will influence the error 
distribution in the frequency domain.  
 
Model identification and validation is carried out at a given 
time interval, for example, at each 100 samples, and the test 
may be modified according to model results. When most of 
the expected models are with grade A, and grade B, the 
identification test will be stopped.  
 
The online identification method outlined here has been 
applied many times in the industry; see, e.g., Celaya et. al. 
(2004, 2005) and Kautzman et. al. (2006).  

3.2 Control Module 

The MPC control module performs MPC auto-tuning, MPC 
simulation and online control. The MPC control algorithm 
uses a multi-objective layered optimization method; see Wu 
and Qian (2005). Each CV can be controlled to its setpoint or 
within a zone (range); when there is not enough freedom to 
control all CVs, priorities and/or weightings can be used; for 
economic optimization, both LP (linear programming) and 
QP (quadratic programming) can be used and IRV (ideal 
resting value) can be assigned to each MVs and CVs.  
At each control sampling interval, the MPC control algorithm 
consists of three steps: prediction, steady state optimization 
and dynamic control.  
 
In steady state optimization, first feasibility analysis is 
performed, then, economical optimization is carried out. If 
not enough degree of freedom is available, CV priorities 
and/or weightings will be used to resolve the conflict. When 
there are degree of freedom left after meet all CV control 
requirements, economic optimization will be performed. The 
economic optimization is realized by using combined LP and 
QP: 
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where u is the vector of MVs, y is the vector of CVs, IRVu is 
the vector of MV IRVs, IRVy is the vector of CV IRVs, wu is 
the diagonal matrix of MV QP weightings, wy is the diagonal 
matrix of CV QP weightings, b1 is the vector of MV LP 
weightings, b2 is the vector of CV LP weightings, G is the 
model gain matrix, d(t) is the bias at sample time t, ymin and 
ymax are the vectors of CV low limits and high limits 
respectively, and umin and umax are the vectors of MV low 
limits and high limits respectively. 
 
We assume that all the parameters in the steady state 
optimization are determined in the MPC design. The results 
(output) of the steady state optimization are the steady state 
values of MVs and CVs denoted as vectors y* and u*. 

 
The dynamic control part of the MPC algorithm uses the 
prediction values and process model to calculate the MV 
control actions that will drive the process to its steady state 
which is determined by the steady state optimization. The 
dynamic control calculation is again a QP: 
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         (2) 
where vector yref(t) is the vector of desired CV closed-loop 
response trajectories, vectors  y* and u* are the steady state 
values of CVs and MVs respectively obtained by steady state 
optimization, P is the prediction horizon, M is the control 
horizon, Q is the diagonal matrix of CV weightings, R is the 
diagonal matrix of MV weightings, and S is the diagonal 
matrix of MV increments weightings.  
 
In order to achieve integrated MPC control, the MPC control 
module must able to 1) automatically select and use 
identified models in control and 2) automatically tune the 
MPC control parameters.  
 
Automatic Model Selection 
Model selection determines which individual model will be 
used in the MPC control module. Model selection can be 
done automatically using the model validation results of the 
identification module and process knowledge given in a so-
called expectation matrix. An Expectation Matrix is a matrix 
where columns relate to MVs and rows to CVs. The elements 
of the matrix contains “+” or “-” or “?” or “No”. A “+” 
element means that a model with positive gain is expected 
between the corresponding MV and CV. Similarly, a “-” 
element means that a model with negative gain is expected. A 
“?” element means that the user is unsure about the existence 
of a model for the corresponding MV and CV. “No” means 
that the user is sure that no model exists between the MV-CV 
pair.  Now the following model selection rule is used: If an 
individual model has a grade A, B or C and the sign of the 
model gain is the same as that in the expectation matrix, then 
use the model in MPC control. Other wise, do not use the 
model. 
 
Automatic Control Parameter Tuning 
Based on many simulation studies and industrial experience, 
the following auto-tuning rules are suitable for MPC control 
in the refining/ petrochemical industry. 
- Control horizon: M = 0.5* Model time to steady state 
-  Prediction horizon: P = 1.5*Model time to steady state 
- CV closed-loop settling time: Tresp(i) =Desired closed-

    loop settle time of CVi  
- Weighting for CVi:  1/( CVi high limit - CVi low limit) 
- Weighting for MVi: (1~3)/(MVi high limit - MVi low 

   limit) 
- Weighting for ΔMVi: (1~3)/( MVi high limit - MVi low 

   limit) 
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3.3 Monitor Module 

The monitor module monitors the performance of the MPC 
control as well as model quality. Four major indicators are 
used to monitor the MPC controller performance:  
1) On/off status of MVs and CVs.  

2) Oscillations of MVs and CVs.  

3) CV standard deviations. Immediately after the MPC 
controller is commissioned or maintained, the monitor 
module will calculate standard deviations of all CVs and 
use them as benchmarks for CV variations. The CV 
standard deviations will be calculated repeatedly and 
compared to their benchmarks. If the standard deviation 
of a CV is much greater than its benchmark, it will 
indicate that control performance for the CV can be poor.   

4) Model quality. The model quality for a CV is measured 
by the standard deviation of its simulation error. 
Immediately after the MPC controller is commissioned 
or maintained, the monitor module will calculate 
standard deviation of simulation errors of all CVs and 
use them as benchmarks for model quality. After that, 
standard deviations of CV simulation errors will be 
calculated repeatedly and compared to their benchmarks. 
If the standard deviation of a CV simulation error is 
much greater than its benchmark,, it will indicate that 
model quality for the CV can be poor.  

3.4 A Prototype of the Integrated MPC Software 

So far, two modules of the proposed integrated MPC 
controller have been implemented in an MPC software 
package: the control module and the identification module.  
 
The software consists of three parts: Configuration Section, 
Identification Section and Control Section. The 
Configuration Section is for user to enter the MPC design 
information, namely, the MV/DV/CV lists and MV/CV 
high/low limits, sampling time, estimate of process time to 
steady state, MV amplitudes (step sizes) for identification test, 
expectation matrix of the process. Also the communication 
between the PC and the DCS is handled here and the user 
needs to specify the name of the OPC server and the name of 
the host computer. 
 
The MPC software can run plant test, model identification 
and MPC control simultaneously, which makes integrated 
control possible. Considering the fact that process industries 
are not yet familiar with totally automated integrated 
controllers, the MPC software can be configured that the user 
starts certain functionalities by press a button. These 
functions include starting plant test, starting model 
identification, turning on MPC controller and turning on/off 
certain MVs and CVs. Also the user can manually select 
models for MPC control.  
 

4. MPC CONTROL OF TWO PTA UNITS 

This section will present an industrial application of the 
integrated MPC. The processes are two PTA (pure 

terephthalic acid) units located at the Chemical Plant of 
Sinopec Yangtze Petrochemical Company in Nanjing, China. 
PTA is an important raw material that synthesizes polyesters. 
It is produced under certain temperature and pressure with 
para-xylene (PX) as raw material and acetic acid as solvent. 
The two PTA units are very similar and they are AMOCO 
design.  
 
Two MPC controllers were designed and commissioned for 
the PTA unit 1: solvent dehydration tower MPC controller 
and oxidation section MPC controller. In fact both parts can 
be easily controlled using one controller. The reason that we 
used a separate MPC controller for the dehydration tower is 
that we wish to test the functionality of the MPC package for 
the first time on a relatively simple process.  
 
MPC Control of the Solvent Dehydration Tower, Unit 1 
The main role of the solvent dehydration tower is to purify 
acetic acid solvent used in oxidation section, which can 
obtain stated purity acetic acid solvent to return to system 
usage through removing the water produced in the oxidation 
reaction or added in the catalyst allocation. The tower 
operation requirements are: 1) to keep the bottom water 
content as constant as possible and 2) to keep the tower top 
acid content below 0.8% in order to reduce the acid loss. 
There are online analysers for measuring top acid content and 
bottom water content. 
 
Because of the large tower volume capacity, both top quality 
and bottoms quality have slow responses to changes in reflux 
flow and reboiler steam flow. Also top and bottoms qualities 
have strong interactions. These problems make it difficult to 
control both top and bottoms qualities using two PID 
controllers and it is a good candidate to use an MPC 
controller. The main goal of the dehydration tower MPC is to 
reduce the product quality variation and to reduce the acid 
loss. The MPC variables are  
 
Manipulated Variables (MV) 

 Tag name Description 
MV1 1TC1701.SP Bottoms temperature setpoint 
MV2 1FC1702.SP Reflux flow rate setpoint 
MV3 1FC1411.SP 2nd oxidation react. air flow 1  
MV4 1FC1412.SP 2nd oxidation react. air flow 2 

 
Disturbance (Feedforward) Variables (DV) 

 Tag name Description 
DV1 1FI1614.PV Tower feed 1 
DV2 1FI1615.PV Tower feed 2 
DV3 1FI1703.PV Tower feed 3 
DV4 1FI1704.PV Tower feed 4 
DV5 1LS1301.PV 2nd oxidation reactor feed valve 

 
Controlled Variables (CV) 

 Tag name Description 
CV1 1DI1701.PV Top acid aontent 
CV2 1DI1702.PV Bottoms water content 
CV3 1PD1701.PV Tower delta pressure  
CV4 1FV1701.OP Steam control valve  
CV5 1FV1702.OP Reflux flow control value 
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CV6 1QI1401.PV Secondary oxidation reactor 
tail O2 analyzer 1  

CV7 1QI1402.PV Secondary oxidation reactor 
tail O2 analyzer 2 

CV8 1TI1731.PV Reflux temperature 
 
All CVs are controlled in ranges. Note that MV3, MV4, CV6 
and CV7 are the variable in the secondary oxidation reactor. 
The sampling time for the identification and for MPC control 
was set to 0.5 minute, the estimated process time to steady 
state was 90 minutes. The plant test started at 10:00. After 5 
hours of plant test, models were identified. This is repeated 
each 1 or 2 hours. After 11 hours of test, most expected 
models from MVs to CVs show A, B or C grades and the 
plant test was stopped. Figure 2 shows MV plots during the 
plant test. The dehydration tower MPC controller was turned 
on the next day after lunch. Figure 3 shows the CV plots 
during the first hours after the MPC was turned on. Its 
performance has been good and CV variations have been 
reduced. However, most models from DVs to CVs are very 
poor with grade D because the very short test. Therefore, 
DVs was not turned on. DV models can be improved when 
more data are collected. 

 
Figure 2. MV/DVplots during the plant test. 

 

 
Figure 3. CV plots in the first hours after the MPC 
was turned on 

 
MPC Control of the Oxidation Reaction Section, Unit 1 
The MPC control requirements are to reduce the variations of 
temperature and tail oxygen content in the reactor and to 

control the 4-CBA content in TA product within ±100 ppm 
while respecting all production constraints. The MPC 
controller has 17 MVs, 3 DVs and 17 CVs. MVs include 
Feed flows and air flows of the A, B, C reactors, condenser 
extraction valves of the reactors, reactor levels, fresh catalyst 
flow and fresh accelerant flow. DVs are the reactor pressures. 
CVs are reactor middle temperatures, reactor tail O2 
concentrations, reactor Ox concentrations, 4CBA prediction, 
and some valve positions. All CVs are controlled in ranges.  
 
It was planed to run an open loop test for 50 hours with all 
MVs excited simultaneously. However, the PTA unit is 
operating 30% above its design capacity and many 
constraints were hit, which makes the plant test difficult. The 
operators were very concerned about the test. Not all MVs 
were allowed to be tested together, and the test was 
interrupted several times due to operation problems. Finally, 
three 10 hour tests were carried out and only part of MVs 
were moved during each test.  Because of short test, model 
obtained are not with high quality and most identified models 
are with grade D. If we would have tested 50 hours as planed, 
the model quality would be much better.   
 
Identified models were selected manually in the Control 
Section of the MPC software (D models cannot be selected 
automatically) when model responses agrees with the process 
knowledge. When a model is expected and the identified 
model is too poor according to model validation, the existing 
model identified many years ago using a traditional 
identification method, was used. Although the model quality 
is believed not high, it was decided to implement the 
controller first and, if necessary, re-identify the process 
model in a closed-loop operation. Figure 4 shows two CV 
plots before and after the MPC commissioning. One can see 
that there is some variation reduction in the CVs. It is still 
planed to perform a closed-loop test of about 50 hours in the 
future. The closed-loop test should be much less disturbing 
than the open loop test. 
 

MPC off

MPC on

 
Figure 4. Plots of CVs 1QI1401 and 1QI1402 when MPC 

was off and on 

Migration of MPC Control for PTA Unit 2 

There exist two MPC controllers for the PTA unit 2, one for 
the dehydration tower and one for the oxidation reaction 
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5.  CONCLUSION AND DISCUSSION 

An integrated MPC technology is introduced. It consists of 
three modules, a control module, an identification model and 
a monitor module. It can perform various steps of an MPC 
project automatically and in a parallel manner. Thus, the 
efficiency of MPC commissioning and maintenance can be 
increased by a factor of 3 or higher when compared with the 
conventional MPC technology. The application of the 
prototype integrated MPC to the two PTA units has shown 
the feasibility of the technology. This technology may change 
the way MPC is applied and can make MPC feasible for all 
process industries, not just the refining/petrochemical 
industry.   
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