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Abstract: We have reduced recursive parameter estimation to Kalman filtering, with a few added fixes. By 
incorporating projections in the parameter gain updates and parameter variance estimates, the recursive 
maximum likelihood method asymptotically becomes a reformulation and fix-up of the extended Kalman 
filter used as a parameter estimator (EKFPE), except that an additional n x n linear symmetric matrix must 
also be updated for each parameter estimate. Estimates for both the process and measurement noise 
variances, as well as for structural parameters, have been proven globally convergent to a local maximum 
of the likelihood function. This obviates the usual guesswork in finding noise variances when fitting data 
using the EKFPE, and assures the existence of the innovations representation for the recursive maximum 
likelihood method. Slightly non-linear and also slightly unstable linear, as well as drastically time-varying 
stable linear, system parameters can be estimated even in severe noise environments  On average, the rate 
of convergence of parameter estimates appears to be faster than other methods if no projection limit is hit.    

 

1. INTRODUCTION 

By adjoining an np-dimensional, constant-in-time parameter 
vector θ to the n-dimensional state vector x(t), and linearizing 
the resulting dynamic equations, the Kalman filter can be 
extended to become an estimator (EKFPE) of the structural 
parameters (i.e. appearing in only the A, B, or C matrices of 
the state equation) in a stochastic linear system. EKFPE has 
been used to estimate parameters for stochastic processes 
since shortly after the introduction of the Kalman filter in 
1960. However, EKFPE (also unscented EKFPE) can not 
estimate the process noise variance (Wiberg et al., 2000). It is 
important to incorporate process noise in dynamic models 
because if only white measurement noise is considered, the 
residuals may not be white and the resulting parameter 
estimates may be biased (Ljung, 1987). So, guesses must be 
made for values of the process and measurement noise 
variances in EKFPE to fit data records, and iterative searches 
performed over a range of variance values to achieve 
acceptable data fits. In the case when all the data is collected 
offline and stored, the later introduction of maximum 
likelihood methods for parameter estimation, such as the 
system ID toolbox in MATLAB, now give a convenient  way 
to avoid guesswork instead of using the EKFPE.  

Recursive parameter estimation algorithms are much trickier 
to implement than offline algorithms. Recursive algorithms 
are needed for failure detection, adaptive control and other 
uses. There are many effective recursive parameter 
algorithms for time-invariant stable linear dynamic systems, 
including recursive prediction error (Ljung, 1979), subspace 
(Van Overschee and DeMoor, 1996), particle filtering 
(Arulampalam et al., 2002), instrumental variables (Sinha and 
Rao, 1991) and errors-in-variables (Chen, 2007).  The fixed 
up EKFPE (FEKFPE) introduced here appears to converge 

faster than all of them if no projection limits are hit, and none 
of them incorporate the parameter gain magnitude limits that 
are necessary to guarantee convergence. 

The state-space representation of EKFPE has led to many 
difficulties, e.g., parameters not being identifiable. Here we 
point out another (hitherto unmentioned) difficulty of EKFPE 
and of some recursive maximum likelihood methods, namely, 
the non-existence of the innovations representation and 
consequent non-existence of parameter update gains unless 
certain projection operations are performed. Incorporation of 
these projection operations guarantees convergence (as 
defined later) of another version of the EKFPE also 
introduced here which we denote FEKFPE2. 

Two versions of the fixed up EKFPE are presented. The first 
version, denoted FEKFPE, is simpler, but proven convergent 
in Appendix B as yet only for state x dimension equal to one 
for a continuous-time limit. The second version, denoted 
FEKFPE2, is derived in Appendix A and is more 
complicated, but is globally convergent in discrete time for 
arbitrary state dimension. For the dozen or so examples we 
have tried, there is little difference between the two versions 
and we conjecture FEKFPE is convergent for any n-
dimensional state vector, x. Therefore emphasis is given to 
FEKFPE in this paper. 

A description of the derivation of FEKFPE2 is given in 
Appendix A. FEKFPE2 is 3-OM (Wiberg et al., 2000) 
reformulated to eliminate Kronecker products, which permits 
efficient use of MATLAB to avoid long computation time. 
Also a projection operation in 3-OM becomes a limit on the 
magnitude of the gain of the parameter update plus a 
requirement to keep the estimate of any parameter error 
variance positive. These two results are the major 
contributions of this paper. They show that 3-OM and the 
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recursive maximum likelihood method (RML) of MATLAB 
are asymptotically equivalent to the EKFPE when fixed up. 
Furthermore, the importance of limiting the magnitude of the 
parameter update gains is introduced here.  

To explain how FEKFPE comes from FEKFPE2, we need to 
define some terms. Call structural parameters θj for j = 1, 
2,…np, as distinguished from parameters appearing in the 
process noise variance, which are denoted ρi for i = 1, 2,…nq. 
For any variable, define the difference between true values 
and their estimates by the superscript tilde, e.g. the difference 
between x and the estimate for x, denoted , is x̂ xxx ˆ~ −= . 
FEKFPE2 consists of updates of estimates, estimate 
variances, and estimates of third order conditional moments 
of jθ,x,x ~~~ , and iρ,x,x ~~~ , which are n x n matrices for each j 
and i. FEKFPE simply eliminates the former matrices from 
FEKFPE2, but keeps the latter. The elimination of updating 
the n x n matrices associated with all the structural 
parameters, and only retaining these updates for those 
parameters in the process noise variance, is a major 
simplification. Consequently, recursive parameter estimation 
becomes as simple as the EKFPE with a slight fix-up. 

By inheritance from 3-OM, FEKFPE2 is globally convergent 
and has fast transient response for asymptotically stable, 
controllable, and observable linear systems, time-varying or 
not, whose parameters are identifiable. It is applicable to all 
nonlinear systems in which the EKF also applies. It is 
recursive and estimates structural parameters and both 
measurement and process noise variances. One disadvantage 
is that now it must be coded by the user for each case, which 
makes FEKFPE preferable to FEKFPE2. Another 
disadvantage is that FEKFPE and FEKFPE2 are in state 
space form, with its inherent dangers. A website is being 
prepared with code that includes UDU (Bierman, 1977) for 
use with high-dimensional states. Here, space considerations 
limit examples to one nonlinear and one unstable case, with 
others on the website.  

2. LINEAR STOCHASTIC MODELS CONSIDERED 

The stochastic state n-vector x(t) takes values at discrete-time 
t intervals normalized to unity, so t = 0,1,2,… With input m-
vector u, and output l-vector y, the linear state equation is 
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)()()()()()1(

ttt
tttt

wCxy
vuθBxθAx

+=
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 (1) 

The process white noise is the Gaussian n-vector sequence 
v(t), zero-mean, variance Q(ρ) and uncorrelated with initial 
condition x(0) and w(t). The measurement white noise w(t )is 
a Gaussian l-vector sequence that is zero-mean with variance 
R.  R is found from the residuals, and not estimated directly.  

The problem is to estimate structural parameters θ and 
process noise parameters ρ by measuring input and output 
data u(t) and y(t).  The A, B, C, Q and R matrices are time 
varying, with the time variable suppressed. This is the usual 
Kalman filtering set-up. Note no parameters θ enter in the C 
matrix, because any observable system can be arranged into 
the form (1) by redefinition of state variables. The n x n 

matrix A, n x m matrix B, and n x n matrix Q are 
parameterized  

npnpθAθAAθA +++= ...)( 110  

npnpθBθBBθB +++= ...)( 110  (2) 

....)( 110 nqnqρQρQQρQ +++=  (3) 

In (2), θ is constrained to be in a region DS of parameter 
space where (A(θ), B(θ), C) are asymptotically stable, 
observable, and controllable and θ is identifiable. Generally, 
identifiability depends on u(t), x(0) and is difficult to relate to 
the likelihood function.  In (3), for   i = 1, 2,...nq, the n x n 
matrix Qi is symmetric and ρ is constrained to be in the 
region of parameter space DN where Q(ρ) is nonnegative 
definite and ρ is identifiable. A nonlinear parameter, not in 
the form of (2) or (3) can be redefined as a set of different 
linear parameters and estimated by slightly modifying 
FEKFPE as in Wiberg et al. (2000) to retain the correlation 
between parameters. For example, the equation (1/b)x(t+1) + 
(sin b)x(t) = u(t) can be rewritten as x(t+1) = ax(t) + bu(t) 
with a and b correlated as a = -bsin b. The linear model can 
also be extended to unstable and nonlinear models for which 
the EKF works, as in the Examples section. 

3. EKF PARAMETER ESTIMATOR 

The extended Kalman Filter (EKF) estimates the θ 
parameters by adjoining θ to x as ξ = col (x, θ), so ξ is an 
(n+np)-vector. Since θ is constant, θ(t+1) = θ(t). Together 
with (1), this gives an equation for ξ, for which the EKF can 
be found from (Anderson and Moore, 1979) to be, after 
partition and for j = 1,2,…np, the measurement update: 
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and the time update: 
)()(ˆ)|(ˆ)(ˆ)|1(ˆ ttttttt uBxAx +=+  (4) 
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The above equations are the extended Kalman filter 
parameter estimator (EKFPE). In the above, the hat is the 
estimate of any variable, e.g.,  is the estimate of x, and the 
T superscript indicates the matrix transpose. Also, let E be 
the expectation operator conditioned on past y(t). Then P, k

x̂

j, 
and σj are estimates of E{ }, E{T~~xx jθx~~ } and E{ 2~

jθ }, 
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respectively. Finally, in (4) above, we define  
)1|(ˆ)()( −−= tttt xCyε  

RCCPV +−= Tttt )1|()(
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 (5) 

The EKFPE starts from initial guesses for the five unknowns 

, , P, k and σ at (t|t-1) for t = 0.  Note that the value of the 
estimate of the process noise variance parameter is not 
defined in in the equation for P(t+1|t).  

x̂ θ̂
ρ̂

))|(ˆ( ttρQ
For the case in which there is no process noise, i. e. Q(ρ) = 0, 
Ljung (1979) proved that the EKFPE is globally convergent 
under the conditions considered here.  

4. A SIMPLE FIX-UP 

This section heuristically fixes up the EKFPE, proofs are in 
the Appendices. First we findρ , by incorporating another 
variable, W, which will be updated along with updates forρ , 
its gain h, and its variance π, similar to the updates for θ, etc.   
Using the orthogonality principle (Anderson and Moore, 
1979),  satisfies an equation in which the conditional 
expectation of times its data equals zero.  Since ρ is the 
process noise variance parameter, its data is past values 
of .  

ˆ
ˆ

ρ̂
ρ~

)()( T tt vv So )}()()1|(~E{ T tttti vvρ −  must be driven to 
zero.  Because v(t) can be solved for in terms of x~  in the 
following (7), equivalently drive to zero the n x n matrix Wi,   

)}1|(~)1|(~)1|(~E{)1|( T −−−≈− tttttttt ii xxρW  (6) 

Before we derive the update for Wi, as in (4) we find updates  
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where ih is the estimate of )~~E( iρx . To find the time update 
of h, use (7) in its definition to obtain 

).|()(ˆ)|1( ttttt ii hAh =+  (8) 
The measurement update of h uses the best linear unbiased 
estimate of h(t|t) given the innovations ε(t), computed 
assuming all random variables are Gaussian, so as to 
incorporate the effect of third order moments. 
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Substituting the updates for errors in x and ρ from (7) gives  
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where all other third order moments except Wi are ignored.  
Similarly, (7) can be used in the definition of Wi to get 

T])()[1|(])([)|( CKIWCKIW tttttt ii −−−=  (11) 

)].()()|(~E[)(ˆ)|()(ˆ)|1( TT tttttttttt iii vvρAWAW +=+  (12) 

Instead of the square of v(t), use Q(ρ) and (3) to get 

).|()(ˆ)|()(ˆ)|1( T tttttttt iiii πQAWAW +=+        (13) 

The un-projected version of FEKFPE is (4), last part of (7), 
(8), (10), (11) and (13). These equations are the same as 
FEKFPE2 in Appendix A modified to make FEKFPE by 
omitting third order moments associated with θ.  But 
FEKFPE must be projected. 

5. PROJECTION 

In a recursive parameter estimator, projection returns a 
computed estimate of an updated variable from a forbidden 
region to some value inside a permissible region. Because the 
innovations ε(t) can take any value, all the measurement 
update equations in which ε appears need to be projected. For 
example, an un-projected update of the estimate of a variance 
might be computed to be negative. Variances are never 
negative, so such an estimated value should be projected into 
the positive real numbers. See (Ljung, 1987). 

The permissible region for θ is DS, intersection with DB, the 
a priori bounded region imposed by physical limitations on 
the parameter values. Mathematical averaging theory used to 
prove convergence of FEKFPE2 requires DB to be bounded. 
Similarly ρ must be in DN ∩ DB. 

More projections than on θ and ρ must be in FEKFPE.  The 
innovations representation must exist for the extended state ξ.  
The continuous time nonlinear optimal filter (Wiberg and 
DeWolf, 1993) for ξ has a solution that is an infinite 
sequence of equations for the moments, each of which having 
an input that is one order higher moment.  The 3-OM 
parameter estimator, upon which FEKFPE2 is based, closes 
this infinite sequence of equations by approximating the 
fourth order moment input to the third order moment 
equation.  Because the optimal nonlinear filter is driven by 
innovations, then the optimal nonlinear filter, 3-OM, 
FEKFPE2, and so FEKFPE require the existence of the 
nonlinear filter extended state innovations. For the 
innovations representation to exist, the estimate of the 
variance of the extended state ξ should be kept positive 
definite. Thus for j = 1, 2, …np and i = 1, 2, …nq, 

.0and0 TT >⎟⎟
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Therefore π must be projected as  

ttti /)|( κ>π  (15) 
for κ some small positive number, and the parameter estimate 
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update gain n-vector h must be projected such that its 
magnitude is bounded as    

).|()|()|()|()]|()|([ T2T tttttttttttt iiiii hPhπhh <    (16) 

Similarly, σ and k must be projected as in (15) and (16) also. 
Incorporation of all these projections in the above FEKFPE 
gives the complete algorithm. 

Convergence of the FEKFPE and FEKFPE2 is proven using 
the averaging technique of (Ljung, 1987) on the un-projected 
versions. Projection is accounted for by proving convergence 
assuming no projection limit is hit, and requiring that if a 
projection limit is hit, then the projection is into the interior 
of the permissible region, and then the algorithm is restarted 
from that interior point. After perhaps many restarts, then the 
algorithm must either converge to a limit point in the interior 
of the permissible region (i.e., it becomes the un-projected 
algorithm because no limit points are hit) or interminably 
bounce off of the projection limits. This is the sense of 
convergence in (Ljung, 1987) and here.  Convergence is 
global to a local maximum of the likelihood function. 

6. EXAMPLES 

The one-dimensional state case was simulated for examples 
of systems whose parameters were estimated by both 
FEKFPE and FEKFPE2. In all cases, it made little difference 
whether FEKFPE or FEKFPE2 was used. Several stable 
linear systems were simulated, whose results agree with the 
examples of (Wiberg, et al., 2000) and (Wiberg and DeWolf, 
1993). More interestingly, first consider the slightly unstable 
first order linear system 

)()()(
)()()()1(

twtxty
tvtbutaxtx

+=
++=+

 (17) 

with true parametric values a = 1.01, b = 2, Q = 0.5, R = 1, all 
unknown including R, and with known input u(t) as zero-
mean white noise with unity variance. A typical run of 
FEKFPE for the system (17) is shown (Fig.1). 

The second example is the first order nonlinear system 

)()()(
)()()()()1( 3

twtxty
tvtbutaxtxtx

+=
+++=+

                      (18) 

with true parametric values a = -0.02, b = 2, Q = 0.5, R = 1, 
all unknown including R, and with known input u(t) as zero-
mean white noise with unity variance. The state equations 
(18) were adjoined to θ = (a, b) and ρ = Q, and the FEKFPE 
formed analogously to the derivation given above. A typical 
run of FEKFPE for (18) is shown (Fig.2). 

If the magnitude of the true value of the parameter a is 
increased slightly in both the above examples, the EKF and 
consequently the FEKFPE did not work well. 

The estimate for R was obtained recursively as follows. Note 
that R does not appear in the FEKFPE explicitly, only V(t).  

Fig. 1. Estimates of parameters (a, b, Q) in an unstable first-
order linear system. 

Fig. 2. Estimates of parameters (a, b, Q) in the nonlinear 
system )()()()()1( 3 tvtbutaxtxtx +++=+  
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Estimate V(t) as the time average of the residuals.    

 (19) 

But V(t) can be estimated recursively starting from V(-1) = 0. 

T
t
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So if , set V(t) in the FEKFPE 

equations to , if not set V(t) = . Then 
the estimate for R is obtained from (19). 

TCttCPtV )1|()(ˆ −<
TCttCP )1|( − )(ˆ tV

   7. CONCLUSIONS. 

The FEKFPE has (n+np+nq) updates for , and x̂ θ̂ ρ̂ , an 
n(n+1)/2 dimensional Riccati update for P, the n(np+nq) 
updates for the gains of   and θ̂ ρ̂ , the (np+nq) updates for  
the variance of and θ̂ ρ̂ , and nq times n(n+1)/2 linear 
symmetric updates for Wi. Further simplification that retains 
global convergence is not possible.  
Although a continuous time version of FEKFPE has been 
proven globally convergent only in the one-dimensional case, 
it is now reasonable to proceed with the programming of a 
corresponding n-dimensional discrete-time version of 
FEKFPE for practical use. As a back-up, if FEKFPE 
converges in too small a region of parameter space, then 
FEKFPE2 can be programmed and global convergence 
guaranteed even in the n-dimensional case, although many 
more Wi equations would also need to be updated. The 
asymptotic averaged dynamic behaviour of FEKFPE and 
FEKFPE2 are analyzed and compared for a simple case in 
Appendix B. This simple case leads us to conjecture that 
FEKFPE2 makes FEKFPE more stable at the cost of a slower 
rate of convergence. 
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Appendix A. DERIVATION OF FEKFPE2 

For only this Appendix A, the parameter p-vector θ includes 
both structural θ and noise ρ parameters, so p = np + nq. See 
(Wiberg et al, 2000) for a description of the complicated 3-
OM parameter estimator. There, equations (6.10) – (6.26) are 
proven globally convergent to a local maximum of the 
likelihood function. FEKFPE2 is a reformulation of 3-OM 
resulting from redefining variables in (6.10) – (6.26) as: 

(1) The parameter p-vector θ is written for one element  at 
a time for i = 1, 2, …, p. Then the daunting Kronecker 
products collapse to merely matrix products. 

iθ

(2) Each element θi is assumed independent of θj for i not 
equal to j. Then it can be shown that estimates of the 
parameter variance become scalar σi for each i. 

(3) The estimate of third-order moment Kronecker products 
denoted M in 3-OM becomes a sequence of n x n matrices 
denoted Wi here, for i = 1, 2, …p. 

(4) The Kronecker products involving the permutation matrix 
U are easily computed by realizing that the expressions 
containing U must be permutations of the matrices in the 
products. 

(5) For simplicity, the cross correlation matrix S between 
process and measurement noise is taken to be zero. 

(6) In 3-OM, the state x(t) is excited by white noise v(t), so 
P(t) does not decay, but parameter gain k(t) and parameter 
variance σ(t) decay as O(1/t). FEKFPE2 equations omit terms 
that decay faster than other terms in any equation.  

The resulting FEKFPE2 projected equations are the 
measurement updates, for i = 1, 2, …, p, with projection 
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With initial conditions  = 0. Time up date is: 
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Appendix B. ASYMPTOTIC DYNAMICS OF FEKFPE 
AND FEKFPE2 

In this Appendix B, we analyze and compare the asymptotic 
averaged dynamic behavior of FEKFPE and FEKFPE2 in 
continuous-time, rather than the discrete-time, and only for a  
one-dimensional example. However, this example gives a 
reason to choose either FEKFPE or FEKFPE2.  Consider 

.dwcxdtdy
dvxdtdx

+=
+= θ

 (B. 1)                                                  

Here, the parameter θ is to be estimated, and Q > 0 and r > 0 
are known scalar variances associated with the independent 
Brownian motions v(t) and w(t)  Now apply the continuous-
time limit of un-projected FEKFPE2.  Define   

dtxcdyd ˆ−=ε and , so FEKFPE2 is rPc /2−=Λ θ

rPcddtxxd /ˆˆˆ εθ +=  (B. 2) 
rckdd /ˆ εθ =  (B. 3) 

kxQrPcPdtdP ˆ2/ˆ2/ 22 ++−= θ  (B. 4) 

rWcddtxkdk /)ˆˆ( εσθ ++=  (B. 5) 
22/ kcdtd −=σ  (B. 6) 

.22/ PWdtdW σ+Λ=  (B. 7) 
 
FEKFPE consists of the same equations except W = 0. In this 
example, FEKFPE is the same as the EKFPE. Using Ito 
calculus, change variables in (B. 2) - (B. 7) as  

)()()(),()()(),(/1)( tWtttLtttktsttt µµσµ === .  

Then (B. 2) – (B. 7) become     

        (B. 8) 
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Then the averaged trajectories )(τθ  of  andθ̂ )(τµ of 1/σ 
obey (Wiberg and DeWolf, 1993). 
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22

2

µµ

µτθ

−=

=

rcsdtd

rcxsdd
 (B. 9) 

The two expected quantities in the above are found forming 

,dwdvdtd HGΨξξ ++=  (B. 10) 

from (B. 8) for  and (B. 1) for θθ =ˆ
Tθθ = , the true value 

of θ, in which we have defined  
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where Π and L obey the steady state of (B. 8) as  

.2ˆ20

/ˆ20 22

Π+=

+−=

LΛ

QrcΠΠθ  (B. 12) 

The steady state variance Liapunov equation for (B. 10) is 

TTT0 HHGGΣΨΨΣ rQ +++= , (B. 13) 

where . The solution is }E{ TξξΣ =

))](,(),([}~E{
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 (B. 14) 

where α(θ, θT), β(θ, θT) and γ(θ, θT) are the  positive constants 

),(/)2/}(E{),( 22
TTT rΠcΠx θθγθθθα −=   

),(/}E{)(),( 22
TTT rcx θθγθθθθβ +−=  (B. 15) 

)/(2),( 2
TT ΛΛ θθθγ +−= , 

in which the θs and Λ are negative by stability and Π is 
positive as a variance.  Substitution of (B. 14) into (B. 9) and 
using θ for θ then gives 
 

./)()],(),([/ 2 µθθθθβθθατθ rcLdd TTT −+=  (B. 16) 

Thus θ converges only to Tθ for all permissible (positive) 
values of L of FEKFPE2 and for L = 0, i.e., for FEKFPE. 
This simple example leads to the conjecture that FEKFPE2 is 
more stable than FEKFPE, but converges slower on average. 
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