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Abstract: This paper considers two types of practical applications of the Linear Minimum
Variance recursive state estimation for the linear discrete time dynamic system with random
state transition and measurement matrices. The first type of applications is the Kalman filtering
with uncertain observations. The second one is the randomly variant dynamic systems with
multiple models.

1. INTRODUCTION

Linear discrete time system with random state transition
and observation matrices arises in many areas such as
radar control, missile track estimation, satellite naviga-
tion, digital control of chemical processes, economic sys-
tems. Koning [1] considered the Linear Minimum Vari-
ance recursive estimation formulae for the linear discrete
time dynamic system with random state transition and
measurement matrices. Such system can be converted to
a linear dynamic system with deterministic parameter
matrices and state-dependent process and measurement
noises. Therefore, the conditions of standard Kalman Fil-
tering are violated and the recursive formulae can not be
derived directly from the Kalman Filtering Theory. In [1],
a modified Kalman Filtering formulae was given and its
optimality was briefly analyzed without details of why the
converted system still satisfies the conditions of standard
Kalman Filtering under mild conditions.

In this paper, we address the result in [1] can be applied
to many practical problems related to Kalman filtering
and derive more general results than the some existed
corresponding results.

Recently, the Kalman filtering with uncertain observation
attracted extensive attentions [4], [5], [6]. There are two
types of uncertain observations in practice. The first
one is that the estimator can exactly know whether the
observation fully or partially contains the signal to be
estimated, or just contains noise alone (for example, see
[4]). By directly using the optimal estimation theory, the
Kalman filter for the first type of uncertain observations
can be derived easily. The other uncertain observations
belong to the second type, i.e., the estimator cannot
know whether the observation fully or partially contains
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the signal to be estimated, or just contains noise alone,
but the occurrence probability of each case is known.
Clearly, the latter is more practical. By applying the
random measurement matrix Kalman filtering, we can
derive the Kalman filter with the second type of uncertain
observations, which is much more general than that in [4],
[5], [6].

On the other hand, in practical applications, people may
face a Multi-Model(MM) Dynamic Process very often.
The MM Dynamic Process is best described in terms of
randomly variant dynamic systems. Such a system is one
that can be suitably described in a hybrid space Rnx ×S,
the Cartesian product of the continuous-valued base state
space Rnx and a discrete finite set S, the collection of the
finite system modes which characterize the behavior pat-
terns of the system. A randomly variant dynamic system
thus distinguishes itself from conventional systems in its
imbedded random jump process which governs the random
transition of its system behavior patterns. Many real-world
problems can be successfully formulated in terms of such
systems. Typical examples can be found in systems subject
to piecewise linearization of nonlinear systems, maneuver-
ing target tracking, reconfigurable systems, etc. The MM
dynamic processes were considered by many researchers
(for example, see [7]-[11]). Although the possible models
there are quite general and possibly depend on the state,
only suboptimal algorithms were proposed in the past a
few decades. However, some of the MM systems, although
they are not dependent on the state and somewhat re-
strictive than the the models considered in [8], [10], can
be reduced to the dynamic models with random transition
matrix, therefore, the optimal filter can be given directly
according to the random transition matrix Kalman filter-
ing given here. The simulation results support the analysis
in this paper.

The remainder of this paper is organized as follows. In
Section 2, we present the random parameter matrices
Kalman filtering. In Section 3, we formalize a general
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model of Kalman filtering with uncertain observations,
and derive the optimum linear recursive estimators by
applying the random parameter matrices Kalman filtering.
And two application examples are provided to give an
intuitive understanding of the results. In Section 4, we
formalize the multiple-model dynamic process as a process
with random transition matrix and provide the optimal
real-time estimator for this case. In Section 5, simulation
examples are given for the models given in Section 3 and
Section 4. Finally, in Section 6, we present our conclusions.

2. RANDOM PARAMETER MATRICES KALMAN
FILTERING

Consider a discrete time dynamic system

xk+1 = Fkxk + νk, (1)

yk = Hkxk + ωk , k = 0, 1, 2, · · · , (2)

where xk ∈ Rr is the system state, yk ∈ RN is the
measurement, νk ∈ Rr is the process noise, and ωk ∈ RN

is the measurement noise. The subscript k is the time
index. Fk ∈ Rr×r and Hk ∈ RN×r are random matrices.

We assume the system has the following statistical prop-
erties: {Fk, Hk, νk, ωk, k = 0, 1, 2, · · ·} are all sequences
of independent random variables temporally and across
sequences as well as independent of x0. Moreover, we
assume xk and {Fk, Hk, k = 0, 1, 2, · · ·} are independent
mutually. The initial state x0, the noises νk, ωk, and the
parameter matrices Fk, Hk have the following means and
covariances

E(x0) = µ0, E(x0 − µ0)(x0 − µ0)
T =P0,

E(νk) = 0, E(νkν
T

k ) = Rν
k
, E(x0ν

∗
k) = 0,

E(ωk) = 0, E(ωkω
T

k ) = Rω
k
, E(x0ω

∗
k) = 0,

E(Fk) = F̄k, Cov(fk
ij , f

k
mn) = Cfk

ij
fk

mn
,

E(Hk) = H̄k, Cov(hk
ij , h

k
mn) = Chk

ij
hk

mn
,

where fk
ij and hk

ij are the (i, j)th entries of matrices Fk

and Hk, respectively.

Rewrite Fk and Hk as

Fk = F̄k + F̃k, (3)

Hk = H̄k + H̃k. (4)

Substituting (3), (4) into (1), (2) converts the original
system to

xk+1 = F̄kxk + ν̃k, (5)

yk = H̄kxk + ω̃k, (6)

where

ν̃k = νk + F̃kxk

ω̃k = ωk + H̃kxk

(7)

System (5), (6) has deterministic parameter matrices, but
the process noise and observation noise are dependent on
the state; therefore, they are both dependent sequences

and across correlated, which would not satisfy the well-
known assumptions of standard Kalman filtering.

In the following proposition, we present the modified
Kalman filtering as given by Koning [1]. Readers interested
in the detailed proof about its optimality can refer to the
appendix (omitted in this submission due to page length
limit).

Proposition 1. The linear minimum variance recursive
state estimation of system (5), (6) is given by

xk+1|k+1 = xk+1|k + Kk+1(yk+1 − H̄k+1xk+1|k)

xk+1|k = F̄kxk|k

Kk+1 = Pk+1|kH̄
T

k+1(H̄k+1Pk+1|kH̄
T

k+1 + Rω̃k
)
+

Pk+1|k = F̄kPkF̄
T

k + Rν̃k

Pk+1 = (I − Kk+1H̄k+1)Pk+1|k

Rν̃k
= Rνk

+ E(F̃kE(xkx
T

k )F̃
T

k )

Rω̃k
= Rωk

+ E(H̃kE(xkx
T

k )H̃
T

k )

E(xk+1x
T

k+1)

= F̄kE(xkx
T

k )F̄
T

k + E(F̃kE(xkx
T

k )F̃
T

k ) + Rνk

x0|0 = Ex0, P0 = V ar(x0),

E(x0x
T

0 ) = Ex0Ex0
T

+ P0,

where the superscript ” + ” denotes the Moore−Penrose
pseudo inverse.

Remark 1. Compared with the standard Kalman fil-
tering, random parameter matrices Kalman filtering has

one more recursion of E(xk+1x
T

k+1). By Proposition 1,

we eventually have to compute E(F̃kE(xkx
T

k )F̃
T

k ) and

E(H̃kE(xkx
T

k )H̃
T

k ), and their analytical expressions are
given by

E(F̃kE(xkx
T

k )F̃
T

k )(m,n)

=
r

∑

i=1

Cfk
n1

fk
mi

Xk
i1 + · · · +

r
∑

i=1

Cfk
nrfk

mi
Xk

ir

m,n = 1, 2, · · · , r

E(H̃kE(xkx
T

k )H̃
T

k )(m,n)

=
r

∑

i=1

Chk
n1

hk
mi

Xk
i1 + · · · +

r
∑

i=1

Chk
nrhk

mi
Xk

ir

m,n = 1, 2, · · · , N

where Xk = E(xkx
T

k ).

3. APPLICATION TO A GENERAL UNCERTAIN
OBSERVATION

Consider a system

xk+1 = Fkxk + νk (8)
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yk =
l

∑

i=1

I{γk=i}H
i
kxk +

l
∑

i=1

I{γk=i}ω
i
k, (9)

where all the parameter matrices are non-random and a set
of multiple observation equations is selected to represent
the possible observation case at each time. The random
variable γk is defined to formulate which measurement
matrix is chosen at time k and the value of γk is either
observable or unobservable. If γk = i, the measurement
matrix is Hi

k and the observation noise corresponds to ωi
k.

When the value of γk is observable at each time k, this
is an uncertain observation of the first type and the state
estimation with measurement equation (9) is converted to

yk = Hi
kxk + ωi

k, (10)

which is obviously the classical Kalman filtering, i.e., the
least mean square estimate using the various available
observation of yk. To show the applications of the random
measurement matrix Kalman filtering, we focus on the
the second type of uncertain observations, i.e., in (9), γk

is unobservable at each time k, but the probability of
the occurrence of every available measurement matrix is
known.

Consider that in (9), γk is unobservable at each time k,
but the probability of the occurrence of each measurement
matrix is known. Obviously, (2) is a more general form
of (9) because only expectation and covariance of Hk in
(2) are known (see (3)) other than its distribution. The
expectation of Hk can be expressed as:

H̄k =
l

∑

j=1

pj
kHj

k (11)

H̃i
k = Hi

k − H̄k, with probability pi
k. (12)

The remainder in order to apply the random measurement
matrix Kalman filtering is just to calculate:

Rω̃k
= Rωk

+ E(H̃kE(xkx
T
k )H̃T

k )

= Rωk
+

l
∑

i=1

pi
k(Hi

k − H̄k)E(xkx
T
k )(Hi

k − H̄k)T .

Substituting (11) and (13) into Proposition 1 can imme-
diately obtain the random measurement matrix Kalman
filtering of model (8), (9). In the following, two specific
examples of the uncertain observations of the above model
(8), (9) are given.

Example 1.

In the classical Kalman filtering problem, the observation
is always assumed to contain the signal to be estimated.
However, in practice, certain observation may contain
noise alone, and the estimator cannot know this happens,
only the probability of occurrence of such cases being
available to the estimator. Nahi [4] derived the optimal
recursive estimator with uncertain observation, but it is
easy to see his result is a special case of ours except some
notation difference.

Consider such a discrete dynamic process xk, k = 0, 1, · · ·
is defined by

xk+1 = Fkxk + νk, (13)

where Fk is a non-random matrix of appropriate dimension
and νk is a noise sequence satisfying

E(νk) = 0 (14)

E(νkν
T

l ) = Rν
k
δ(k − l). (15)

δ(·) is the Kronecker delta function. The initial state x0

is assumed to be a random vector with a known mean µ0

and a known covariance matrix P0.

The observation is given by

yk = hkxk + ωk, with probability p(k)

= ωk, with probability 1 − p(k),
(16)

where hk is also an non-random matrix, ωk is the obser-
vation noise satisfying

E(ωk) = 0 (17)

E(ωkω
T

l ) = Rω
k
δ(k − l). (18)

p(k) is the probability that the kth observation contains
the signal xk. Hence, the above observation can be de-
scribed equivalently by

yk = Hkxk + ωk (19)

where the observation matrix Hk is a binary-valued ran-
dom matrix, with

Pr{Hk = hk}= p(k) (20)

Pr{Hk = 0}= 1 − p(k) (21)

Due to (4),

H̄k = p(k) hk (22)

Pr{H̃k = (1 − p(k)) hk} = p(k)

Pr{H̃k = −p(k) hk} = 1 − p(k)
(23)

In the uncertain observation case, the state transition
matrix is still a constant one, but the measurement matrix
is random, by (22) and (23), the covariance of the process
and observation noise can be written as follows:

Rν̃k
= Rνk

(24)

and

Rω̃k
= Rωk

+ E(H̃kE(xkx
T
k )H̃T

k )

= Rωk
+ (1 − p(k))p(k)hkE(xkx

T
k )hT

k .

Thus, the random measurement matrix Kalman Filtering
in this special case is given by:

xk+1|k+1

= xk+1|k + Kk+1(yk+1 − p(k + 1)hk+1xk+1|k)
(25)

xk+1|k = Fkxk|k (26)

Kk+1 = p(k + 1)Pk+1|khT
k+1

·( p(k + 1)2hk+1Pk+1|khT
k+1 + Rω̃k

)+
(27)

Pk+1|k = FkPkFT
k + Rνk

(28)
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Pk+1 = (I − p(k + 1)Kk+1hk+1)Pk+1|k (29)

Rω̃k
= Rωk

+ (1 − p(k))p(k)hkE(xkxT
k )hT

k (30)

E(xk+1x
T
k+1) = FkE(xkxT

k )FT
k + Rνk

(31)

x0|0 = E(x0), P0 = V ar(x0), (32)

E(x0x
T
0 ) = E(x0)E(xT

0 ) + P0. (33)

Compared the above formulas with Nahi’s result [4], it is
easy to see his result is a special case of ours except some
notation difference.

Example 2.

We assume yk has at least two elements and partition yk

into multiple parts, each part may contain noise alone. In
the simplest case, suppose yk is divided into two parts
yk,1,yk,2. The observation equation can be given by:

(

yk,1

yk,2

)

=

(

Hk,1

Hk,2

)

xk +

(

ωk,1

ωk,2

)

, (34)

where the observation matrix Hk,i, i = 1, 2 are indepen-
dent of each other and two binary random matrices with

Pr{Hk,i = hk,i}= pi(k) (35)

Pr{Hk,i = 0}= 1 − pi(k). (36)

Similarly as the derivation as before, we can obtain:

H̄k =

(

p1(k)hk,1

p2(k)hk,2

)

(37)

and the various samples of H̃k with their probabilities are
given in the following table:

Table 1. Samples of H̃k with their probabilities.

Sam. of H̃k

(

−p1(k)hk,1

−p2(k)hk,2

) (

(1 − p1(k))hk,1

(1 − p2(k))hk,2

)

Pi (1 − p1(k))(1 − p2(k)) p1(k)p2(k)

Sam. of H̃k

(

(1 − p1(k))hk,1

−p2(k)hk,2

) (

−p1(k)hk,1

(1 − p2(k))hk,2

)

Pi p1(k)(1 − p2(k)) (1 − p1(k))p2(k)

Therefore,

Rω̃k
= Rωk

+ E(H̃kE(xkx
T
k )H̃T

k )

= Rωk
+ diag((1 − p1(k))p1(k)hk,1E(xkx

T
k )hT

k,1,

(1 − p2(k))p2(k)hk,2E(xkx
T
k )hT

k,2)) (38)

Substituting (37) and (38) into the Kalman filtering in
Proposition 1 can yield the optimum estimator straight-
forwardly for system (13), (34).

4. APPLICATION TO MULTIPLE-MODEL DYNAMIC
PROCESS

The multiple-model (MM) dynamic process were consid-
ered by many researchers (for example, see [7]-[11]. Al-
though the possible models considered in those papers are
quite general and can depend on the state, only suboptimal

algorithms were proposed in the past a few decades. On
the other hand, although some of the MM systems are
not state-dependent and therefore more restrictive than
the models considered in [8], [10], but these MM systems
can be reduced to dynamic models with random transi-
tion matrix and thus the optimal real-time filter can be
given directly according to the random transition matrix
Kalman filtering proposed in Theorem 1.

Consider a system

xk+1 = F i
kxk + νk with probability pi

k, i = 1, 2, · · · , l,(39)

yk = Hkxk + ωk (40)

where {F i
k} and {νk} are independent sequences, and Hk

is non-random. We use random matrix Fk to stand for
the state transition matrix. The expectation of Fk can be
expressed as:

F̄k =
l

∑

j=1

pj
kF j

k (41)

F̃ i
k = F i

k − F̄k, with probability pi
k. (42)

A necessary step for implementing the random Kalman
filtering is to calculate

Rν̃k
= Rνk

+ E(F̃kE(xkx
T
k )F̃T

k )

= Rνk
+

l
∑

i=1

pi
k(F i

k − F̄k)E(xkx
T
k )(F i

k − F̄k)T .

Thus, all the recursive formulas of random Kalman filter-
ing can be given by:

xk+1|k+1 = xk+1|k + Kk+1(yk+1 − Hk+1xk+1|k)

xk+1|k = F̄kxk|k

Kk+1 = Pk+1|kH
T

k+1(Hk+1Pk+1|kH
T

k+1 + Rωk
)
+

Pk+1|k = F̄kPkF̄
T

k + Rν̃k

Pk+1 = (I − Kk+1Hk+1)Pk+1|k

Rν̃k
= Rνk

+
l

∑

i=1

pi
k(F i

k − F̄k)E(xkx
T
k )(F i

k − F̄k)T

E(xk+1x
T

k+1) = F̄kE(xkx
T

k )F̄
T

k

+
l

∑

i=1

pi
k(F i

k − F̄k)E(xkx
T
k )(F i

k − F̄k)T + Rνk

x0|0 = Ex0, P0 = V ar(x0), E(x0x
T

0 ) = Ex0Ex0
T

+ P0.

5. SIMULATIONS

The simulations were done for a dynamic system with
random parameter matrices modelled as an object move-
ment with process noise and measurement noise on the
plane. The two simulations show the specific applications
of results in the last two sections.

Simulation 1. We consider the model in example 1,
and certain observations may contain noise alone, only the
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probability of occurrence available to the estimator. The
object dynamics and measurement equations are given by,

Fk =

(

cos(2π/300) sin(2π/300)
−sin(2π/300) cos(2π/300)

)

(43)

Hk =

(

1 1
1 −1

)

, with probability p(k) = 0.95 (44)

= 0, with probability 1 − p(k) = 0.05 (45)

The initial state x0 = (50, 0), P0|0 = 0.5I. The covariance
of the noises are diagonal, given by Rν = 2, Rω = 1. It is
easy to see that the target is a object that moves noisily at
constant rotation speed 2π/300/step in a circle with initial
radius 50 about origin of the coordinate space. Using a
tracking trajectory and Monte-Carlo method of 50 runs,
we can evaluate tracking performance of an algorithm by
comparing a tracking trajectory with the actual moving
object (see Fig.1 below) and showing the second moment
of the tracking error (see Fig. 2 below) given by

E2
k =

1

50

50
∑

i=1

||x
(i)
k|k − xk||

2

−100 −80 −60 −40 −20 0 20 40 60 80
−100

−80

−60

−40

−20

0

20

40

60

80

100
comparison of true and tracking trajectories

dashed tracking trajectories

solid true trajectories

Fig. 1. Tracking Trajectory of Random KAL with two
measurement equations

0 50 100 150 200 250 300
1

2

3

4

5

6

7

8
Ek of Random KF 

Fig. 2. Estimated tracking error variance of Random KAL
with two measurement equations

From Figs.1 and 2, the tracking performance of the random
Kalman filtering looks acceptable, and simulations have
done for the different probabilities of observation p(k).
Those simulation results show that the smaller p(k) is,
the bigger the tracking error is, which is consistent with
the intuitive expectation.

Simulation 2. In this simulation, there are three dy-
namic models , with the corresponding probabilities of oc-
currence available. The object dynamics and measurement
equations are given by,

Fk =































(

cos(2π/300) sin(2π/300)
−sin(2π/300) cos(2π/300)

)

with prob. 0.1,
(

cos(2π/250) sin(2π/250)
−sin(2π/250) cos(2π/250)

)

with prob. 0.2,
(

cos(2π/100) sin(2π/100)
−sin(2π/100) cos(2π/100)

)

with prob. 0.7,

Hk =

(

1 1
1 −1

)

. (46)

Obviously, for this system, the object at time k moves at
three different rotation speeds with the two corresponding
probabilities, respectively, in a circle with radius ‖xk‖
about origin of the coordinate space.

−100 −80 −60 −40 −20 0 20 40 60 80 100
−100

−80

−60

−40

−20

0

20

40

60

80

100
comparison of true and tracking trajectories

dashed tracking trajectories

solid true trajectories

Fig. 3. Tracking trajectory of random KAL with three
dynamics equations

0 50 100 150 200 250 300
0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2
Ek of Random KF 

Fig. 4. Estimated tracking error variance of random KAL
with three dynamics equations

From Figs.3 and 4, it can be shown that the filter given in
section 4 does work well.
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6. CONCLUSION

In this paper, we have given rigorous analysis for the
Linear Minimum Variance recursive state estimation of
the linear discrete time dynamic system with random state
transition and measurement matrices. Since such a system
can be converted to a linear dynamic system with de-
terministic parameter matrices and state-dependent pro-
cess and measurement noises. We have shown that under
mild conditions, the converted system still satisfies the
conditions of standard Kalman Filtering; therefore, the
recursive state estimation of this system is still of the
form of a modified Kalman filtering. More importantly, we
found that this result can be applied to Kalman filtering
with uncertain observations as well as randomly variant
dynamic systems with multiple models. The simulation
examples support our analysis for the applications of the
random parameter matrices Kalman filtering.
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