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Abstract: In order to evaluate the driving stability of a motor vehicle, the accurate determination of the 

vehicle sideslip angle is of significant importance. With the help of the sensor signals in today’s 

production vehicles, this state can only be determined with limited accuracy. We propose an algorithm for 

the determination and estimation of the vehicle state based on the Unscented Kalman Filter. In the 

described estimator a two-track model of the vehicle is used, which represents the road contact with the 

Pacejka’s Magic Formula tyre model. 

 

1. INTRODUCTION 

For a reliable assessment of a vehicle’s driving state and 

driving stability, the exact determination of the vehicle 

sideslip angle is of great importance. Using the sensors 

available in today’s production vehicles, the sideslip angle 

can only be determined with limited accuracy. Sensors for 

lateral acceleration, yaw rate, steering wheel angle and wheel 

speeds can be regarded as standard equipment in most cases. 

Series applications of optical speed sensors providing direct 

measurement of longitudinal and lateral velocity or sideslip 

angle seem to be improbable for the near future. Sideslip 

angle determination based on a combination of inertial 

measurements and satellite navigation systems (Global 

Positioning System, GPS) is currently researched and might 

become available in future cars (Ryu, 2004). 

In this context, this work is aimed at the determination of the 

vehicle’s driving state. In literature, several works and 

approaches concerning vehicle state estimation can be found 

(e.g., Boßdorf-Zimmer et al., 2006, Mao et al., 2006, 

Pruckner, 2001, Zuurbier & Bremmer, 2002). In general, 

vehicle dynamics are represented by suitable models. In 

modelling and simulation of vehicle dynamics, the exact 

reproduction of the tyre behaviour is an essential criterion for 

model accuracy, since tyre characteristics significantly affect 

the horizontal forces acting upon the vehicle. Especially for 

high lateral accelerations and in transient vehicle states, the 

tyre behaviour shows various non-linearities. 

All publications concerning vehicle state estimation known to 

the authors utilize highly simplified tyre models. In order to 

be able to employ a linear Kalman filter, a linear model must 

be used. In this case, the side-force behaviour of the tyre is 

reduced to a lateral stiffness. The extended Kalman filter, 

which can be applied to nonlinear systems, also requires 

simplified tyre models. The tyre forces must be differentiable 

with respect to all state variables. For this reason, approxima-

tions of the tyre characteristics based on exponential func-

tions are used in some cases. The degressive dependency of 

lateral tyre force on wheel load and its impact on the 

vehicle’s handling characteristics remain unconsidered in 

many publications. 

For conventional variants of the Kalman filter, the plant 

model needs to be simplified to linear systems or at least to 

differentiable systems. For this reason, algorithms have been 

developed which compensate these constraints and are able to 

deal with non-differentiable systems. In this context the so-

called Unscented Kalman Filter is an interesting approach, 

since it can be adopted to any non-linear system while the 

necessary computational effort is not significantly increased 

(Julier & Uhlmann, 1997). 

The objective of this work is the use of a complex tyre-model 

in order to represent vehicle dynamics in a more accurate 

way. The widely used Pacejka tyre-model, the so-called 

Magic Formula (Bakker et al., 1987), represents non-linear 

tyre characteristics quite well. However, it is not easily diffe-

rentiable and therefore not used in any previous papers. The 

implementation of a vehicle state estimation based on the 

Unscented Kalman Filter allows the integration of this tyre-

model. 

2. VEHICLE MODELLING 

For the design of a state estimator, it is necessary to establish 

a model of the corresponding system. For the representation 

of lateral dynamics with low lateral accelerations (approx. 3-

4 m/s²), the linear single track model is often used, applying 

various simplifications compared to the real vehicle. The 

tyres of one axle are approximated to one tyre on the centre 

line of the vehicle, the centre of gravity is located on the road 

surface and the lateral forces are calculated as a linear 

function of tyre sideslip (cornering stiffness). 

To arrive at a more exact modelling approach of lateral 

dynamics and validity for higher lateral accelerations, diffe-

rent more complex and non-linear models are used e.g., non-
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linear single track or two track models. In this work, an 

extension to a non-linear two-track model is made use of (see 

Fig. 2-1). For this purpose, a vehicle with four wheels is 

considered whose centre of gravity is located at a height hSP 

above the road surface. There are no simplifications applied 

for small angles, and cornering stiffness depends on wheel 

vertical forces and slip angle in a non-linear way. The roll 

momentum caused by the lateral acceleration is distributed 

between front and rear axle based on the proportions in the 

real vehicle. Thus tyre lateral force characteristics are influ-

enced, in case this dependency is represented by the tyre 

model, providing a possibility to tune the steering behaviour 

according to the reference vehicle. 

 

Fig. 2-1. Two-track vehicle model 

The equations of the two-track model used are the following 

(Renner, 2006): 

Rvl,yRvr,yhl,yhr,yy FFFFam δδ coscos +++=  , (1) 

hhl,yRvl,yRvvl,yz lF
2

s
FlFJ −+= δδψ sincos&&

Rvr,yRvvr,yhhr,y
2

s
FlFlF δδ sincos −+−  . (2) 

In this, m describes the vehicle mass, ay the lateral 

acceleration, Fy,vl, Fy,vr, Fy,hl, Fy,hr the tyre lateral forces front 

left, front right, rear left and rear right respectively, δR the 

steering angle, Jz the moment of inertia around the yaw axis, 
ψ&  the yaw rate, lv, lh the distance from the centre of gravity 

to front and rear axles respectively, and s the track width (see 

Fig. 2-1). 

The tyre lateral forces result from the tyre vertical forces and 

the tyre model used. In the work of Zuurbier & Bremmer 

(2002) a differentiable tyre model, based on an simple diffe-

rentiable exponential function, is adopted in a non-linear two-

track model. The present paper uses a tyre model based on 

Pacejka´s Magic Formula (MF): 

]})](arctan [[arctan {sin)( αααα BBEBCDFy −−=  . (3) 

The parameters B, C, D and E are estimated by optimization 

procedures based on tyre measurements (Bakker et al., 1987). 

Moreover, α describes the slip angle, i.e. the angle between 

wheel circumferential direction and motion direction of the 

wheel contact point. The slip angles are: 
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for both front and rear wheels (Renner, 2006) with the 

vehicle sideslip angle β and the velocity v of the center of 

gravity. Vertical tyre loads result from the stationary tyre 

load and the dynamic tyre load due to lateral and longitudinal 

acceleration. Tyre lateral forces depend on vertical tyre loads 

in a nonlinear way according to the drum test bench measure-

ments taken to parameterise the tyre model. 

Both non-linear tyre models and the linear tyre cornering 

stiffness are shown in Fig. 2-2. It becomes obvious that the 

three tyre models correspond well in the range of low slip 

angles. The tyre model based on an exponential function 

delivers good results up to the maximum of lateral force. But 

the degression of the lateral forces that do occur at higher slip 

angles can only be represented by the MF model, the expo-

nential tyre model cannot reproduce this phenomenon. Fur-

thermore, the degressive behaviour of lateral forces for in-

creasing vertical loads is modelled. This offers the possibility 

of tuning the understeering properties using roll moment dis-

tribution. 
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Fig. 2-2. Comparison of the tyre models 

Finally, the non-linear two-track model is noted in state space 

formulation: 

)( u,xfx =&  , (6) 

)( u,xhy =  , (7) 

where 

T][ yax ψβ &=  , (8) 

T][ ψ&yay =  , (9) 

Ru δ=  . (10) 

The functions f and h are derived from (1), (2) and the rela-

tionship 
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a y
−=ψβ &&  . (11) 

In principle the inclusion of the lateral acceleration ay in the 

state vector is not necessary. However, the numerical com-

plexity for the practical implementation of the vehicle state 

estimation is decreased by this. 

3. STATE ESTIMATION 

The goal of a model based state estimation is to compute state 

variables which cannot to be measured directly. The state is 

estimated using a model of the system whereas the know-

ledge of the input value and the measurable output values is 

assumed (cf. Fig. 3-1). In lots of applications different 

variants of the Kalman Filter are employed. 

 

Fig. 3-1. Principle of the model-based state estimation 

For the Kalman Filter based state estimation a model in state 

space is required. The estimation of the new system state is 

based on the actual state and the input values. For this 

estimated state the corresponding values of the measurable 

output are calculated and compared with the real values, as 

represented by the difference between the model and the real 

system. This difference is used for calculation of the 

necessary approximations or adjustments. 

In order to be able to use the Kalman Filter based vehicle 

state estimator the vehicle model taken from (6) and (7) has 

to be discretised. For the transition of the state +

kx̂  at the time 

tk to the state −

+1kx̂  at the time tk+1 we get: 

∫
+

+= +−
+

1

))()((1

k

k

t

t

kk du,x̂fx̂x̂ τττ  , (12) 

where )(τx̂  denotes the solution of the differential equation 

))()(()( tu,tx̂ftx̂ =&  (13) 

in the time interval [tk , tk+1] for the initial condition 
+= kk x̂tx̂ )( . 

Equation (12) describes a typical initial value problem which 

could be solved during simulations using e.g. the Runge 

Kutta Method. For real-time implementation with short 

sampling times it is often possible to assume minor changes 

of ))()(( tu,tx̂f  in the time interval [tk , tk+1]. Hence in the 

considered time interval we can set 

))()(())((( kk tu,tx̂fu),x̂f ≈ττ  . (14) 

Inserting into (12) results in 

))()((1 kkskk tu,tx̂ftx̂x̂ +≈ +−

+  , (15) 

where a constant sampling time kks ttt −= +1  is assumed.  

In the next step the measurable output values y(tk) need to be 

used to correct the estimated state 
−

kx̂  (estimated using (12) 

or (15)) as applicable. Both for the linear Kalman Filter and 

the Unscented Kalman Filter this is done by using the 

equation 

))(()(( kkskkkk tu,x̂ttyKx̂x̂
−−+ −+=  , (16) 

where Kk denotes the so-called Kalman Gain. In order to 

calculate the Kalman Gain we refer e. g. to Brown & Hwang, 

1992, Grewal & Andrews, 1993, Reif et al., 1999, Reif & 

Unbehauen, 1998.  

Using the Unscented Kalman Filter, the non-linear functions f 

and h are not linearised. Instead, the probability distribution 

of the states being influenced by noise and the corresponding 

output values corrupted by noise, is approximated. An 

artificial ensemble of different weighted states having a given 

average and a given covariance is calculated. The states of 

this ensemble are not chosen randomly but by a given proce-

dure (see e.g. Julier et al., 2000). For every state of this en-

semble 
+
kX̂  at the time tk the corresponding state at the time 

tk+1 is calculated by (12) or (15). Thus the ensemble 
−
+1kX̂  of 

the states at the time tk+1 is obtained, and using (7), i. e. 

))(( 111 +

−

+

−

+ = kkk tu,x̂hŷ  (17) 

the corresponding ensemble 
−
+1kŶ  of the measurable output 

values. Hence the actual estimation value and the covariance 
−

+1k,xxP  of the (still uncorrected) estimated state, the covari-

ance 
−

+1k,yyP  of the corresponding output values and the cross 

covariance 
−

+1k,xyP  between the estimated state and the corres-

ponding output values could be calculated. The calculation of 

the Kalman Gain Kk is done according to least squares 

estimation. It yields (Catlin, 1989, Julier & Uhlmann, 2004): 

1

k,yyk,xyk PPK
−−−= )(  . (18) 

4. RESULTS 

As described above, the equations of the non-linear two-track 

model using tyre models according to the Magic Formula are 

used for the implementation of a state estimator based on an 

Unscented Kalman Filter. For the estimator design, the 

covariance of the measurement noise and the covariance of 

the system noise are determined empirically. Design 

parameters for the Unscented Kalman Filter are chosen 

according to Wan & van der Merve, 2000.  

For adjusting the estimator design parameters and assessing 

the achieved estimation results, the estimator is integrated 

into a vehicle dynamics simulation environment. The basis 

for this simulation environment is formed by a 

MATLAB/Simulink full vehicle simulation model. 

Fundamentally, this model consists of the linear differential 

equations of motion of a 5 mass, 10 degree of freedom (DoF) 

system: translational and rotational motion of the body and 

vehicle respectively in three coordinate directions as well as 

translational motion of the 4 wheel masses. In addition to the 
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linear time invariant (LTI) core of the model, non-linear 

elements such as a tyre model, steering gear, and kinematics 

and compliance subsystems are used in order to improve the 

accuracy of the model. Hence, the dynamics of the real 

vehicle are represented with a high level of accuracy. 

This vehicle dynamics model substitutes the real vehicle in 

Fig. 3-1. The following values are fed into the vehicle state 

estimator by the vehicle dynamics model: steering angle, 

lateral acceleration, yaw rate, longitudinal acceleration and 

longitudinal velocity. The estimation results are validated by 

a comparison between the sideslip angle estimated and the 

sideslip angle calculated within the complex vehicle 

dynamics model. 

To provide conditions similar as in a real vehicle, the signals 

given to the estimation are corrupted in a realistic way, 

representing signals available on a vehicle’s CAN bus. To 

this end, the estimator inputs from the simuation environment 

are superimposed with noise and offset, quantised according 

to the CAN resolution of comparable signals in production 

vehicles and discretised. Therefore, the signals available for 

the estimator are of similar quality as the signals transmitted 

via CAN. An example of the lateral acceleration signal is 

shown in Fig. 4-1. 
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Fig. 4-1. Realistic corruption of the signals 

The estimation quality becomes obvious when comparing the 

estimated sideslip angle and the sideslip angle of the vehicle 

dynamics model. Additionally, the results of the estimation 

are compared to the results of a Kalman Filter based on a 

linear single track model. Simulation results for the 

manoeuvres step steer input, double lane change and single 

sinus steering are shown in the following. 

For the step steer input manoeuvre (40° steering angle, 

65 km/h, Fig. 4-2), it can be seen that the limits of the linear 

single track model are exceeded. The sideslip angle is 

estimated inaccurately by the linear Kalman Filter, whereas 

the non-linear estimator observes the sideslip angle 

significantly better despite of a remaining offset. It can also 

be seen that both estimation results are affected by the 

transmission-caused signal corruption in a similar way. 
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Fig. 4-2. Step steer input 

Significant advantages of the non-linear estimation are 

demonstrated in highly dynamic manoeuvres with large 

steering angles and high sideslip angles. In Fig. 4-3, the 

results of a double lane change simulation are illustrated. The 

estimation values nearly reach the reference signal during the 

whole manoeuvre. Especially there are virtually no phase 

lags. On the other hand, the linear Kalman Filter is able to 

represent the driving behaviour only insufficiently. 

Therefore, the estimated values show significant differences 

concerning both amplitude and phase. 
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Fig. 4-3. Double lane change at 65 km/h 

The situation represents similarly during the single sinus 

manoeuvre at 80 km/h vehicle velocity (see Fig. 4-4). Here a 

steering angle with an increasing amplitude is applied, 150° 

to the left and 225° to the right. Thereby high slip angles are 

reached and oversteering vehicle reaction is provoked. At the 

estimation result it becomes obvious that a linear tyre model 

is nowhere near enough to cover this manoeuvre. But it is 

possible to get a good estimation of the sideslip angle using 

the non-linear tyre model based on the Magic Formula.  
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Fig. 4-4. Single sinus manoeuvre 

The linear estimator exhibits higher sideslip angle values in 

most dynamic manoeuvres. This behaviour is due to the 

absence of a saturation in the side force behaviour, since the 

linear tyre produces unrealistically high lateral forces for 

large tyre sideslip angles, thus causing excessive yaw and 

vehicle sideslip reactions. 

In spite of the adequate results of the non-linear estimator, 

especially compared to the linear Kalman Filter, there are 

some differences found between estimations based on the 

Unscented Kalman Filter and the simulated reference values 

during all considered situations. These differences are to be 

attributed only to a minor part to the quality of the input 

signals. The primary cause for these differences is the high 

degree of simplification of the vehicle model used in the 

estimator. In the two track model, body and wheels are 

represented by a rigid body, not allowing for any relative 

motion between these elements. Therefore, any influence on 

the driving behaviour caused by heave, pitch and roll motions 

of the body cannot be represented. Furthermore, kinematics 

and compliance of the suspension, exerting important 

influence on stationary and transient lateral dynamics of the 

vehicle, are not modelled due to the same reason. Regarding 

these limitations of the two track model, the exact 

reproduction of vehicle motion will be limited in spite of the 

more accurate tyre model. 

As a secondary cause, some dynamic differences can be 

attributed to the transient tyre behaviour. The original 

modelling of Pacejka´s Magic Formula (Bakker et al., 1987) 

is used within the non-linear estimation. Current versions of 

the Magic Formula tyre model also represent the dynamic 

behaviour (Pacejka & Besselink, 1997), for e.g. the Version 

MF 5.2 put into the vehicle dynamics model used above. In 

order to be able to implement such a tyre model in the 

estimator, the state vector has to be extended by a 

corresponding state variable of the tyre model. Since this 

applies to all four tyres independently, the state vector would 

have to be extended to at least a dimension of 7. The 

computation effort caused by this extension would be 

disproportionate relative to the improvement of the 

anticipated estimation results. Therefore only the stationary 

tyre model of the Magic Formula is used in this work. 

Approaches to further improvements of the models are for 

instance an extension of the used two-track model 

(considering the tyre longitudinal forces) and an optimization 

of the vehicle parameters applied, as well as the design 

parameters of the Unscented Kalman Filter. Future work will 

also have to cover the issues of estimation robustness in 

different driving situations and the representation of low 

friction coefficients. 

5. CONCLUSIONS 

This paper shows an approach, how to implement a vehicle 

state estimator using a variant of the Kalman Filter, the so 

called Unscented Kalman Filter. This establishes the 

possibility to use non-linear elements, which are non-

differentiable or whose derivative cannot be calculated with 

an acceptable computation effort. The described estimation is 

based on a two-track model of the vehicle, which simulates 

the tyre behaviour with the Magic Formula of Pacejka. The 

estimation designed that way, offers a significant 

improvement of the estimation accuracy, with a low increase 

of calculation complexity, compared to the standard Kalman 

Filter. These improvements, especially during high-

dynamical manoeuvres with high sideslip angles, were 

demonstrated by means of a complex vehicle dynamics 

model. 
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