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Abstract: The authors recently proposed an approach to enforce strong feasibility in move-
blocking model predictive control problems. In this paper the approach is utilized to design
strong model predictive control problems which generate least restrictive controllers. The
domains of different move-blocking regimes are thus equal and the same as the non-move-
blocking maximum. This allows comparison of different move-blocking regimes based on cost
performance only, without considering domain size also. A numerical example and case study
demonstrate that between input- and offset-move-blocking, the latter is generally superior.

Keywords: Predictive control; constrained control; move-blocking; feasibility; set invariance.

1. INTRODUCTION

Move-blocking is used in many practical online model
predictive control (MPC) systems in order to reduce
the computational complexity of the associated finite-
horizon optimal control problem [Qin & Badgewell (1997);
Cagienard et al. (2007)]. In move-blocking MPC problems
a predicted control move sequence of N prediction steps is
parameterized by a sequence of Ñ < N predicted control
moves, where predicted control moves are held constant
over sets of multiple prediction steps. This method is
primarily targeted at complexity reduction in online MPC
methods but was demonstrated to reduce complexity in
offline MPC methods also [Tøndel & Johansen (2002)].

Strong feasibility describes the quality that the closed-loop
state trajectory from any feasible initial state never reaches
an infeasible state [Kerrigan (2000)]. In non-move-blocking
MPC problems, strong feasibility can be enforced using
terminal state constraints [Mayne et al. (2000)]. However,
terminal constraints fail to enforce strong feasibility in
move-blocking MPC problems [Cagienard et al. (2007)].
In Gondhalekar & Imura (2007a,b) the authors presented
a novel approach to strengthening MPC problems, appli-
cable to move-blocking and more general MPC problems.
In this approach the state at the first prediction step is
constrained to lie within the maximal controlled invariant
feasible set of the given MPC problem. This results in
the least-restrictive MPC control law for the given MPC
problem, with the controller domain equal to the max-
imal controlled invariant feasible set. Depending on the
move-blocking scheme, the maximal controlled invariant
feasible set can be very small when compared to the non-
move-blocking maximum, which is equal to the maximal
controlled invariant set [Blanchini (1999); Kerrigan (2000);
Vidal et al. (2000)]. This reduction from the maximum is
unwelcome firstly because the controller has a restricted
domain, and secondly because controller comparison and

optimization is difficult when both domain size and cost
performance are different [Gondhalekar & Imura (2007c)].

In this paper an approach is presented to relax the move-
blocking MPC problem such that the resulting maximal
controlled invariant feasible set is equal to that of the
non-move-blocking maximum. This is achieved by relaxing
the prediction state constraints beyond the first prediction
step. The resulting relaxed MPC problem retains strong
feasibility. For a given plant the controller domain is then
equal to the maximal controlled invariant set regardless of
prediction horizon length and move-blocking scheme used.
This allows comparison of different move-blocking schemes
based on the cost performance only. In the last part of this
paper a numerical example and case-study are presented
which compare input- and offset-move-blocking [Cagienard
et al. (2007); Gondhalekar & Imura (2007a,b)] for a large
number of different plants. The results indicate that offset-
move-blocking performs better in general, as is predicted
by the theory (see Section 2.3). The proposed approach is
also shown to be relevant for offline MPC methods, where
significant reductions in controller complexity are possible.
For simplicity this paper limits itself to linear-quadratic
MPC with polytopic constraint sets containing the origin.

Notation: The real number set is denoted by R and the
set of non-negative integers by N (N+ := N\0). Denote
by In ∈ {0, 1}n×n the identity matrix, by 0{n,m} ∈ 0n×m

the zero matrix and by 0 without subscript the zero matrix
with dimension deemed obvious by context. The Kronecker
product of matrices A and B is denoted by A ⊗ B. For
set X ⊂ Rn, Vol(X) :=

∫
X dx denotes the volume. A

sequence of elements xi ∈ X ∀i ∈ {j, . . . , k} is denoted
by {xi ∈ X}k

i=j . If the elements’ parent set is obvious by
context the sequence is denoted by {xi}k

i=j . Let i ∈ N
denote a system’s actual step index, while k ∈ N denotes
the (i + k)th step as predicted from actual step i. Thus,
ψ(i,k) denotes the future value of variable ψ at step i+ k,
as predicted from step i. For compact notation ψ(i,0) ≡ ψi.
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2. MOVE-BLOCKING MPC

There are various kinds of move-blocking regime [Cagien-
ard et al. (2007)]. This paper concerns itself with two
of them; input- and offset-move-blocking [Gondhalekar &
Imura (2007a,b)]. For simplicity the strongly feasible MPC
problem formulation (Sections 2.1, 2.2) and the MPC
problem relaxation (Section 3) are explained at hand of
input-move-blocking only. The derivation for offset-move-
blocking follows analogously. A discussion on the basic
difference between input- and offset-move-blocking is pro-
vided in Section 2.3. In Sections 4 and 5 both input- and
offset-move-blocking are investigated. Subscript ‘I’ is used
to denote variables relevant to input-move-blocking, while
subscript ‘O’ denotes those of offset-move-blocking.

2.1 Input-Move-Blocking MPC

Consider the linear time-invariant controlled system

xi+1 = Axi +Bui (1)
with step index i ∈ N, system state x ∈ Rn, control input
u ∈ Rm, state transition matrix A ∈ Rn×n and input
distribution matrix B ∈ Rn×m. The pair (A,B) is assumed
stabilizable. State and control input must satisfy

xi ∈ X ⊆ Rn ∧ ui ∈ U ⊆ Rm ∀i ∈ N, (2)
with polytopic constraint sets X := {x ∈ Rn|Gxx ≤ Wx},
Gx ∈ Rgx×n and U := {x ∈ Rm|Gux ≤ Wu}, Gu ∈
Rgu×m, containing the origin within their interior. MPC
achieves closed-loop control action of system (1) subject to
constraints (2) by applying at each step i the first control
input of an optimal predicted open-loop control input
trajectory, determined by the solution of N -step (N ∈ N+,
N <∞) finite-horizon optimal control Problem 1.
Problem 1. Find:

U∗i (xi) := arg min
Ui:={u(i,k)∈U}N−1

k=0

{
xT

(i,N)Px(i,N)

+
N−1∑
k=0

[
xT

(i,k)Qx(i,k) + uT
(i,k)Ru(i,k)

] }
s.t. x(i,k) ∈ X ∀k ∈ {0, . . . , N} ∧ (3)

x(i,k+1) = Ax(i,k) +Bu(i,k) ∀k ∈ {0, . . . , N − 1} .
Terminal cost matrix P solves the discrete-time Riccati
equation P = ATPA+Q−ATPB

(
BTPB +R

)−1
BTPA.

Assumption 2. Q � 0, R � 0.

Writing Ui in vector form Ui :=
[
uT

(i,0), . . . , u
T
(i,N−1)

]T ∈
UN , MPC Problem 1 can be reformulated into matrix form
[Bemporad et al. (2002); Borrelli (2003)].
Problem 3. Find:

U∗i (xi) := arg min
Ui∈RNm

{
UT

i HIUi + UT
i LIxi

}
s.t. GIUi ≤WI + EIxi

whereHI , LI , GI ,WI and EI are constructed from A, B,Q,
R, P , Gx, Wx, Gu and Wu. Suppose WI is constructed as:
WI =

[
Wx

T,Wu
T,Wx

T,Wu
T, · · · ,Wx

T
]T ∈ RN(gx+gu)+gx .

In move-blocking schemes, control input trajectory Ui ∈
RNm of N control moves is parameterized by a control
input trajectory Ũi :=

[
ũT

(i,0), . . . , ũ
T
(i,Ñ−1)

]T ∈ RÑm

of Ñ < N (Ñ ∈ N+) control moves and a blocking
matrix M ∈ {0, 1}N×Ñ according to [Cagienard et al.
(2007); Gondhalekar & Imura (2007a,b); Tøndel & Jo-
hansen (2002)]:

Ui = (M ⊗ Im)Ũi = M̃Ũi , M̃ := M ⊗ Im . (4)

Substituting input trajectory parameterization (4) into
MPC Problem 3 yields move-blocking MPC Problem 4:
Problem 4. Find:

Ũ∗i (xi) := arg min
Ũi∈RÑm

{
ŨT

i M̃
THIM̃Ũi + ŨT

i M̃
TLIxi

}
s.t. GIM̃Ũi ≤WI + EIxi .

Note that in this work the blocking matrix M is fixed and
does not change with system step i. Thus this work focuses
on time-invariant move-blocking schemes.

2.2 Strong Feasibility in Input-Move-Blocking MPC

When M = IN , move-blocking MPC Problem 4 is equiva-
lent to MPC Problem 3, and is referred to as the full de-
gree of freedom MPC problem. Strong feasibility [Kerrigan
(2000)] of full degree of freedom MPC problems is enforced
via terminal constraints [Mayne et al. (2000)]. However,
terminal constraints fail to enforce strong feasibility of
move-blocking MPC Problem 4 when M 6= IN [Cagienard
et al. (2007)]. The authors developed a generalized method
for enforcing strong feasibility in MPC problems, applica-
ble to move-blocking and more general MPC problems.
The method is stated here to enable further discussion.
For a thorough discussion consult Gondhalekar & Imura
(2007a,b). The strongly feasible move-blocking MPC prob-
lem based on MPC Problem 4 is as follows:
Problem 5. Find:

Ũ∗i (xi) = arg min
Ũi∈RÑm

{
ŨT

i M̃
THIM̃Ũi + ŨT

i M̃
TLIxi

}
s.t. GIM̃Ũi ≤WI + EIxi ∧ x(i,1) ∈ FI

where maximal controlled invariant feasible set FI is de-
fined as:

FI :=
{
x0 ∈ X|∃

{
Ũi ∈ RÑm

}∞
i=0

s.t. ∀i ∈ N,

GIM̃Ũi ≤WI + EIxi ∧ xi+1 = Axi +BFM̃Ũi ∈ X
}
,

F :=
[
Im , 0{m,(N−1)m}

]
.

The optimal control law κI : Rn → {U, ∅} resulting from
strongly feasible MPC Problem 5 is given implicitly by
u∗i = κI(xi) := ũ∗(i,0)(xi) = FM̃Ũ∗i (xi), or explicitly
[Bemporad et al. (2002); Borrelli (2003)] as a piecewise
affine (PWA) function: κI(xi) = Ks

I
xi + as

I
if xi ∈ X s

I
, s ∈

{1, . . . ,SI}, where SI denotes the number of regions in the
PWA partition. If MPC Problem 5 is infeasible for xi we
write κI(xi) = ∅. The set {x ∈ Rn|κI(x) 6= ∅} =

⋃SI
s=1 X s

I
is

termed the domain of controller κI . The closed-loop state
trajectory evolves according to xi+1 = Axi +BκI(xi).
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2.3 Offset-Move-Blocking MPC

In offset-optimization MPC [Rossiter et al. (1997)], the
system is pre-regulated by unconstrained LQR state feed-
back such that u(i,k) = KLQRx(i,k) + c(i,k) ∀(i, k) ∈ N ×
{0, . . . , N − 1}, KLQR := −

(
R+BTPB

)−1
BTPA. The

terms c(i,k) ∈ Rm are the control input offsets from the
unconstrained optimal control inputs which take into ac-
count system constraints. The offset-move-blocking MPC
problem formulation proceeds analogously to the above
input-move-blocking case, where instead of parameter-
ized predicted open-loop control input-trajectory Ũi ∈
RÑm, the optimization variable is the parameterized pre-
dicted open-loop control input offset-trajectory C̃i :=[
c̃T(i,0), . . . , c̃

T
(i,Ñ−1)

]T ∈ RÑm. The resulting controller is
denoted by κO . For details see Cagienard et al. (2007),
Gondhalekar & Imura (2007b), Rossiter et al. (1997).
Remark 6. In the full degree of freedom case when M =
IN , input-move-blocking controller κI and offset-move-
blocking controller κO are the same. When M 6= IN they
are, in general, different. Surrounding the origin is a region
where no constraint is active. In this region the constrained
MPC problem is equivalent to the unconstrained MPC
problem, i.e. when U = Rm and X = Rn. In this region,
offset-move-blocking controller κO is infinite-horizon opti-
mal. It corresponds to the unconstrained LQR optimum,
because the sequence of predicted control input offsets
equal to zero is the optimum for any blocking matrix M .
This cannot be said for input-move-blocking controller κI ,
which is not guaranteed to provide the LQR optimal solu-
tion for any state except the origin. Offset-move-blocking
might therefore be expected to outperform input-move-
blocking. However, the domain of controllers κI and κO

are in general different. In Cagienard et al. (2007) it was
reported that domains of offset-move-blocking MPC con-
trollers may be significantly smaller than those of input-
move-blocking ones.

3. PREDICTION CONSTRAINT RELAXATION

Maximal controlled invariant set C :=
{
x0 ∈ X|∃{ui ∈

U}∞i=0 s.t. xi+1 = Axi + Bui ∈ X ∀i ∈ N
}

[Blanchini
(1999); Vidal et al. (2000)] is the largest set of states
from which a permissible control input trajectory exists
such that the resulting closed-loop state trajectory satisfies
all state constraints. Clearly it is not possible to design
an MPC controller (or any) with a domain larger than
the maximal controlled invariant set. If M = IN then
FI = C. However, for M 6= IN maximal controlled
invariant feasible set FI is in general a subset of the
maximal controlled invariant set: FI ⊆ C. In the numerical
example of Section 4 the difference in size of the domain is
considerable. The decrease in domain size of move-blocking
MPC controllers was also reported in Cagienard et al.
(2007) and Gondhalekar & Imura (2007a,b). The reason
for this decrease is obvious. For the same prediction state
constraints of Eq. (3), reducing the degrees of freedom of
the predicted open-loop control input trajectory may cause
states close to the boundary of the maximal controlled
invariant set to become infeasible. Consider a state x0 ∈ D,
D := C\FI . There exists a sequence of inputs {ui ∈ U}∞i=0
such that xi+1 = Axi + Bui ∈ X ∀i ∈ N. However, there

does not exist a sequence of parameterized predicted open-
loop input trajectories {Ũi ∈ UÑm}∞i=0 such that ∀i ∈ N,
GIM̃Ũi ≤WI + EIxi ∧ xi+1 = Axi +BFM̃Ũi ∈ X.

Enforcing strong feasibility by constraints on the state
at the first prediction step, as opposed to terminal con-
straints, allows a degree of flexibility in choosing the
prediction constraints. Both prediction state and control
input constraints beyond the first prediction step affect
only the predicted open-loop system’s performance of the
model inside the controller, which is a software issue.
Only constraints on the first prediction step directly affect
physical control inputs and the resulting closed-loop state
trajectory. Prediction constraints which must be satisfied
are: u(i,0) ∈ U ∧ x(i,k) ∈ X ∀k ∈ {0, 1}. In this section a
relaxation procedure of the prediction state 1 constraints
x(i,k) ∈ Xk ∀k ∈ {2, . . . , N} is developed, where prediction
state constraint sets Xk := {x ∈ Rn|Gxx ≤Wx + δk} ⊇ X,
δk ∈ Rgx , δk ≥ 0 have been minimally increased in size
from the actual state constraint set X such that maximal
controlled invariant feasible set F̂I , which takes into ac-
count the relaxed prediction state constraints, equals the
maximal controlled invariant set: F̂I = C.
Assumption 7. Maximal controlled invariant set C can be
defined as the convex hull of a finite number of vertices
vs ∈ X, s ∈ {1, . . . , S}, S ∈ N+, S <∞.

The aim is to design a minimal 2 prediction state con-
straint relaxation ∆ :=

[
δT2 , . . . , δ

T
N

]T ∈ R(N−1)gx such
that a feasible parameterized predicted open-loop control
input trajectory Ũs ∈ UÑ exists for each vertex vs.
Problem 8. Find:

∆∗ := arg min
∆∈R(N−1)gx

∆T∆

s.t. ∀s ∈ {1, . . . , S} ∃Ũs ∈ RÑm s.t.

GIM̃Ũs ≤WI + EIvs + Z∆ (5)

where distribution matrix Z ∈ {0, 1}[N(gx+gu)+gx]×(N−1)gx

places the relaxations into their correct position:

Z :=



0{2(gx+gu),(N−1)gx}

Igx 0{gx,gx} 0{gx,gx} · · · 0{gx,gx}

0{gu,gx} 0{gu,gx} 0{gu,gx} · · · 0{gu,gx}

0{gx,gx} Igx 0{gx,gx} · · · 0{gx,gx}

0{gu,gx} 0{gu,gx} 0{gu,gx} · · · 0{gu,gx}
...

...
...

. . .
...

0{gx,gx} 0{gx,gx} 0{gx,gx} · · · Igx


.

Problem 8 can be rewritten in standard form as a quadratic
programming (QP) problem.
Problem 9. Find:

∆̄∗ := arg min
∆̄∈R(N−1)gx+SÑm

∆̄TH̄∆̄

s.t. Z̄∆̄ ≤ W̄
1 Both prediction state and control input constraints can be relaxed.
For simplicity only prediction state constraints are considered here.
2 Minimization is performed with respect to a quadratic measure. A
linear (or other) measure could be used instead.
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with H̄ :=


I(N−1)gx 0 · · · 0

0 0 · · · 0
...

...
. . .

...
0 0 · · · 0

 , W̄ :=


WI + EIv1
WI + EIv2

...
WI + EIvS

 ,

∆̄ :=


∆
Ũ1

...
ŨS

 and Z̄ :=


−Z GIM̃ 0 · · · 0
−Z 0 GIM̃ · · · 0
...

...
...

. . .
...

−Z 0 0 · · · GIM̃

 .
The optimal prediction state constraint relaxation is then
given as follows: ∆∗ :=

[
I(N−1)gx , 0{(N−1)gx,SÑm}

]
∆̄∗.

Remark 10. Problem 9 is not strictly convex, because H̄
is only positive semi-definite. This may cause problems
for QP problem solvers, because the solution, if it exists,
is not guaranteed to be unique. A non-unique solution, if
it exists, is however guaranteed to be a global minimum.
So, this issue is of little concern as long as the solver
is able to terminate with the determination of some
minimizing solution. In all cases considered by the authors
a minimizing solution was determined without problems.
Lemma 11. A prediction state constraint relaxation ∆,
∆T∆ <∞ satisfying Eq. (5) exists.

Proof. For step i and initial state xi ∈ X, consider
any predicted open-loop control input trajectory {u(i,k) ∈
U}N−1

k=0 and the resulting predicted open-loop state trajec-
tory: x(i,k+1) = Ax(i,k) + Bu(i,k) ∀k ∈ {0, . . . , N − 1}.
Constraint sets X and U are bounded by assumption,
therefore each member of the predicted state trajectory
{x(i,k)}N

k=0 is bounded. For each step k it is thus possible to
find a prediction state constraint relaxation δk, δTk δk <∞
such that xk ∈ Xk, Xk := {x ∈ Rn|Gxx ≤ Wx + δk}.
Assume such prediction state constraint relaxations have
been found: ∆ = [δT2 , . . . , δ

T
N ]T. Then, the only constraints

of Eq. (5) to be able to become active are: x(i,k) ∈ X
∀k ∈ {0, 1}. The constraints are then equivalent to those
defining the maximal controlled invariant set C. 2

The maximal controlled invariant feasible set taking into
account the relaxed constraints is then defined as follows:

F̂I :=
{
x0 ∈ X|∃

{
Ũi ∈ RÑm

}∞
i=0

s.t. ∀i ∈ N,

GIM̃Ũi ≤ (WI + Z∆∗) + EIxi ∧

xi+1 = Axi +BFM̃Ũi ∈ X
}

= C.

Equality with C follows from the convexity of FI (see
Gondhalekar & Imura (2007a,b)) and Assumption 7. De-
fine the relaxed MPC problem as follows.
Problem 12. Find:

Ũ∗i (xi) = arg min
Ũi∈RÑm

{
ŨT

i M̃
THM̃Ũi + ŨT

i M̃
TLxi

}
s.t. GIM̃Ũi ≤ (WI + Z∆∗) + EIxi ∧ x(i,1) ∈ F̂I

The optimal control law κ̂I : Rn → {U, ∅} based on MPC
Problem 12 is then given by u∗i = κ̂I(xi) := FM̃Ũ∗i (xi),
κ̂I(xi) = K̂s

I
xi + âs

I
if xi ∈ X̂ s

I
, s ∈ {1, . . . , ŜI}.

4. NUMERICAL EXAMPLE

The double integrator with sample-period τ = 0.2s,

xi+1 =
[

1 0.2
0 1

]
xi +

[
0.02
0.2

]
ui

with constraint sets U = {u ∈ R|‖u‖∞ ≤ 1}, X = {x ∈
R2|‖x‖∞ ≤ 2} and prediction horizon length N = 50 is
considered. Two blocking regimes were chosen:

M1 = IN , M2 =
[

1 0 · · · 0
0 1 · · · 1

]T

∈ {0, 1}N×2. (6)

The prediction horizon N = 50 was chosen long enough
to ensure that the full degree of freedom MPC problem
when M = M1 results in the infinite-time optimal control
law [Grieder et al. (2004); Mayne et al. (2000)]. Note that
use of blocking matrix M2 achieves an enormous reduction
in computational complexity of the MPC problem, as the
number of decision variables is reduced from 50m to 2m.

Figure 1 shows the maximal controlled invariant set C =
FI(M1) = FO(M1) within X as the outer, lighter set,
the maximal controlled invariant feasible set FO(M2) as
the middle, medium dark set, and the maximal controlled
invariant feasible set FI(M2) as the inner, dark set. The
difference in size is clearly visible: Vol(X) = 16, Vol(C) =
13.34, Vol(FO(M2)) = 12.57, Vol(FI(M2)) = 8.65.

The prediction state constraint relaxation ∆∗ was com-
puted forM = M2. Denote the associated relaxed maximal
controlled invariant feasible set by F̂I(M2) = F̂O(M2) = C.
Figure 2 shows the relaxed prediction state constraint
sets Xk ∀k ∈ {2, . . . 50} for the input-move-blocking case.
Those for the output-move-blocking case are similar. From
Figure 2 it cannot be determined which set corresponds to
which prediction step. Generally, prediction steps towards
the end of the prediction horizon have larger relaxed pre-
diction state constraint sets associated with them.

The closed-loop system performance with κ̂I (κ̂O) due to
relaxed MPC Problem 12 is investigated. Denote by

x1

x2

Fig. 1. Maximal controlled invariant set: C (outer, light).
Maximal controlled invariant feasible sets: FO(M2)
(middle, medium dark), FI(M2) (inner, dark).
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x1

x2

Fig. 2. Relaxed prediction state constraint sets Xk ∀k ∈
{2, . . . , 50} for the input-move-blocking case.

J(x,M) :=
∞∑

i=0

[
xT

i Qxi + κT(xi)Rκ(xi)
]

, x0 = x

the running cost of a trajectory starting from initial
state x, subject to control law κ determined by blocking-
matrix M . Denote the average running cost over the entire
controller domain F(M) of controller κ by

V (F(M)) :=
1

Vol(F(M))

∫
F(M)

J(x,M) dx .

Methods introduced by the authors in Gondhalekar &
Imura (2007c) were used to evaluate the average cost
V (F(M)) exactly. The average running cost was computed
for both input- and offset-move-blocking, for use of block-
ing matrices M1 and M2. For use of M2, the controller
was generated by relaxed MPC Problem 12. Results are
tabulated below. Cost matrices Q = In, R = Im were
chosen. The average running cost for input-move-blocking
is roughly 14% higher than for the optimal, full degree of
freedom controller, whereas for offset-move-blocking there
was no measurable performance difference.

x1

x2

Fig. 3. Full degree of freedom controller partition (M1 =
IN ) for input- and offset-move-blocking: 25 regions.

x1

x2

Fig. 4. Input-move-blocking controller partition using M2:
31 regions. 99.6% volume contained in 7 regions.

Regime V V/V ∗ Regions

V ∗ = V (FI(M1))
= V (FO(M1))

20.67 1 25

V (F̂I(M2)) 23.54 1.139 31

V (F̂O(M2)) 20.67 1.000 5

The right hand column of the above table contains the
number of regions of the associated PWA controller par-
titions, which are plotted for controller κI = κO (Fig. 3),
constraint relaxed, input-move-blocking controller κ̂I (Fig.
4) and constraint relaxed, offset-move-blocking controller
κ̂O (Fig. 5). The offset-move-blocking controller partition
has only 5 regions, compared to the 25 regions of the
full degree of freedom controller partition. The input-
move-blocking controller partition has 31 regions, although
many of them are extremely small and located at the fringe
of the domain. In fact, 99.6% of the domain’s volume
is contained within the central 7 regions. These results
indicate that the proposed least restrictive move-blocking
method, intended mainly for complexity reduction in on-

x1

x2

Fig. 5. Offset-move-blocking controller partition using M2:
5 regions.
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line MPC methods, can be a powerful method to reduce
the complexity of offline MPC methods also, at no reduc-
tion in controller domain size.

A point of interest is the size of the region containing
the origin. This origin-region is the set of states at which
the constrained MPC problem is equivalent to the uncon-
strained MPC problem, i.e.: U = Rm, X = Rn. Suppose
the origin is located in the region with index 1: X̂ 1

I
, X̂ 1

O
.

Denote the origin-region for the full degree of freedom
controller when M = M1 by X 1. Then, X̂ 1

O
= X 1 always,

although X̂ 1
I
⊆ X 1. This effect is again due to the fact

that the predicted offset trajectory of only zeros results in
the LQR optimal control input within this region for the
offset-move-blocking controller, for any blocking matrix
M . The difference in size of set X̂ 1

I
of the input-move-

blocking controller can be seen clearly in Fig. 4.

5. WIDE-RANGING CASE STUDY

The average running cost and number of controller regions
are computed, as was done in Section 4 above, for a
large number of different plants. As above, constraint sets
U = {u ∈ R|‖u‖∞ ≤ 1}, X = {x ∈ R2|‖x‖∞ ≤ 2},
prediction horizon length N = 50, and the two blocking
matrices of Eq. (6) are chosen. Each plant has state
dimension n = 2, control input dimension m = 1, with
(A,B) controllable. Cost matrices Q = In and R = Im
are chosen. Twenty plants, ten open-loop stable, ten open-
loop unstable, are generated randomly and analyzed. Each
element ε of dynamics matrices A and B is generated
randomly using the following probability density function:

fpdf(ε) =
{

0.25 if − 2 ≤ ε ≤ +2
0 otherwise .

The prediction horizon is long enough such that the full
degree of freedom MPC problem generates the constrained
LQR optimal controller. Denote by V ∗ and S∗ the average
running cost and number of controller regions of the full
degree of freedom controller, for each plant. Denote by VI

and SI (VO , SO) the average running cost and number of
controller regions of relaxed, input- (offset-) move-blocking
controller κ̂I (κ̂O). Tabulated below are the normalized
average, maximum and minimum of these quantities.

Average Max. Min.
VI/V

∗ 1.11171 2.53616 1.00000
VO/V

∗ 1.00000 1.00000 1.00000
SI/S

∗ 1.39549 5.00000 0.40000
SO/S

∗ 0.94286 1.00000 0.60000

The above results are for nineteen of the twenty plants.
For one plant, input-move-blocking did not result in a
stabilizing control law, whereas offset-move-blocking did.
For this plant VO/V

∗ = 1.00014.

Within the scope of this case study, these results indicate
that offset-move-blocking, on average and in the worst
case, achieves better cost performance and fewer controller
regions than input-move-blocking. Input-move-blocking,
in the best case, may result in fewer controller regions.

6. CONCLUSION

In this paper a method to design strongly feasible, move-
blocking MPC problems which result in least-restrictive
controllers was proposed. The controller domain is equal
to the maximal controlled invariant set regardless of pre-
diction horizon length or move-blocking scheme used. This
allows comparison and optimization of the move-blocking
scheme based on cost performance alone, without having
to take controller domain size into consideration.

The results of a numerical example and case-study indicate
that between input- and offset-move-blocking, the latter
is very likely to be the method of choice. The proposed
approach is demonstrated to be capable of significant
complexity reduction in online as well as offline MPC
methods at no compromise in controller domain size and
little or no deterioration in control performance.
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