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Abstract: This paper focuses on the problem of robust H∞ control for a class of switched
nonlinear systems with neutral uncertainties via the multiple Lyapunov function approach.
Uncertainties are allowed to appear in channels of state, control input and disturbance input.
Conditions for the solvability of the robust H∞ control problem and design of both switching law
and controllers are presented. As an application, a hybrid state feedback strategy is proposed to
solve the standard robust H∞ control problem for nonlinear systems when no single continuous
controller is effective.
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1. INTRODUCTION

Due to theoretical significance and practical applications,
the study of switched systems has attracted rapidly grow-
ing interest (Liberzon (2003); Persis et al. (2003); Cheng et
al. (2005); Xie &Wang (2003); Zhao & Dimirovski (2004);
Sun& Ge (2005)). Many systems encountered in practice
exhibit switching between several subsystems depending
on various environmental factors such as mechanical sys-
tems, the automotive industry, switching power converters
and many other fields. A switched system can also be used
to describe an overall system of a single process controlled
by means of multi-controlller switching. Loosely speaking,
a switched system consists of a family of continuous-time
subsystems and a rule that specifies the switching among
them. Regarding design of switched systems under some
properly chosen switching law, the multiple Lyapunov
function approach has been proven to be a powerful and
effective tool regarding design of switched systems (Bran-
icky (1998); El-Farra et al. (2005);).

On the other hand, the H∞ control problem has been
well understood and extensively explored for continuous
and discrete systems. The remarkable achievements may
be the algebraic Riccati inequalities for linear systems
and Hamilton-Jacobi inequalities for nonlinear systems
(Schaft (1996)). However, it has been rarely addressed for
switched systems. This is mainly because more difficulties
arise from the interaction between continuous variables
and discrete switching signals. The H∞ control problem
? This work was supported by Dogus University Fund for Science
and the NSF of P. R. China under the grant No. 60574013.

was studied in Zhai et al. (2001) by using average dwell
time approach incorporated with a piecewise Lyapunov
function. Hespanha (2003) gave a method of computing
the root-mean-square gains of switched linear systems.
Other method such as LMI (Ji et al. (2006)) was also
dedicated to the studies of the H∞ control problem for
switched linear systems. For the nonlinear case, however,
results are relatively rare and mainly explored with special
structures. The problem of the H∞ control for switched
nonlinear systems is addressed in Zhao &Hill (2004) and
Zhao& Zhao (2006) via the multiple Lyapunov function
approach.

Since uncertainties are unavoidable in practice, robust
control is of great importance and has been extensively
studied in the control field. However, switched systems
with neutral uncertainties have not been investigated so
far. This paper considers the problem of robust H∞ con-
trol for a class of switched nonlinear systems with neu-
tral uncertainties. On the basis of the multiple Lyapunov
function technique, a sufficient condition for the switched
nonlinear systems to be asymptotically stable with H∞-
norm bound is derived for all admissible uncertainties.
Then, for a non-switched nonlinear system with neutral
uncertainties, when a single continuous feedback control
law can not solve the standard robust H∞ control problem,
the problem is solved by controller switching among finite
candidate controllers. Finally, an example illustrates the
effectiveness of the proposed approach. Compared with
the existing results, this paper considers neutral uncer-
tainties since practical parameter perturbations are often
nonlinearly state and nonlinearly state derivative depen-
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dent. Additionally, it also allows uncertainties to appear
in channels of state, control input and disturbance input.

2. PROBLEM FORMULATION

Consider switched nonlinear systems described by the
state-space model of the form

ẋ+∆jσ(ẋ, t)=fσ(x)+∆fσ(x, t)+(gσ(x)+∆gσ(x, t))uσ

+(pσ(x)+∆pσ(x, t))ωσ,

z=hσ(x)+kσ(x)uσ, (1)
where σ(t) :<+→M ={1, 2, . . . ,m} is the right continuous
piecewise constant switching signal to be designed, x∈<n

is the state vector, ui ∈ <mi and ωi ∈ <pi which belong
to L2[ 0,∞) denote the control input and disturbance
input of the i-th subsystem respectively, z ∈ <qi is the
regulated output, fi(x), gi(x), pi(x), hi(x) and ki(x) are
known smooth nonlinear function matrices of appropriate
dimensions with fi(0) = 0 and hi(0) = 0, ∆ji(ẋ, t),
∆fi(x, t), ∆gi(x, t) and ∆pi(x, t) denote unknown smooth
nonlinear function matrices, i ∈ M . Additionally, we
assume all uncertainties satisfy the following assumptions.

Assumption 1. The uncertain functions ∆ji, ∆fi, ∆gi, and
∆pi are gain bounded smooth functions described by

∆ji(ẋ, t) = ejiδji(ẋ, t), ‖δji‖ ≤ ‖Wji ẋ‖,
∆fi(x, t) = efiδfi(x, t), ‖δfi‖ ≤ ‖Wfi(x)‖,
∆gi(x, t) = egiδgi(x, t), ‖δgi‖ ≤ ‖Wgi(x)‖,
∆pi(x, t) = epiδpi(x, t), ‖δpi‖ ≤ ‖Wpi‖

with known constant matrices eji
, efi

, egi
, epi

and
unknown function vectors δji

, δfi
, δgi

, δpi
satisfying

δji
(0, t) = 0 and δfi

(0, t) = 0. Wji
,Wfi

,Wgi
are known

smooth function matrices, Wpi
are given weighting matri-

ces, i ∈ M .

For convenience, we adopt the following notations (Bran-
icky (1998)) for switched system (1). Let
Σ = {x0; (i0, t0), (i1, t1), · · · , (in, tn), · · · , |ik ∈ M,k ∈ N}
denote a switching sequence with the initial state x0 and
the initial time t0, where (ik, tk) means that the ik-th
subsystem is active for tk ≤ t < tk+1.

Now, the robust H∞ control problem for switched system
(1) can be formulated as follows:
Given a constant γ > 0, design a continuous state feedback
controller ui(x) for each subsystem and a switching law
i = σ(t) such that
(a) The closed-loop system is asymptotically stable when
ωi = 0.
(b) System (1) has finite robust L2-gain γ from ωi to z for
all admissible uncertainties, i.e., there holds∫ T

0

zT(t)z(t) dt ≤ γ2

∫ T

0

ωT
i (t)ωi(t) dt + β(x0)

for all T > 0 and all admissible uncertainties, where β(·)
is some real-valued function.

Throughout this paper, <n denotes the n-dimensional
Euclidean space, and for a matrix P , P >0 denotes that P
is positive definite, the superscript “T” stands for matrix
transpose, I is the identity matrix, ‖ · ‖ represents either
the Euclidean vector norm or the induced matrix 2-norm,
and σ̄(·) denotes the largest singular value of a matrix.

3. MAIN RESULTS

In this section, we shall present a condition for the robust
H∞ control problem to be solvable, and design continuous
controllers for subsystems and a switching law.

First, we consider the robust H∞ control problem of the
switched system

ẋ+∆jσ(ẋ, t)=fσ(x)+∆fσ(x, t)+(pσ(x)+∆pσ(x, t))ωσ,

z=hσ(x). (2)
Theorem 1. Let a constant γ > 0 be given. Suppose that
(1) (fi+∆fi, hi) is detectable.
(2) There exist nonnegative functions βij(x) (i, j ∈ M),
positive constants λji

, λfi
, λpi

, and radially unbounded,
positive definite smooth functions Vi(x), Vi(x(0)) = 0 (i ∈
M) such that the following partial differential inequalities

∂Vi

∂x
fi + γ2

i CT
i Ci + γ2

i

(
1

2γ2
i

∂Vi

∂x
Bi+CT

i Di

)
R−1

i

·
(

1
2γ2

i

∂Vi

∂x
Bi+CT

i Di

)T
+

m∑
j=1

βij(Vi−Vj)≤ 0, i∈M (3)

hold, where

γ2
i = γ2

1 + σ̄(Wpi
)
/
λ2

pi

, Bi =[ pi λji
eji

λfi
efi

λpi
epi ],

Ci =

 (1/γi)hi

(1/λji
)Wji

fi

(1/λfi
)Wfi

0

, Di =

 0
(1/λji

)Wji
Bi

0
0

, Ri =I−DT
i Di.

Then, the robust H∞ control problem for (2) is solved
under some switching law.

Proof. Obviously, for any x ∈ Rn\{0}, there exists an
i ∈ M such that Vi(x)−Vj(x) ≥ 0, ∀j ∈ M . Then, the
switching law is taken as

σ(t)=min
i
{i : i = arg max

j∈M
Vj(x)}. (4)

Associated with the switching law (4) and nonnegative
functions βij(x), for any fixed x ∈ <n, it follows that∑m

j=1 βij (Vi − Vj) ≥ 0 for some i ∈ M and ∀j ∈ M . It
can be easily obtained from (3) that

∂Vi

∂x
fi+γ2

i CT
i Ci+γ2

i

(
1

2γ2
i

∂Vi

∂x
Bi+CT

i Di

)
R−1

i

·
(

1
2γ2

i

∂Vi

∂x
Bi+CT

i Di

)T

≤ 0, i ∈ M. (5)

Consider neutral uncertainty ∆ji(ẋ, t) as an exogenous
disturbance and define a new extended disturbance input
including it. To this end, let

dT
i =

[
ωT

i −(1/λji
)δT

ji
(1/λfi

)δT
fi

(1/λpi
)ωT

i δT
pi

]
.

In view of

dT
i di = ‖ωi‖2+

1
λ2

ji

δT
ji

δji +
1

λ2
fi

δT
fi

δfi +
σ̄(Wpi

)
λ2

pi

‖ωi‖2

=
(

1+
σ̄(Wpi

)
λ2

pi

)
‖ωi‖2+

1
λ2

ji

δT
ji

δji
+

1
λ2

fi

δT
fi

δfi
,

we obtain that

−γ2‖ωi‖2 =−γ2
i dT

i di+
γ2

i

λ2
ji

δT
ji

δji
+

γ2
i

λ2
fi

δT
fi

δfi
. (6)
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Considering Assumption 1, there holds

V̇i(x(t))+‖z‖2−γ2‖ωi‖2

=
∂Vi

∂x
(fi+∆fi+piωi+∆piωi−∆ji)+‖z‖2−γ2‖ωi‖2

=
∂Vi

∂x
(fi+Bidi)+hT

i hi−γ2
i dT

i di+
γ2

i

λ2
ji

δT
ji
δji

+
γ2

i

λ2
fi

δT
fi
δfi

.(7)

Furthermore,

γ2
i

λ2
ji

δT
ji

δji
≤ γ2

i

λ2
ji

(fi+∆fi+piωi+∆piωi−∆ji)
T
WT

ji

·Wji
(fi+∆fi+piωi+∆piωi−∆ji)

=
γ2

i

λ2
ji

fT
i WT

ji
Wji

fi+
γ2

i

λ2
ji

dT
i B

T
i WT

ji
Wji

Bidi

+
2γ2

i

λ2
ji

fT
i WT

ji
Wji

Bidi. (8)

Substituting (8) into (7) and considering (5), then, by
completing the squares, we have

V̇i(x(t))+‖z‖2−γ2‖ωi‖2

=
∂Vi

∂x
(fi+Bidi)+hT

i hi−γ2
i dT

i di+
γ2

i

λ2
ji

fT
i WT

ji
Wji

fi

+
γ2

i

λ2
ji

dT
i B

T
i WT

ji
Wji

Bidi+
2γ2

i

λ2
ji

fT
i WT

ji
Wji

Bidi+
γ2

i

λ2
fi

δT
fi
δfi

=
∂Vi

∂x
(fi+Bidi)+γ2

i CT
i Ci−γ2

i dT
i Ridi+2γ2

i CT
i Didi

=
∂Vi

∂x
fi+γ2

i CT
i Ci

−γ2
i

∥∥∥∥∥R
1
2
i di−R

− 1
2

i

(
1

2γ2
i

∂Vi

∂x
Bi+CT

i Di

)T
∥∥∥∥∥

2

+γ2
i

(
1

2γ2
i

∂Vi

∂x
Bi+CT

i Di

)
R−1

i

(
1

2γ2
i

∂Vi

∂x
Bi+CT

i Di

)T

≤ ∂Vi

∂x
fi+γ2

i CT
i Ci

+γ2
i

(
1

2γ2
i

∂Vi

∂x
Bi+CT

i Di

)
R−1

i

(
1

2γ2
i

∂Vi

∂x
Bi+CT

i Di

)T

≤0.

Therefore, we can obtain that

V̇i(x(t))+‖z‖2−γ2‖ωi‖2≤ 0. (9)
Now, we introduce

JT =
∫ T

0

(
zTz−γ2ωT

i ωi

)
dt.

According to (9) and the switching sequence Σ, suppose
t0 = 0, x(t0) = x(0), when T ∈ [tk, tk+1), for any
admissible uncertainties, we have

JT =
k−1∑
j=0

∫ tj+1

tj

(
zTz−γ2ωT

ij
ωij

+V̇ij
(x(t))

)
dt

−
k−1∑
j=0

(
Vij(x(tj+1))−Vij(x(tj))

)

+
∫ T

tk

(
zTz−γ2ωT

ik
ωik

+V̇ik
(x(t))

)
dt

− (Vik
(x(tT ))−Vik

(x(tk)))

≤−
k−1∑
j=0

(
Vij(x(tj+1))−Vij(x(tj))

)
− (Vik

(x(tT ))− Vik
(x(tk)))

= Vi0(x(0))−Vik
(x(tT ))

+
k−1∑
j=0

(
Vij+1(x(tj+1))−Vij

(x(tj+1))
)

(10)

Since Vσ(tk−1)(x(tk)) = Vσ(tk)(x(tk)), (10) leads to

JT ≤ Vi0(x(0))−Vik
(x(tT ))

+
k−1∑
j=0

(
Vij+1(x(tj+1))−Vij

(x(tj+1))
)

≤ Vi0(x(0))−Vik
(x(tT ))

≤ Vi0(x(0))

Let β(x(0)) = max
i0∈M

{Vi0(x(0))}. Therefore, we conclude

that ∫ T

0

zT(t)z(t) dt ≤ γ2

∫ T

0

ωT
i (t)ωi(t) dt + β(x(0))

holds for all admissible uncertainties and disturbance
input ωi, which means switched system (2) has finite L2-
gain.

When ωi = 0, it follows from (9) that V̇i(x(t)) ≤
‖z‖2 + V̇i(x(t)) ≤ 0. The detectability of (fi + ∆fi, hi)
gives asymptotical stability of the switched system (2) by
LaSalle’s invariance principle. This completes the proof.

Next, we consider the robust H∞ control problem of the
switched system (1). We shall derive such a state feedback
control law that the closed-loop system has robust L2-gain
performance.
Theorem 2. Let a constant γ > 0 be given. Suppose that
(1) (fi + ∆fi, hi) is detectable.
(2) There exist nonnegative functions βij(x) (i, j∈M), pos-
itive constants λji , λfi , λpi , λgi and radially unbounded,
positive definite smooth functions Vi(x), Vi(x(0))=0 (i ∈
M) such that the following partial differential inequalities

∂Vi

∂x
fi+γ2

i C̃T
i C̃i+γ2

i

(
1

2γ2
i

∂Vi

∂x
B̃i+C̃T

i D̃1i

)
R̃−1

i

·
(

1
2γ2

i

∂Vi

∂x
B̃i+ C̃T

i D̃1i

)T

−
(

∂Vi

∂x
Ẽi+C̃T

i SiD̃2i

)
S̃−1

i

·
(

∂Vi

∂x
Ẽi+C̃T

i SiD̃2i

)T

+
m∑

j=1

βij(Vi−Vj)≤0, i∈M. (11)

hold, where B̃i =[pi λjieji λfiefi−λgiegi λgiegi λpiepi ],

C̃i=


(1/γi)hi

(1/λji)Wjifi

(1/λfi)Wfi

(1/λfi)Wfi

0

, D̃1i=


0

(1/λji
)Wji

B̃i

0
0
0

, D̃2i=


(1/γi)ki

0
0

(1/λgi)Wgi

0

,
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R̃i =I−D̃T
1iD̃1i, Si =γ2

i

(
D̃1iR̃

−1
i D̃T

1i+I
)
, S̃i =D̃T

2iSiD̃2i,

Ẽi =
1
2

(
gi+B̃iR̃

−1
i D̃T

1iD̃2i

)
, γ2

i = γ2

1+σ̄(Wpi
)
/
λ2

pi

.

Then, the hybrid state feedback controllers

ui = ui(x)= −Ŝ−1
i

(
∂Vi

∂x
B̂i+C̃T

i SiD̃2i

)T

(12)

solve robust H∞ control problem under switching law (4).

Proof. The closed-loop system of (1) with state feedback
ui(x) is given by

ẋ+∆ji(ẋ, t) = fki
(x)+∆fki

(x, t) +(pi(x)+∆pi(x, t))ωi,

z = hki
(x), (13)

where fki(x) = fi(x) + gi(x)ui(x), ∆fki(x, t) = ∆fi(x, t)+
∆gi(x, t)ui(x), hki(x) = hi(x) + ki(x)ui(x), and function
∆fki are defined by

∆fki
(x, t)=eki

δki
, ‖δki

‖ ≤ ‖Wki
(x)‖, i ∈ M

with eki
= [efi

−µiegi
µiegi ], δT

ki
=

[
δT
fi

δT
fi
+(1/µi)uT

i δ
T
gi

]
,

and WT
ki

=
[
WT

fi
WT

fi
+(1/µi)uT

i W
T
gi

]
where µi (i ∈ M) are

positive constants. Hence, from Theorem 1, the robust H∞
control problem of (13) is solved under switching law (4),
if there exist nonnegative functions βij(x) (i, j ∈ M),
positive constants λji , λfi , λpi such that the following
partial differential inequalities

∂Vi

∂x
fki

+γ2
i CT

ki
Cki

+γ2
i

(
1

2γ2
i

∂Vi

∂x
Bki

+CT
ki
Dki

)
R−1

ki

·
(

1
2γ2

i

∂Vi

∂x
Bki

+CT
ki
Dki

)T

+
m∑

j=1

βij(Vi−Vj)≤0, i∈M. (14)

have radially unbounded, positive definite solutions Vi(x),
Vi(x(0)) = 0 (i ∈ M), where

Rki
=I−DT

ki
Dki

, Bki
= [pi λji

eji
λfi

eki
λpi

epi ],

Cki =

 (1/γi)hki

(1/λji
)Wji

fi

(1/λfi
)Wki

0

, Dki =

 0
(1/λji

)Wji
Bki

0
0

.

Let λgi = µiλfi . Then, it can be shown that (14) is
equivalent to (11). In fact, it follows from the switching
law (4) and (12) that

∂Vi

∂x
fki +γ2

iC
T
ki
Cki +γ2

i

(
1

2γ2
i

∂Vi

∂x
Bki +CT

ki
Dki

)
R−1

ki

·
(

1
2γ2

i

∂Vi

∂x
Bki

+CT
ki
Dki

)T

+
m∑

j=1

βij(Vi−Vj)

=
∂Vi

∂x
fi+

∂Vi

∂x
giui+γ2

iC̃
T
i C̃i+2γ2

iC̃
T
i D̃2iui+γ2

i uiD̃
T
2iD̃2iui

+γ2
i

(
1

2γ2
i

∂Vi

∂x
B̃i+C̃T

i D̃1i

)
R̃−1

i

(
1

2γ2
i

∂Vi

∂x
B̃i+C̃T

i D̃1i

)T

+2γ2
i

(
1

2γ2
i

∂Vi

∂x
B̃i+C̃T

i D̃1i

)
R̃−1

i D̃T
1iD̃2iui

+γ2
i uT

i D̃
T
2iD̃1iR̃

−1
i D̃T

1iD̃2iui+
m∑

j=1

βij(Vi−Vj)

=
∂Vi

∂x
fi+γ2

i C̃T
i C̃i+uT

i S̃iui+2
(

∂Vi

∂x
Ẽi+C̃T

i SiD̃2i

)
ui

+γ2
i

(
1

2γ2
i

∂Vi

∂x
B̃i+C̃T

i D̃1i

)
R̃−1

i

(
1

2γ2
i

∂Vi

∂x
B̃i+C̃T

i D̃1i

)T

+
m∑

j=1

βij(Vi−Vj)

=
∂Vi

∂x
fi+γ2

i C̃T
i C̃i+γ2

i

(
1

2γ2
i

∂Vi

∂x
B̃i+C̃T

i D̃1i

)
R̃−1

i

·
(

1
2γ2

i

∂Vi

∂x
B̃i+C̃T

i D̃1i

)T

−
(

∂Vi

∂x
Ẽi+C̃T

i SiD̃2i

)
S̃−1

i

·
(

∂Vi

∂x
Ẽi+C̃T

i SiD̃2i

)T

+
m∑

j=1

βij(Vi−Vj) .

Finally, using the same arguments as in the proof of
Theorem 1, the desired result follows.

Remark 1. When M = {1}, the switched system (1)
degenerates into a regular nonlinear system and the robust
H∞ control problem becomes the standard robust H∞
control problem for nonlinear systems. Additionally, if
f(x)=Ax, g(x)=B2, p(x)=B1, h(x)=Cx, and k(x)=D,
this result is equivalent to the condition given by Shen et
al. (1996).

Remark 2. For the switched linear system

[I+Eji
Σji

(t)Fji
]ẋ=[Ai+ Eai

Σai
(t)Fai

]x

+[Bi+EbiΣbi(t)Fbi ]ui

+[Hi+EhiΣhi(t)Fhi ]ωi,

z=Cix+Diui, (15)

with state feedback ui = Kix, where uncertain matrices
satisfy ΣT

ε (t)Σε(t) ≤ I, ε ∈ {ji, ai, bi, hi, i ∈ M}. Let δji =
Σji(t)Fji ẋ, δfi =Σai(t)Faix, δgi =Σbi(t)Fbi , δpi =Σhi(t)Fhi ,
then it is clear that δε, ε ∈ {ji, ai, bi, hi, i ∈ M} satisfy
Assumption 1 with Wji = Fji , Wfi = Fai , Wgi = Fbi ,
Wpi =Fhi . (11) turns out to be matrix inequalities

PiAi+AT
i Pi+γ2

i C̃T
i C̃i+γ2

i

(
1
γ2

i

PiB̃i + C̃T
i D̃1i

)
R̃−1

i

·
(

1
γ2

i

PiB̃i+C̃T
i D̃1i

)T

−
(
2PiẼi+C̃T

i SiD̃2i

)
S̃−1

i

·
(
2PiẼi+C̃T

i SiD̃2i

)T

+
m∑

j=1

βij(Pi−Pj) < 0, i∈M.(16)

where B̃i=[Hi λji
Eji

λfi
Eai
−λgi

Ebi
λgi

Ebi
λpi

Ehi ],

C̃i=


(1/γi)Ci

(1/λji
)Fji

Ai

(1/λfi
)Fai

(1/λfi
)Fai

0

, D̃1i=


0

(1/λji)FjiB̃i

0
0
0

, D̃2i=


(1/γi)Di

0
0

(1/λgi
)Fbi

0

,

R̃i =I−D̃T
1iD̃1i, Si =γ2

i

(
D̃1iR̃

−1
i D̃T

1i+I
)
, S̃i = D̃T

2iSiD̃2i,

Ẽi =
1
2

(
Bi+B̃iR̃

−1
i D̃T

1iD̃2i

)
, γ2

i = γ2

1+σ̄(Fhi)
/
λ2

pi

.
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Then, the hybrid state feedback controllers are

ui = Kix = −S̃−1
i

(
2PiẼi+C̃T

i SiD̃2i

)T

x.

Remark 3. For the switched system (15), suppose that
DT

i [Ci Di] = [0 I]. If uncertain function EjiΣji(t)Fji = 0,
and EhiΣhi(t)Fhi =0, we can choose Eai =Ebi =Ei, Eji =0,
Fji =0, Ehi =0, and Fhi =0, then (16) becomes

PiAi+AT
i Pi+CT

i Ci+
2γ2

i

λ2
fi

FT
ai
Fai

+
1
γ2

i

PiHiH
T
i Pi

+
λ2

fi

γ2
i

PiEiE
T
i Pi−

(
PiBi+

γ2
i

λfi
λgi

FT
ai
Fbi

)(
I+

γ2
i

λ2
gi

FT
bi
Fbi

)−1

·
(
PiBi+

γ2
i

λfiλgi

FT
ai
Fbi

)T

+
m∑

j=1

βij(Pi−Pj) < 0, i∈M.

In fact, the same result for switched linear system has been
shown by Ji et al. (2006).

Next, we consider how to apply the obtained results to
non-switched nonlinear systems by controller switching.
For a nonlinear system, a continuous robust H∞ controller
may not exist or may be sometimes too complex to imple-
ment. Thus, in some control problems, control actions are
decided by switching between finite candidate controllers.
Subsequently, we try to use hybrid state feedback strategy
to solve the robust H∞ control problem for uncertain
nonlinear systems.

Consider the following nonlinear system

ẋ+∆j(ẋ, t)=f(x)+∆f(x, t)+(g(x)+∆g(x, t))u

+(p(x)+∆p(x, t))ω,

z=h(x)+k(x)u, (17)

where x ∈ <n is the state vector, u ∈ <m and ω ∈ <p de-
note the control input and disturbance input respectively,
z∈<q is the regulated output, f(x), g(x), p(x), h(x) and
k(x) are known smooth nonlinear vector functions of ap-
propriate dimensions with f(0)=0 and h(0)=0, ∆j(ẋ, t),
∆f(x, t), ∆g(x, t) and ∆p(x, t) denote unknown smooth
nonlinear vector functions. Additionally, we assume all
uncertainties satisfy the following assumptions.

Assumption 2. The uncertain functions ∆j, ∆f , ∆g and
∆p are gain bounded smooth functions described by

∆j(ẋ, t) = ejδj(ẋ, t), ‖δj‖ ≤ ‖Wj ẋ‖,
∆f(x, t) = efδf (x, t), ‖δf‖ ≤ ‖Wf (x)‖,
∆g(x, t) = egδg(x, t), ‖δg‖ ≤ ‖Wg(x)‖,
∆p(x, t) = epδp(x, t), ‖δp‖ ≤ ‖Wp‖

with known constant matrices ej , ef , eg, ep and unknown
function vectors δj , δf , δg, δp satisfying δj(0, t) = 0
and δf (0, t) = 0. Wj ,Wf ,Wg are known smooth function
vectors, Wp is given weighting matrix.

For system (17), suppose that there exists the following
class of finite candidate state feedback controllers

ui = ui(x) = −S̃−1

(
∂Vi

∂x
Ẽ+C̃TSD̃2

)T

, (18)

where Vi(x) will be specified later, the control law u is
generated by switching among them.

Theorem 3. Let a constant γ > 0 be given. Suppose that
(1) (f+∆f, h) is detectable.
(2) There exist nonnegative functions βij(x) (i, j ∈ M),
positive constants λj , λf , λp, λg and radially unbounded,
positive definite smooth functions Vi(x), Vi(x(0))=0 (i ∈
M) such that the following partial differential inequalities

∂Vi

∂x
f+γ2

1C̃TC̃+γ2
1

(
1

2γ2
1

∂Vi

∂x
B̃+C̃TD̃1

)
R̃−1

·
(

1
2γ2

1

∂Vi

∂x
Ẽ+C̃TD̃1

)T

−
(

∂Vi

∂x
Ẽ+C̃TSD̃2

)
S̃−1

·
(

∂Vi

∂x
Ẽ+C̃TSD̃2

)T

+
m∑

j=1

βij(Vi−Vj) ≤ 0, i ∈ M. (19)

hold, where B̃=[p λjej λfef−λgeg λgeg λpep],

C̃ =


(1/γ1)h

(1/λj)Wjf
(1/λf )Wf

(1/λf )Wf

0

, D̃1 =


0

(1/λj)WjB̃
0
0
0

, D̃2 =


(1/γ1)k

0
0

(1/λg)Wg

0

,

R̃=I−D̃T
1D̃1, S =γ2

1

(
D̃1R̃

−1D̃T
1 +I

)
, S̃ =D̃T

2SD̃2,

Ẽ =
1
2

(
g+B̃R̃−1D̃T

1D̃2

)
, γ2

1 = γ2

1+σ̄(Wp)
/
λ2

p

.

Then, the hybrid controllers (18) with the switching law
(4) solve the robust H∞ control problem for (17).

Proof. Substituting the designed controllers (18) into the
system (17) results in a switched nonlinear system. Then,
applying Theorem 2 yields the result.

4. EXAMPLE

In this section, we give an example to demonstrate the
effectiveness of the proposed design method. Consider the
following switched nonlinear system

ẋ+∆ji(ẋ, t) = fi(x)+∆fi(x, t)+(gi(x)+∆gi(x, t))ui

+(pi(x)+∆pi(x, t))ωi,

z = hi(x)+ki(x)ui, i = 1, 2, (20)

where

f1(x)=−2x3, g1(x)=x2, p1(x)=−1, h1(x)=x3, k1(x)=1,

f2(x)=−2x, g2(x)=2x, p2(x)=1, h2(x)=−x, k2(x)=1,

∆j1(ẋ, t)=a1ẋ sin t, ej1=1, δj1(ẋ, t)=a1ẋ sin t, Wj1 =1,

∆j2(ẋ, t)=a2ẋ cos t, ej2=1, δj2(ẋ, t)=a2ẋ cos t, Wj2 =1,

∆f1(x, t)=b1x cos t, ef1=1, δf1(x, t)=b1x cos t, Wf1 =x,

∆f2(x, t)=b2x sin t, ef2=1, δf2(x, t)=b2x sin t, Wf2 =x,

∆g1(x, t)=c1e
−tcos x, eg1 =1, δg1(x, t)=c1e

−tcos x, Wg1=1,

∆g2(x, t)=c2e
−tsinx, eg2 =1, δg2(x, t)=c2e

−tsinx, Wg2=1,

∆p1(x, t)=d1e
−t, ep1=1, δp1(x, t)=d1e

−t, Wp1 =1,

∆p2(x, t)=d2e
−t, ep2=1, δp2(x, t)=d2e

−t, Wp2 =1,

and ai, bi, ci, di are unknown constants belonging to [0, 1].
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Let γ2 = 2, λji =λfi =λgi =λpi =1, β1(x)=
1
2
x2, β2(x)=

2x2+1, then following Theorem 2, we have γ1 =γ2 =1,

B̃1=[−1 1 0 1 1], B̃2=[1 1 0 1 1], C̃T
1 =

[
x3 −2x3 x x 0

]
,

C̃T
2 =[−x −2x x x 0], D̃T

11 =
[
0 B̃T

1 0 0 0
]
,

D̃T
12 =

[
0 B̃T

2 0 0 0
]
, D̃T

21 =[1 0 0 1 0], D̃T
22 =[1 0 0 1 0],

R̃i = I − D̃T
1iD̃1i, Si = D̃1iR̃

−1
i D̃T

1i + I, S̃i = D̃T
2iSiD̃2i,

Ẽi =
1
2

(
gi+B̃iR̃

−1
i D̃T

1iD̃2i

)
, i = 1, 2.

We choose
V1(x) = 2x2, V2(x) = x4, x ∈ Rn.

Both of them are globally positive definite and V1(0) =
V2(0) = 0. Then

∂V1

∂x
f1+γ2

1C̃T
1 C̃1+γ2

1

(
1

2γ2
1

∂V1

∂x
B̃1+C̃T

1 D̃11

)
R̃−1

1

·
(

1
2γ2

1

∂V1

∂x
B̃1+C̃T

1 D̃11

)T

−
(

∂V1

∂x
Ẽ1+C̃T

1S1D̃21

)
S̃−1

1

·
(

∂V1

∂x
Ẽ1+C̃T

1S1D̃21

)T

+β1 (V1−V2)

= −5
6
x6 − 5

6
x4 − 23

6
x2

≤ 0
and

∂V2

∂x
f2+γ2

2C̃T
2 C̃2+γ2

2

(
1

2γ2
2

∂V2

∂x
B̃2+C̃T

2 D̃12

)
R̃−1

2

·
(

1
2γ2

2

∂V2

∂x
B̃2+C̃T

2 D̃12

)T

−
(

∂V2

∂x
Ẽ2+C̃T

2S2D̃22

)
S̃−1

2

·
(

∂V2

∂x
Ẽ2+C̃T

2S2D̃22

)T

+β2(V2−V1)

= −8x8 − 10
3

x6 − 1
3
x4 − 1

3
x2

≤ 0
The switching law

σ(t) =
{

1 if −
√

2 ≤ x ≤
√

2,
2 otherwise.

and the hybrid controllers

u1 =−S̃−1
1

(
ẼT

1

∂TV1

∂x
+D̃T

21S1C̃1

)
= −3

2
x3 − 1

2
x,

u2 =−S̃−1
2

(
ẼT

2

∂TV2

∂x
+D̃T

22S2C̃2

)
= −2x4.

solve the robust H∞ control problem.

5. CONCLUSION

This paper has discussed the robust H∞ control prob-
lem for a class of uncertain switched nonlinear systems.
Uncertainties are considered to be nonlinearly dependent
on state and state derivative and allowed to appear in
channels of state, control input and disturbance input.
A sufficient condition has been derived by designing a

switching law and hybrid state feedback controllers via the
multiple Lyapunov function approach. Moreover, a hybrid
state feedback strategy is proposed to solve the robust H∞
control problem for uncertain nonlinear systems.
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