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Abstract: This paper presents the closed forms of the state space models and the recursive algorithms of 
the transfer function models for fast and accurate modeling of large scale complex systems of the evenly or 
unevenly distributed RLC interconnect and transmission lines.  Considered models include the distributed 
RLC interconnect lines with or without external source and load connection.  The effective closed forms 
do not involve any matrix inverse, factorization, or multiplication, thus dramatically reduce the 
computation complexity.  Especially, the computation complexity of the closed forms for any evenly or 
unevenly distributed RLC interconnect line circuits is only O(1) or O(m) respectively, where m<<N,  N is 
the system order, and m represents the number of even sections which compose the uneven interconnect 
line.  The features of new recursive algorithms are two recursive s-polynomials and their low computation 
complexity too.  Illustration examples are provided to demonstrate the results in both time and frequency 
domains.  The results can be applied to the RLC interconnect analysis and model reduction as a key to new 
approach, and to control systems with transmission lines, internet or delay lines. 

 

1. INTRODUCTION 

This paper presents the fast and accurate modelling 
approaches for large scale complex systems of distributed 
RLC interconnect and transmission lines circuits in both time 
and frequency domains.  It is important to point out that the 
topic was among the interesting topics which Prof. Kalman 
(2005) addressed in the plenary speech at the 2005 IFAC.  

Advancement of high-speed deep-submicron VLSI 
technology makes the interconnect to be a main factor of 
signal propagation delay and a key factor of modeling 
difficulty as a complex system of distributed RLC circuits 
(Reed and Rohrer 1999; Zhou et al. 1991).  In some standard 
ASIC with 90nm nanotechnology, the ratio of the 
interconnect delay to the gate delay may approach to 4:1.  
Furthermore, its distribution feature and complex structure 
make the system order in millions.  Therefore, the modelling 
and model reduction of interconnects have been a major 
challenge and a necessity to the analysis and design in the 
areas. 

It is well known that the original model is not only a starting 
point for model reduction, but also a basis for performance 
evaluation of the reduced models and model reduction 
methods. It is important to reveal more fundamental 
characteristics of the distributed interconnect from its original 
models.  As we know, the state space model in the time 
domain and the transfer function model in the frequency 
domain (s-domain) are two useful models, in addition to the 
maturated MNA which is directly from the KCL or KVL. 
The later is useful for model reduction approaches of the 
AWE (Asymptotic Waveform Evaluation, Pillage and Rohrer 
1990) and the PVL (Padé via Lanczos process in the Krylov 

space, Feldmann and Freund 1995).  Furthermore, the 
Balanced Truncation Method (BTM) (Glover 1984) is based 
on the state space model as a useful model reduction method 
(Zhou 1998, Yuan et al. 2004, 2005, Heydari and Pedram 
2006), especially to provide an upper-bound of the 
approximation error.  Wang et al. (2002) presented an insight 
review on the projection-based algorithms for model order 
reduction. They further presented algorithms based on 
generalized orthonormal basis functions in Hilbert and Hardy 
space. Antoulas and Sorensen (2003) provided an excellent 
overview on approximation and partial realization of systems. 
Recently, Wang et al. (2005, 2007) presented ELO (even-
length-order) model simplification methods for RC 
interconnects.  Clearly the BTM, ELO, other state space 
equation-based methods (Li et al. 1999), and some 
projection-based algorithms need to start from the state space 
model in the time domain.  On the other hand, the transfer 
function in s-domain has been widely used for analysis and 
model reduction, such as DTT method (Ismail and Friedman 
2003) that directly truncates the transfer function for model 
reduction with a nice approach to the tree-structure.   

Even though the progress has been made, there are still many 
challenging problems to us (Wang 2005), e.g., (1) the lack of 
the state space model for the distributed RLC interconnect; 
and (2) the current transfer function model of the RLC 
interconnect lines involve computation of s-rational functions 
in recursive algorithms, or sinh and cosh functions.   The 
traditional time domain model of interconnects is the MNA. 
Then, in order to get the state space model from the MNA, it 
needs matrix inverse (or decomposition)  and multiplication, 
making a computation complexity of O(n2)~O(n3). Here, the 
computation complexity is defined in the number of scalar 
multiplications, in a more detailed level than the conventional 
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definition of the number that the method traverses nodes or 
components.   

Thus, we ask: (1) can we find a closed-form of the state space 
model of the distributed RLC interconnect to avoid 
calculation of large dimension matrix inverse, decomposition, 
or multiplication, and (2) can we develop an even simpler 
recursive algorithm to establish the original transfer function 
model for model reduction in view of such high system order 
(size). We notice that the common structure of interconnects 
is a tree-type. At the same time, in order to investigate a tree 
or net type interconnect, we must study their basic 
components of lines first.  Thus, this paper is to address these 
questions first for the distributed RLC interconnect lines.  

Our resulted computation complexity of the state space 
closed forms is only O(1) or O(m) for any evenly or unevenly 
distributed RLC interconnect line, respectively, where the 
system order is 2n, and m<n (or m<<n).  In cases of unevenly 
distributed interconnect, we can divide this uneven 
interconnect line into several, say m, sections which are 
evenly distributed sub-interconnect lines.  The characteristics 
of our recursive algorithms are two recursive s-polynomials, 
and the low computation complexity.  It is learnt that for a 
low order model approximation, the recursive algorithm may 
be modified by computing the first few (relevant) moments, 
i.e., limiting the polynomial multiplication order, with a 
lower complexity than O(n2).     

Due to the page limit, the derivations of the results are 
omitted here, and the tree-type interconnect modelling based 
on this paper will be presented separately.  However, we have 
included examples here to demonstrate the results.  

2.  PROBLEM FORMULATION 

The considered RLC interconnect line circuits include 
unevenly or evenly distributed ones, and with or without 
external source and load.  Thus, we may have four different 
models. The system order is assumed as n2  as general. The 
input port is with a voltage )(tvin  and the output port then has 
a voltage )(tvo .  The distribution parameters are resistors Ri, 
inductors Li and capacitors Ci, ni ,,1= .  The index is 
ordered from the output/sink terminal to the input/source 
terminal. Denote the circuit node voltages as iv , ni ,,1= , 
respectively. The output may be any node voltage, e.g.,   

)()()( 1 tvtvtv outo ==  (1) 

or any internal node voltage iv .   Circuit Model 1 is a general 
distributed RLC line circuit with a consideration of its 
external connection as shown in Fig. 1, where the external 
source resistor is sR , the load resistor is 0R , and the load 
capacitor is 0C .  Model 2 is an evenly distributed RLC 
interconnect line circuit with its external connection.  Model 
3 is a pure general distributed RLC line itself. Finally, Model 
4 is an evenly distributed RLC interconnect line itself as 
shown in Fig. 2.  Models 3 and 4 may be considered as a 
special case of Models 1 and 2, respectively, when the 
external parameters are much less significant or omitted as 

0=sR , ∞=0R , 00 =C . (2) 

Notice that the pure interconnect really reflects itself without 
any distortion, thus it is important.  Model 2 and Model 4 
may be considered as a special case of Model 1 and 3, 
respectively, i.e., 

rRi = ,  lLi = ,   and  cCi = ,  ni ,,1= . (3) 

Thus, the paper mainly discusses a general Model 1 and a 
special Model 4.  

A linear state-space model {A, B, C, D}, which presents the 
dynamics of the system, has the form: 

)()()( tButAxtx += ,  )()()( tDutCxty += . (4) 

It is well known that the system matrix A and its eigenvalues 
reflect the system characteristics.  The transfer function 
specifies the relationship from the input signal Vin(s) to the 
output signal Vo(s) in s-domain, and has the following form: 

)(/)()(/)()()( sDsNsVsVsTsT nninon ===  (5) 

where Nn(s) and Dn(s) are respectively the numerator and 
denominator polynomials of the 2n-th order transfer function 
Tn(s). Its poles and zeros reflect the system characteristics. 

 
Fig. 1. General distributed RLC interconnect line circuit with 
external connection parameters 

 
Fig. 2.  Evenly distributed RLC interconnect line circuit 

The goal of the paper is to present the close-form of the state 
space model (4), and the new recursive algorithm of the 
transfer function (5) leading to the reduction of computation 
complexity.  

3. STATE SPACE MODEL AND ITS CLOSED FORMS 

The closed forms of the state space model of distributed RLC 
interconnect circuits are presented below.   

Theorem 3.1. For a general distributed RLC interconnect 
Model 1 in Fig. 1, choose the state variable vector )(tx , the 
input variable )(tu  and the output variable )(ty  as  

TTT tvtvtx )]()([)( = , T
n tvtvtvtv )]()()([)( 12=  

)()( tvtu in= , )()()( 1 tvtvty o == .  (6) 
Then, the state space model (4) of Model 1 has its closed 
form as 
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T
nnLCB ]00)/(100[= , ]00100[=C , 0=D  (10) 

where matrices A, B and C have appropriate dimensions as 
nnRA 22 ×∈ , nnRA ×∈21 , nnRA ×∈22 , 12 ×∈ nRB , nRC 21×∈ . (11) 

Remark 3.1:  In general, for any intermediate point output 
)(ty )()( tvtv io == , ni ,,1= , their state space models share 

the same matrices A, B and D, but matrix ]00[ 1
T

ineC +−= , 
where n

i Re ∈  is a unit vector with all entries 0 but the i-th 
entry 1. 

Remark 3.2:  The system sub-matrix 21A  has elements in 
the tri-diagonals and last column, but its all other entries are 
0.  Its tri-diagonals in the i-th row have elements Cn-i+1, Ln-i+1 
and Ln-i, and their sum equals to 0 for 2,,2 −= ni .  Its last 
column has elements all with the load resistor 0R .  The first 
row has elements of nC , nL , 1−nL , nR , 1−nR  and source 
resistor sR .  The last row has elements of 1C , 1L , 1R , load 
resistor 0R  and capacitor 0C .   

Remark 3.3:  The system sub-matrix A22 is an upper-triangle 
matrix.  Its elements relate to the ratios of Ri/Li and the ratios 
of iC / jC  as shown in (9).  These characteristics reflect the 
structure of distributed interconnect and transmission line 
with its element index sequence. 

Corollary 3.1.  An evenly distributed RLC interconnect 
circuit Model 4 with (3) in Fig. 2 has its state space model 
{ }DCBA ,,,  with (4) in the closed form of (7) and  

=21A
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where their dimensions are in (11), and the computation 
complexity is only O(1), independent of system order 2n.  

Remark 3.4.  Theorem 3.1 and Corollary 3.1 present the 
closed forms of the state space models of the distributed RLC 
circuits.  All these closed forms do not involve any matrix 
inverse, LU factorization, or matrix multiplication, where the 
matrix size is in very large scale. They not only reduce the 
computation complexity, but also provide accurate distributed 
RLC interconnect state space models.  For the evenly 
distributed Model 4, it has computation complexity )1(O  
only, i.e., it involves only constant number of scalar 
multiplications and divisions for any orders of the models!   

Corollary 3.2.   A general distributed RLC interconnect line 
circuit Model 3 has its state space closed form of { }DCBA ,,,  
as matrix A in (7), matrices B, C and D in (10), and  
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Theorem 3.2.   For unevenly distributed interconnect, if we 
may, really we may always divide this unevenly distributed 
interconnect line into some m evenly distributed sections (i.e., 
sub-interconnect lines), then the total computation 
complexity of the state space model will be dramatically 
reduced further to O(m), where nm <  (or nm << ), in view of 
Corollary  3.1. The loading effect from one section to another 
is taken into account, i.e., the complexity )(mO  is valid for 
computation of the line composed of m even sub-lines.   

Remark 3.5.  As a simple example, we divide it into two 
even sub-lines )2( =m  with orders 2 1n and 2 2n respectively. 
Then, we have its state space model in (4), (7), and    
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matrices B, C and D are in (13) with respective appropriate 
dimensions, and 1n + 2n n= . 
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4. TRANSFER FUNCTION RECURSIVE ALGORITHM 

This section presents the recursive algorithms of transfer 
functions of the distributed RLC interconnect circuits. 

Theorem 4.1. The unevenly distributed RLC circuit Model 1 
in Fig. 1 has its transfer function )(/)()( sDsNsT nnn =  in (5) 
from a recursive algorithm: 

1)( =sNn  (18) 

11 )( −− Δ+=Δ jjjj sDsC ,  )()()( 1 sDRsLsD jjjjj −+Δ+=  

  1,,2 −= nj  (19) 

11 )( −− Δ+=Δ nnnn sDsC  

)()()( 1 sDRRsLsD nnsnnn −+Δ++=  (20) 

where the initial values for (19)-(20) are 

0011 /1)( RsCC ++=Δ , and  

01101111 /)(1))(()( RRsLCCRsLssD +++++=   (21) 

 and 2n is the system order.  

Corollary 4.1.  In the recursive algorithm of Theorem 4.1, all 
factors )(sjΔ  and denominators )(sD j  of the j-th transfer 
function, nj ,,1= , are polynomials.  

Corollary 4.2. The transfer function (5) of the evenly 
distributed RLC circuit Model 4 in Fig. 2 has a recursive 
algorithm as follows: 

1)( =sNn  (22) 

11 )( −− Δ+⋅=Δ jjj scDs ,   )()()( 1 sDrlssD jjj −+Δ+=   
   nj ,,2=    (23) 

cs=Δ1 ,  and 1)()(1 ++= crlsssD . (24) 

Theorem 4.2. The transfer function from the input to any 
intermediate output node, say the k-th node, of the 
interconnect line in any Models 1– 4 is    

)(/)()( sDsDsT nknk =  (25) 

where )(sDn  and )(sDk  are derived from the above recursive 
algorithm in Theorem 4.1 or Corollary 4.2, respectively.   

Remark 4.1.  The recursive formulas for the circuits with or 
without external connection parameters are similar, except 
that the n-th step is different due to the source parameter, and 
the initial values for )(1 sΔ  and )(1 sD  are different due to the 
load parameters.   

Remark 4.2.  For general unevenly distributed RLC 
interconnect line models of the 2n-th order, the transfer 
function recursive algorithms have a computation complexity 
of )( 2nO  scalar multiplications.  On the other hand, 
computing the first few (relevant) moments can be done with 
complexity less than )( 2nO  by limiting the polynomial 
multiplication order.  For evenly distributed RLC 
interconnect, the recursive algorithm can be further 
programmed in a low computation complexity.   

5. EXAMPLES 

Two examples are used to demonstrate the results. 
Simulations are executed for their step responses and ramp 
responses in the time domain and Bode plots in the frequency 
domain.  The ramp response is usually used in chips.     

For comparison, the time response results via our approach 
and the PSpice are presented in figures, the former in blue 
solid line and the latter in red dash lines.  However, they are 
nearly identical as shown, hardly to see the difference. 
During the simulations, we also observe that the red dash 
curves of PSpice approach to their corresponding blue solid 
curves of our models as the PSpice step length is further 
reduced. It implies that the new method may reduce the 
simulation time in view of the step length difference.  For 
example, the runtimes of the step responses in Example 1 are 
3.955 s from our closed form via MATLAB including the 
modeling time 3.419 ms, and 57.58 s from the PSpice with 
the step size for the same accuracy, but not including the 
netlist or schematic time in the PSpice modeling. 

Example 1. Consider an evenly distributed RLC interconnect 
circuit of 0.01cm long in Fig. 2 with the distribution 
characteristic data of resistor 5.5kΩ/m and capacitor 
94.2pF/m,  and the external parameter data of source resistor 
Rs = 500Ω, and load resistor R0 = 1MΩ.  A 200th order model 
is used as its original model with n = 100, r = 5.5m Ω, and c 
= 9.42⋅10−5 pF, while the inductor value is l = 2.831×10−1pH, 
calculated from the light speed in the material and the 
capacitor value c.   By Theorem 3.1, its 200th order state 
space model },,,{ DCBAS =  is:  
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=B T]001075.3000[ 28⋅ , ]00100[=C and 0=D .   

Figures 3 and 4 show its step response and ramp responses.  
From Fig. 3 we see the oscillation behavior of the distributed 
RLC interconnect.  It is clear from Figures 3 and 4 that the 
results from our approaches are nearly identical to the ones 
from the PSpice.  Fig. 5 shows the Bode plot via the recursive 
algorithm of Theorem 4.1.   

Example 2.  Consider an example in Reed and Rohrer (1999) 
and extend it as follows.  It is an aluminum IC interconnect, 
2mm long, 1.0μm thick, and 1.5μm wide, connecting two 
gates over an 100-nm SiO2 dielectric layer.  The permittivity 
of SiO2 is 

2SiOε =3.37 1310−⋅ F/cm and the resistivity of 
aluminum is cmA ⋅Ω= μρ 8.21 .  It leads to its “total” 
resistance Rint= 37.3Ω, “total” capacitance Cint=1.011pF, and 
“total” inductor Lint = 105.61pH, but they are really 
distribution parameters.  
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Fig. 3.  Step response of evenly distributed RLC interconnect 

 

 
Fig. 4.  Ramp responses 1 & 2 of an even RLC interconnect 

 

Fig. 5. Bode plot of an evenly distributed RLC interconnect 

Here, we demonstrate our methods.  In view of the page 
limit, a 20th order model (n = 10) is used with r = 3.73 Ω,  c = 
0.1011 pF and l = 10.561 pH in Fig. 2.  By Corollary 3.1, its 
20th order state space model },,,{ DCBA  is:  

⎥
⎦

⎤
⎢
⎣

⎡
=

2221

0
AA

I
A , =21A 23103750.9 ⋅

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−

−
−

1100
12
00

21
0012

 

=22A ⋅)/( lr 1010×I ⋅⋅−= 11105375.3 1010×I  
=B T]0010375.900[ 23⋅ , ]00100[=C , 0=D . 

For the transfer function, we have )(/1)( sDsT =  via the 
recursive algorithm in Corollary 4.2, and 

=)(sD 18-21519-22820-240 s104.4687 s106.7411s 101.9066 ⋅⋅+⋅⋅+⋅⋅  
 s108.5395  s 104.1549 s101.1818 15-17816-19017-202 ⋅⋅+⋅⋅+⋅⋅+  

12-14113-15314-165 s107711.5s 103.3024  s102.0334 ⋅⋅+⋅⋅+⋅⋅+  
 s 109.8253 s 109.7714  s107.4194  9-10510-11711-129 ⋅⋅+⋅⋅+⋅⋅+  

 s 105.3275  s 107.4201   s 109.7140 6-697-818-93 ⋅⋅+⋅⋅+⋅⋅+  
 s 104.9030   s 101.4050  s 102.9191 3-344-455-57 ⋅⋅+⋅⋅+⋅⋅+  

1.0000   s 102.0742   s 101.2907 -112-22 +⋅⋅+⋅⋅+ .  
Since a 200th model has 201 coefficients in its transfer 
function, so we take the 20th order model as an example for a 
short list.  However, it is easy to compute any size of the state 
space model and transfer function by the theorems and 
corollaries.  In figures 6 and 8 we show simulations on the 
200th model.   Furthermore, it is possible and easy to use 
scaling skill for modification of the above coefficients orders 
and for simulations as shown in the unit scaling of the 
figures.   
Figure 6 shows the step responses of this distributed RLC 
interconnect of order 200.  It shows oscillations around the 
middle amplitude zone, which may not be seen for its low 
order models.  Fig. 7 displays two ramp responses with order 
20 to different ramp rates.  Fig. 8 shows the Bode plot of the 
transfer function model with order 200 via the recursive 
algorithm in Corollary 4.2.  It is seen that the new results and 
the PSpice ones are identical for various system orders.   

The simulation results clearly show the correctness of the 
new approaches by the comparison with the PSpice.  The 
correctness of our results can also be theoretically proved. 

 
Fig. 6.  Step response of an even RLC interconnect  

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

3178



 
 

     

 

 
Fig. 7.  Ramp responses 1 & 2 of an even RLC interconnect 

 
Fig. 8. Bode plot of an evenly distributed RLC interconnect 

It is observed that the proposed methods are effective with 
high accuracy and low computation cost.  Since the PSpice 
needs to type a net-list for its model, or build its circuit 
schematic plot, thus the state space model closed-form and 
the transfer function recursive algorithm are valued for many 
model reduction methods, e.g., the BTM, ELO, and others.  

6. CONCLUSIONS 

The main feature of the closed-form of state space model is 
its very low computation complexity.  The key characteristics 
of the transfer function recursive algorithm are effectively to 
utilize a new internal s-polynomial function and  
multiplications with only a 1st order or 2nd order s-
polynomial, different from the s-rational functions in 
previous ones to treat with an RLC interconnect line, a very 
special tree.   

We first present the novel closed form of the state space 
model and the effective recursive algorithm of the transfer 
function for the distributed RLC line circuits in the literature 
based on Wang 2005.  Next step is for the tree structures.  

The results of distributed RLC models presented in this paper 
and Wang 2005 can be used for an alternate incorporation 
with the standard circuit simulation engines for the associated 
time savings.  The results may also be used to control 

systems and communication systems with long distributed 
transmission lines, internet, or delay lines.  
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