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Abstract: Based on M-estimate, the problem of robust estimation fusion in decentralized architecture 
when the sensor noises are contaminated by outliers is considered. A simple robust Kalman filtering (RKF) 
scheme with weighted matrices of innovation sequences is introduced for local state estimation. Then, to 
avoid both the inconsistency of the Kalman filter and the performance conservation of the covariance 
intersection method, an internal ellipsoid approximation method (IEA) is proposed to fuse the local 
estimation in the fusion center. Finally, to demonstrate robustness of the proposed RKF and the 
effectiveness of IEA strategy, a simple tracking example in the presence of outliers is introduced. 

 

1. INTRODUCTION 

Estimation fusion, or data fusion for estimation, is the 
problem of how to best utilize useful information contained 
in multiple sets of data for the purpose of estimation an 
unknown quantity—a parameter or process (Li, Zhu, & 
Han, 2000). It has wide-spread applications since many 
practical problems involve data from multiple sources, 
including guidance, defence, robotics, integrated navigation, 
target tracking, and GPS positioning. It has been realized 
for many years following the original work of Bar-Shalom 
(1981) that local estimates have correlated errors. How to 
counter this cross correlation has been a central topic in 
distributed fusion. One problem with the Kalman Filtering 
(KF) is that it requires either that the measurements are 
independent or that the cross-covariance is known (See 
Smith & Sameer, 2006). In this case that the 
cross-covariance information is available, the optimal 
KF-based approach that the KF maintains cross-covariance 
information between updates is proposed by Bar-shalom 
(1981), and Sun (2004).  

Unfortunately, even though under the assumption that the 
cross-covariance is known, the optimal KF-based approach 
scales quadratically with the number of updates, which 
makes it impractical (See Drummond, 1997). A common 
simplification is to assume the cross-covariance to be zero, 
i.e. the measurements are independent, though, in this 
situation, the KF produces nonconservative covariance. 
This leads to an artificially high confidence value, which 
can lead to filter divergence (Julier & Uhlmann, 1997). 
Recently proposed covariance intersection filtering (See 
Julier & Uhlmann, 1997) is based on convex combination 
of information matrices, i.e., inverse covariance matrices 
and the corresponding information states. The algorithm 
provides a general framework for information fusion with 
incomplete knowledge about the signal sources since it 
yields consistent estimates for any degree of cross 
correlation. Since covariance intersection filtering requires 
optimization of a nonlinear cost function and instead of 

underestimation of the actual covariance matrix, the 
covariance intersection method overestimates it, which 
obviously results in a significant decrease in performance. 
To avoid both the inconsistency of the basic convex 
combination and the lack of performance of the covariance 
intersection method, largest ellipsoid algorithm has been 
proposed by Benaskeur (2002). The algorithm provided in 
(Benaskeur, 2002) solved the matrices orientation 
incompatibility problem in the case of two sensors, and the 
largest ellipsoid within the intersection of two ellipsoids 
can be computed. Unfortunately, it did not derive the 
formulation of the center of the largest ellipsoid (it presents 
the resulting fusion estimate) correctly, and the estimation 
performance may degrade severely, which will be shown in 
Section 4 & 5. Therefore, an Internal Ellipsoid 
Approximation (IEA) method is proposed to obtain the 
largest volume ellipsoid within the intersection of 
covariance ellipsoids in this paper. 

On the other hand, the distribution of noise arising in 
application deviates frequently from assume Gaussian 
model, often being characterized by skewed (asymmetric) 
or heavier tails generating the outlier. Since in the presence 
of outliers, even a single outlier –if located sufficiently far 
away- can completely spoil the Least Squares estimate or 
the Kalman filter, causing it to break down (See Huber, 
1981; Djurovic & Kovacevic, 1995), which will degrade 
the fusion performance greatly. Therefore it is of practical 
interest to consider filters which are robust to perform 
fairly well in non-Gaussian environment especially in the 
presence of outliers, and some results have been obtained 
during the last decade. Robust statistical procedures 
provide formal methods to spot the outlying data points and 
reduce their influence. Most of the contributions in this area 
have been directed toward censoring data, namely, if an 
observation differs sufficiently from its predicted value 
then it is discarded. For example, an M-estimate filter for 
robust adaptive filtering in impulse noise is proposed in 
(Djurovic & Kovacevic, 1999), a recursive adaptive 
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algorithm and a robust threshold estimation method are 
derived employing an M-estimate cost function. Recently, 
Djurovic and Kovacevic established the equivalence 
between the Kalman filter algorithm and a particular 
leasat-squares regression problem. Based on the 
equivalence it solved the robust estimation with unknown 
noise statistics with the help of M-estimate method, and the 
equivalence between the Kalman filter and proposed 
technique is established (Phan & Zoubir, 2005). Very 
recently, in (Muth, Wang, & Conn, 2006) a sequential 
M-estimation algorithm is proposed as an alternative to 
sequential least squares. Being an approximation to exact 
M-estimate, the proposed technique is robust to 
non-Gaussian noise and outperforms sequential least 
squares. To the best of the authors’ knowledge, however, 
there is no result discussing how to eliminate or reduce the 
influence of outliers on the fusion performance, which 
remains an open and challenging problem. 

In this paper, a novel and straightforward robust Kalman 
filter is developed by robustifying the conventional Kalman 
filter with weighted innovation, which is obtained from the 
influence function of M-estimate. It is shown that the 
proposed robust Kalman filtering takes conventional 
Kalman filter as a special case when the noises are normal 
ones. Then, an Internal Ellipsoid Approximation method is 
proposed to obtain the largest volume ellipsoid within the 
intersection of the covariance ellipsoids. Finally, in order to 
demonstrate the robustness of the robust Kalman filter, the 
high fusion accuracy of IEA, and the efficiency of 
suppressing the influence of outliers to the fusion 
performance, a simulation example is introduced. 

Notations: For real symmetric matrices X  and Y , the 
notation YX > (or YX ≥ ) means that the matrix 

YX − is positive define (or positive semi-define). I is the 
identity matrix with appropriate dimension. )(xE is the 
expectation of x, the superscript T, + denote the transpose 
and Moore-Penrose inverse respectively; In and 0 denote 
the n×n unit matrix and the zero matrix with compatible 
dimension, respectively. tr(P) stands for the trace of matrix 
P. tkδ is the Kronecker’s delta function( 1=tkδ for kt = , 

and 0=tkδ  for kt ≠ ). Matrices, if not explicitly stated, 
are assumed to have compatible dimensions. 

2. PROBLEM STATEMENT AND LEMMAS 

Consider the discrete linear stochastic system with N 
sensors 

)()()1( tGtFxtx ω+=+                       (1) 

,N,, , ittxHty iii L321      ),()()( =+= υ       (2) 

where ntx ℜ∈)( is the state vector, im
i ty ℜ∈)( is the 

ith measurement in the sampling period tT; pt ℜ∈)(ω is 
the disturbance input or system white noise with zero mean 
and variance matrix Q, im

i t ℜ∈)(υ , 1 2 3i , , ,= L , N 

are the contaminated Gaussian noise vectors  noises. The 
matrices F, G, and Hi are known real constant matrices 
with appropriate dimensions. 

Assumption 1. )(tω and ,N,, , iti L321 ),( =υ are 

independent, and )(tiυ  are with non-Gaussian density 
function f(e) described by 

iii GGF Δ+−= αα )1(                         (3) 

where iG  is the zero-mean Gaussian density, and iGΔ  
is some unknown symmetric function representing the 
impulsive part of the noise density or outliers. This problem 
is of practical importance in a target tracking system using 
multiple sensors (radar or infrared) (See Muth, Wang, & 
Conn, 2006), and communication applications where 
non-Gaussian (heavy tailed) noise occurs, such as in 
underwater acoustics, and satellite communications through 
the ionosphere (See Wang & Poor, 1999) et al. 

Assumption 2.  The initial state x(0) is independent of 
)(tω  and ,N,, , iti L321 ),( =υ , and 

0)0( xEx =  

000 ]))0()()0([( PxxxxE T =−−  
The problem is to find the optimal decentralized robust 
estimation fusion )(ˆ0 tx of the state x(t) in terms of local 
robust Kalman filter based on the measurements 

))1(),(( ii yty L , which are contaminated by outliers. The 
estimation should have the desirable properties of 
efficiency and robustness, i.e. it (a) yields the estimation 
fusion with a high accuracy for normal distributed 
observation while keep the solution in high efficiency; (b) 
reduces the bad effect of moderate errors on filtering and 
fusion in the way of weighting innovation; (c) is robust in 
the sense that heavy-tailed errors or outliers do not affect 
the solution by setting the weighted matrix of innovation to 
be zeros, and further suppress the influence of outliers to 
the performance of fusion. We start with some lemmas. 

Lemma 1. Checking if two ellipsoids ),( 101
Pxε ,

20(xε  

2, )P  have nonempty intersection, can be cast as to the 
following Quadratic Programming (QP) problem with 
quadratic constraints (Vazhentsev, 2000; Kurzhanski, 
1991) 

xPxxPx T

xPxxPx T

1
1

1

1
1

1,
1 1

2
1

2

min,min −

=

−

>=< −−
>=<=β         (4) 

xPxxPx T

xPxxPx T

1
2

1

1
2

1,
2 1

1
1

1

min,min −

=

−

>=< −−
>=<=β        (5) 

where 1β and 2β are invariant with respect to affine 
coordinate transformation and describe the position of 
ellipsoids ),( 101

Pxε , ),( 202
Pxε  with respect to each 

other: 
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(1) If 1,1 21 ≤≥ ββ , then ),(),( 2010 21
PxPx εε ⊆  

(2) If 1,1 21 ≥≤ ββ , then ),(),( 2010 21
PxPx εε ⊇  

(3) If 1,1 21 << ββ , then φεε ≠),(),( 2010 21
PxPx I . 

3. A NOVEL ROBUST KALMAN FILTERING SCHEME 

As can be seen from the traditional KF update equations, at 
the sampling period of (t+1), the ith filtering 
estimate )11(ˆ ++ ttxi is corrected by the linear 

combination of innovation )1( +tei . Therefore, when the 

measurements )1( +tyi  are contaminated by outliers, 

)1( +tei  will correct )11(ˆ ++ ttxi  in the wrong way, 
which should make Kalman filter performs poorly or even 
divergently (See Sun & Deng, 2004). 

In another point of view, the conventional Kalman filter 
can also be thought of as the solution to a particular 
weighted least squares problem (See Djurovic & Kovacevic, 
1999), unfortunately, it is nonrobust because extreme 
outliers with arbitrarily large residuals can have an 
infinitely large influence on the resulting estimate. Robust 
statistics is concerned with the fact that many assumptions 
commonly made in classical statistics, such as normality, 
are at most approximations to reality and that deviations 
from the assumptions due to, for instance, gross errors are 
‘dangerous’. An estimator is said to be robust if it is 
insensitive to deviations from certain assumptions about the 
measurements and is able to provide a good solution even 
with measurements containing outliers. The M-estimator is 
one of the most sophisticated approaches to this problem 
among the robust statistics approaches. Further, the 
M-estimator has an advantage of less computational effort 
as it can be computed by a standard least squares algorithm 
with minor modifications (Hampel, Ronchetti, Rousseeuw, 
& Stahel, 1986) . 

M-estimators attempt to suppress the influence of outliers 
by replacing the square of the residuals with a less rapidly 
increasing loss function, which is 

∑∑
==

=−=
ii m

j
ij

m

j
ijij tetxHtyJ

11
))(())()(( ρρ       (6) 

where )(tyij , ijH stand for the j-th row of 

)(tyi and iH ,respectively. )(⋅ρ  is a usually nonnegative 
and symmetric scalar robust convex function that has to cut 
off the outliers. Particularly, if one chooses )(⋅ρ  to be a 
quadratic function, the solution of (7) will reduce to the 
least squares or Kalman filter. 

Equating the first partial derivatives to zero with respect to 
the state to be estimated )(tx  leads to the following 
M-estimator 

0))(())(ˆ)((
11

==− ∑∑
==

ii m

j
ijij

m

j
ijijij htehtxhty ψψ    (7) 

where )(⋅ψ , the derivative of )(⋅ρ , is often called the 
influence (score) function, since it describes the influence 
of the measurement errors on the solutions. Now, (8) can be 
rewritten as 

0
)(

1
=∑

=
ij

ij

ij
m

j

T
ij e

e
e

h
i ψ

                           (8) 

Letting
ij

ij
j e

e
ed

)(
)(

ψ
= , then (8) can be reformulated as 

the matrix form 

0)( =iii
T
i eeDH                               (9) 

where ))(),(),(()( 21 iniii edededdiageD L= . 

In the light of the above comparison and analysis of 
conventional Kalman filtering and M-estimator, the 
proposed RKF is given in Theorem 1 as follows. 

Theorem 1. Under the assumption 1 and 2, for the i-th 
estimation subsystem with the dynamic and measure 
equations (1)-(2), we have the robust Kalman filter steps 

)1()()1()1(ˆ)11(ˆ ++++=++ tetDtKttxttx iiiii   (10) 

1)]()()1([)1()1( −+++=+ tDRtDHttPHHttPtK T
iii

T
iii

T
iii   

                                            (11) 

)1(])()1([)11( ttPHtDtKIttP iiiini ++−=++  (12) 

Other recursive steps are just same as traditional KF. 

Proof. The update formula (10) can be derived from the 
above analysis directly, and the covariance of weighted 
innovation is 

)()(]))1()())(1()([( tDRtDtetDtetDE T
iii

T
iiii =++   

                                            (13) 

from which we have the robust Kalman gain matrix as (11). 

Substituting (11) into the filtering error equation 

ˆ( 1 1) ( 1) ( 1 1)

[ ( 1) ( ) ] ( 1 ) ( 1) ( ) ( )
i i i

n i i i i i i i

x t t x t x t t

I K t D t H x t t K t D t tυ

+ + = + − + + =

− + + − +

%

%

                                            (14) 

where )1(~ ttxi +  is the one step prediction residual, and 
after mathematical manipulation, the robust filter 
covariance can be computed as 
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( 1 1) [ ( 1 1) ( 1 1)]

[ ( 1) ( ) ] ( 1 )[

   ( 1) ( ) ] ( 1) ( ) ( 1)

T
i i i

n i i i i n

T T T
i i i i i i i i

P t t E x t t x t t

I K t D t H P t t I

K t D t H K t D t R D K t

+ + = + + + +

= − + + −

+ + + +

% %

 

[ ( 1) ( ) ] ( 1 )n i i i iI K t D t H P t t= − + +            (15) 

This completes the proof.                       □ 

Remark 1. )(⋅ρ is a robust M-estimate function for 
suppressing the outliers and is important for the estimation 
performance. Different )(⋅ρ will result different 
M-estimate and fusion performance.  Say, for a give 
density f, the choice )(log)( υυρ f−=  yields the 
maximum likelihood fuser. Several robust cost functions 
have been used in the robust statistics setting, such as 
Huber’s robust cost function, Andrews’ method, Vapnik’s 
loss function, or the biweight approach. Here, we propose a 
more general M-estimate function that is generated from 
Huber’s robust cost function. 

⎪
⎪
⎩

⎪⎪
⎨

⎧

<−

≤<−

≤

=

)( for              ,2

)( for       ,2)(

)(for                  ,2)(

))((
2

2

2

tebaab

bteaatea

atete

te

i

ii

ii

iρ  

                                           (16) 

It can be seen that )(⋅ρ is an even real-valued function and 

it is quadratic when )(tei is smaller than a , which is just 
the same as the maximum likelihood (ML) cost function 
and keeps the efficiency of the M-estimate; For larger 
values of )(tei  in the interval [ ]ba, , the function is linear 
and increase more slowly than ML; For residuals greater 
than b, the function is equal to a constant. Based on (16), 
the weighted matrix of innovations can be formulated as 

⎪
⎩

⎪
⎨

⎧

>

≤<

≤

=

bte

bteatea

ate

teD

i

ii

i

i

)(for                ,0

)(for    , )(/

)(for               ,1

))((      (17) 

The three different intervals of )(⋅D  are designed to deal 
with different kinds of residuals. In order to keep the 
accuracy and efficiency, when atei ≤)( , )(⋅D is set to 
be 1; when sampling from the moderate innovations, 

)(⋅D are decreased with the residuals while sampling from 
a heavy-tailed distribution or outliers, the weights are set to 
be zero. 

Remark 2. When )(tω  and ,N,, , iti L321 ),( =υ are 
independent white noises with zero mean and variance 
matrices Q and iR , from Remark 1 we can see that nID = . 
In this case, the proposed robust Kalman filter reduced to 
the conventional Kalman filter. 

4. INTERNAL ELLIPSIOD APPROXIMATION BASED 
ESTIMATION FUSION ALGORITHM 

Once the local estimation is obtained by the subsystems, we 
are facing the problem of how to fuse the estimation in a 
right way in the higher level. In the presence of outlier, the 
optimal KF-based approach may cause divergence. In avoid 
explicitly calculating the cross-covariance, a novel 
estimation fusion algorithm that calculates the largest 
volume ellipsoid within the intersection of the covariance 
ellipsoids using internal ellipsoid approximation approach, 
is proposed in this section. 

The largest ellipsoid algorithm in (Benaskeur, 2002) solved 
the matrices orientation problem in the case of two sensors, 
and the largest ellipsoid within the intersection of two 
ellipsoids can be computed, unfortunately, it did not derive 
the computation of the center (it presents the resulting 
fusion estimate) of the largest ellipsoid correctly, and the 
estimation performance may degrade severely, as can be 
seen in the simulation examples in Section 5. Hence, an 
Internal Ellipsoid Approximation method, which can be 
formulated in the following theorem, is proposed. 

Theorem 2. Given two ellipsoids ),( 101
Pxε and

20(xε , 

2, )P  and define parameterized family of internal 

ellipsoids ),( 0
−− Pxε with 

)()( 2
1

221
1

11
11

22
1

110 xPxPPPx −−−−−− ++= ωωωω   (18) 

1 1 1
1 1 1 1 2 2 2 2 0 0(1 ( ) )T T TP x P x x P x x P xω ω− − − − − − −= − − +  

      1 1 1
1 1 2 2( )P Pω ω− − −+                      (19) 

The best internal ellipsoid )ˆ,ˆ( 0
−− Pxε in the class 

(18)-(19), namely, such that 

),(),()ˆ,ˆ(),( 201000 21
PxPxPxPx εεεε ∩⊆⊆ −−−−  

(20) 

for all 1,0 21 ≤≤ ωω , is specified by the parameters 

),1min(),1min(1
),1min(1ˆ

),1min(),1min(1
),1min(1ˆ

21

1
2

21

2
1

ββ
β

ω

ββ
β

ω

⋅−
−

=

⋅−
−

=

              (21) 

where 1β and 2β are the parameters determined in 
(4)-(5). 

Proof. The result is similar as in (Vazhentsev, 2000), which 
is omitted here.                             □ 

Remark. After the parameters 1β and 2β is determined by 
Lemma 1, the center and shape parameters of the best 
internal ellipsoid )ˆ,ˆ( 0

−− Pxε can be calculated by 
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(18)-(19), and (21). The consistency of the algorithm using 
IEA is granted by the Fig. 2 in (Benaskeur, 2002) 
graphically. 

Corollary 1. Two special cases are 

(1) If 11 ≥β , 12 <β , then 0ˆ,1ˆ 21 == ωω , we have 

),()ˆ,ˆ( 100 1
PxPx εε =−− ; 

 (2) If 11 <β , 12 ≥β , then 1ˆ,0ˆ 21 == ωω , we have 

),()ˆ,ˆ( 200 2
PxPx εε =−− . 

Proof. This result can be derived from Lemma 1 readily. 

5. SIMULATION EXAMPLES 

To evaluate the robustness of proposed robust Kalman filter 
and effectiveness of the IEA approach, simulations are 
performed on target tracking system with constant velocity 
model. The objectives of the simulation examples are 
two-fold: (a) to verify the robustness of the proposed robust 
Kalman filter; and (b) to demonstrate the performance 
superiority of the IEA method. Consider a simple target 
dynamic model with two sensors, which is the same as the 
one used in (See Smith & Sameer, 2006; Bar-Shalom, 1986; 
Chang, Saha, & Bar-Shalom, 1997) 

)(
2

)(
10

     1
)1(

2

t
  T
T

tx
     

T
tx ω⎥

⎦

⎤
⎢
⎣

⎡
+⎥

⎦

⎤
⎢
⎣

⎡
=+  

)()()( ttxHty iii υ+= , i=1, 2 

where T=0.1s is the sampling period. The 
state [ ]Ttststx  )(  )()( &= , where  )(ts  and )(ts& are the 
position and velocity respectively of the target at time tT. 

)(tiυ is with the contaminated Gaussian density 

function ),0(),0()1( 22
iii kNNF σασα +−= , where 

1.0=α , k=100, and 2
iσ are 5 and 8 respectively; We add 

outliers into 21 ),( , iti =υ with the covariance of 100 

during the sampling step from 100 to 105. )(tiυ are 

independent of standard Gaussian white noise )(tω . Our 
goal is to find the estimation fusion based on the local 
robust Kalman filters suppressing the effect of outliers on 
the estimation performance. The Mean Square Error (MSE) 
versus the sampling periods is computed by  

∑
=

=
M

i
k

T
k ixix

M 1
)](~)(~[1MSE where M is the number of 

runs and )(~ ixk  represents the estimation error of the 
fused estimate in the ith run. Both results from single and 
multiple Monte Carlo runs are presented.  

First, to verify the robustness of the proposed Kalman filter, 
the performance comparison over arbitrary one run taking 
the IEA as the fusion algorithm and using RKF as the local 

estimator is shown in Table 1. As can be seen from Table 1, 
the performance discrepancy with different ε and k is not 
very large, which demonstrates the robustness of the 
proposed Kalman filter. Also, the superiority of RKF can 
be seen from Table 2, where showing the 100 Monte Carlo 
runs’ results in the case that the local estimation systems 
take either traditional Kalman filter (TKF) or the proposed 
robust Kalman filter (RKF) as the estimator, and the fusion 
center takes the fast covariance intersection (Niehsen, 2002) 
(FCI), the simple convex combination (SCC), the largest 
ellipsoid method in (Benaskeur, 2002) (TLE), and proposed 
robust estimation fusion based on internal ellipsoid 
approximation, respectively. From Table 2 it can be seen 
than if there is no outlier, the IEA has nearly same accuracy 
when the local estimator is the robust KF or not. Because 
the largest ellipsoid method cannot find the estimates 
correctly, the performance degrades obviously. On the 
other hand, the performance comparison between the case 

Table 1. MSE Performance for different α and k  

Sampling steps 
α  k 

10 50 100 150 200 

100 0.0021 0.0088 0.0165 0.0206 0.0505

500 0.0015 0.0220 0.0604 0.0934 0.12850.02

1000 0.0037 0.0478 0.0586 0.0915 0.1057

100 0.0004 0.0102 0.0350 0.0583 0.1033

500 0.0016 0.0252 0.0481 0.0628 0.07830.05

1000 0.0010 0.0327 0.0692 0.1024 0.1831

100 0.0014 0.0108 0.0237 0.0837 0.1295

500 0.0025 0.0524 0.2938 0.3669 0.40020.10

1000 0.0120 0.0669 0.2163 0.4784 0.7951

Table 2. MSE performance comparison over 100 runs  

Local 
estimators 

Fusion 
center 

Outlier 

-free 

Outliers 

presented 

SCC 0.4450 14.2067 

FCI 0.4468 14.0858 

TLE 63.9791 71.6905 

Traditional 

KF 

IEA 0.4511 15.3431 

SCC 0.4471 0.6079 

FCI 0.4442 0.6106 

TLE 107.9364 123.2528 

Proposed 

RKF 

IEA 0.4760 0.7105 
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of outliers presented and case outlier free, one can easily 
see that the traditional KF estimation fuses degrade, while 
the RKF fuses changes little, which demonstrate the RKF is 
no sensitive to the outliers. 

6. CONCLUSIONS 

The problem of robust estimation fusion in decentralized 
architecture when the sensor noises are contaminated by 
outliers is considered in this paper. Attentions have been 
mainly focused on two aspects. On the one hand, in order 
to suppress or deduce the influence of outliers to the 
estimation performance, a novel simple robust Kalman 
filtering scheme with weighted matrices of innovation 
sequences was introduced for local estimation. It has been 
shown that the proposed RKF takes conventional Kalman 
filter as a special case when the noises are normal ones. On 
the other hand, an internal ellipsoid approximation method 
is proposed to fuse the local estimation in the fusion center. 
The explicit solution of the fusion estimation of the state 
and its covariance matrix was also given. A simulation 
example shows the robustness of the proposed robust 
Kalman filter and the effectiveness of IEA strategy, 
comparing to previous results, the proposed algorithm is 
more applicable and effective in the presence of outliers. 
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