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Abstract: The stability and performance of a networked control system (NCS) strongly
depends on the transmission delay. However, the randomness of the transmission delay is an
intrinsic property in the network communication, e.g. Ethernet. Aiming at NCS with random
transmission delay, a novel control approach is proposed. The transmission delays from sensor-
to-controller (SC) and controller-to-actuator (CA) are modelled by two independent Markovian
processes. A controller, which is able to monitor the SC delay and synchronously switches
according to it, is considered. The resulting closed-loop system is a Markovian jump linear
system with randomly piecewise continuous delay. The exponential mean square stability for
the given model is established by using a Lyapunov-Krasovskii functional. The performance
benefits of the proposed approach are demonstrated in a numerical example.

1. INTRODUCTION

In views of affordability, widespread usage and well de-
veloped infrastructure, communication networks have in-
creasing potential in industrial applications. One of the
most apparent example comes with the networked control
system (NCS). A NCS is a feedback control system using
a shared network for the communication between spatially
distributed sensors, actuators and physical plants. The
NCS has advantages such as it allows flexible control
structures, reduced wiring and easy maintenance. Typ-
ical examples are unmanned aerial vehicles, e.g. Seiler
[2001], Ethernet-based car control network, e.g Daoud
et al. [2006], teleoperation, e.g Hirche [2005].

The use of communication network comes, however, at the
price of non-ideal signal transmission: the sampled data
sent through the networks experience variable time delays
and suffer transmission losses (or packet dropouts), see
Hespanha et al. [2007], Baillieul and Antsaklis [2007]. Par-
ticularly, the delay is well known as a source of instability
and deteriorates the control performance, see Gu et al.
[2003]. So far, various approaches have been proposed in
the literature to cope with time delay, see Ray and Galevi
[1988], Zhang et al. [2001], Lin et al. [2003], Fridman et al.
[2004]. Ray and Galevi [1988] introduces the augmented
state vector method for constant delay. A hybrid system
analysis approach is applied to NCS for known delay by
Zhang et al. [2001] and for uncertain delay by Lin et al.
[2003]. Time-varying delay and robust control are dealt by
Fridman et al. [2004]. More approaches with deterministic
delay can be found in the work of Kharitonov [1999],
Richard [2003], Gu and Niculescu [2003] and references
therein.

Systems with random time delay are studied by Nilsson
[1998], Xiao et al. [2000], Yang et al. [2006], Zhang et al.
[2005]. Nilsson [1998] models the delay as a Markovian pro-
cess and the effect of random delay is treated as an LQG

problem. However, the network-induced delay has to be
less than one sampling interval. Therefore, this approach
may be unsuitable for systems with longer time delay.
A stochastic hybrid system approach involving bounded
random delay and switching feedback control laws is con-
sidered by Xiao et al. [2000]. The approach results in a
bilinear matrix inequality (BMI). An iteration algorithm
is formulated for targeting the BMI difficulties. Yang et al.
[2006] proposes a H∞ control problem for Bernoulli ran-
dom binary delay and derives an LMI problem for stochas-
tic exponential stability. Zhang et al. [2005] considers a
Markovian jump linear system (MJLS) approach for NCS.
Based on the Lyapunov method, an iterative linear matrix
inequality (LMI) for mode-dependent controller preserving
stochastic stability is established.

Although the network-induced delay has been frequently
discussed for NCS, only the sensor-to-controller (SC) delay
has been taken into account in most of the previous
works. The controller-to-actuator (CA) delay remains less
explored. The stabilization results of NCS for SC and
CA delays are first considered by Witrant et al. [2003],
where a delay compensation predictive control approach
is proposed for time-varying input delay systems. The
random SC and CA delays are considered by Yang et al.
[2006] and Zhang et al. [2005]. However, the SC and CA
delays by Yang et al. [2006] have to be less than one
sampling interval. Zhang et al. [2005] augments the state
vector by delayed signal and results in complicated and
higher dimensional systems.

This paper considers random transmission time delay.
The SC and CA delays are modelled by two independent
Markovian processes: rsct and rcat . The sampled-data sys-
tem approach is applied and a switching output-feedback
controller is proposed. The resulting time delay contains
a random part related to the transmission delay and a
linear time-varying part bounded by the sampling interval.
The switching controller monitors the SC transmission

Proceedings of the 17th World Congress
The International Federation of Automatic Control
Seoul, Korea, July 6-11, 2008

978-1-1234-7890-2/08/$20.00 © 2008 IFAC 11594 10.3182/20080706-5-KR-1001.0093



τca(r
ca

t
) τsc(r

sc

t
)

Actuator SensorPlant
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Fig. 1. Illustration of NCS over communication net-
work, the transmission delay from sensor-to-controller
τsc(r

sc
t ) and from controller-to-actuator τca(r

ca
t ).

delay and synchronously switches with it. As a result, an
MJLS with randomly piecewise continuous delay is formu-
lated. The condition for exponential mean square stability
is derived by the delay-dependent Lyapunov-Krasovskii
approach. The controller design is presented in terms of
linear matrix inequalities (LMI’s). In the simulation the
performance benefit of the proposed switching controller
is demonstrated.

The reminder of the paper is organized as follows: In
section II the sampled-data MJLS is introduced. The
system contains two mode-dependent delays and a mode-
dependent switching output-feedback controller. In section
III the exponential mean square stability condition and
controller design are shown. Finally, a numerical example
is given to illustrate the proposed method.

Notation. Throughout the paper we let λmin(M) and
λmax(M) denote the maximal and the minimal eigenvalue
of matrix M . MT and ||M || denote the transpose and
induced Euclidean norm of matrix (or vector) M . M+

denotes the pseudo-inverse of matrix M . The symbol ∗ de-
notes the transpose of the blocks outside the main diagonal
block in symmetric matrices. E stands for mathematical
expectation and P for probability. Let {rt, t ≥ 0} denote
a Markovian process governing the mode switching in the
finite set S := {1, . . . , N} having the generator A = (αi,j),
i, j ∈ S, αi,j > 0, i 6= j, αi,i = −

∑

i6=j αi,j . Then the mode
transition probability can be defined as

Pi,j(rt+δ = j|rt = i) = eAδ.

2. PROBLEM DEFINITION

2.1 NCS Model

Consider an LTI system as a plant:

ẋ(t) = Ax(t) +Bū(t),

y(t) = Cx(t),
(1)

where x ∈ R
n is the state, y ∈ R

q is the measurement
output and ū ∈ R

m is the control input; A, B and C are
constant matrices with appropriate dimensions. The plant
is interconnected with the controller over a communication
network, see Fig. 1.

We now consider the network transmission delay τsc(r
sc
t )

and τca(r
ca
t ) as Markovian delays. The mode switching

is governed by the Markovian processes rsct ∈ Ssc and

rcat ∈ Sca which are independent and taking values in the
finite set Ssc := {1, . . . , Nsc} and Sca := {1, . . . , Nca}. The
switching rates from mode i to j of both delays are defined
by αsc

i,j and αca
i,j . According to (1) and Fig. 1, the piecewise

constant measurement from SC at sampled time tl is
expressed by

ȳ(t) = y(t− τ1(t, r
sc
t )) = Cx(t− τ1(t, r

sc
t )),

τ1(t, r
sc
t ) = t− tl + τsc(r

sc
t ), tl ≤ t < tl+1.

(2)

The transmission delay τ1(t, r
sc
t ) in the SC channel can

be known by the controller using the time-stamping tech-
nique. Hence, we consider an output-feedback controller
which switches synchronously with the delay τsc(r

sc
t ). The

switching output-feedback controller has the form

ẋc(t) = Ac(r
sc
t )xc(t) +Bc(r

sc
t )ȳ(t),

u(t) = Cc(r
sc
t )xc(t),

(3)

where xc ∈ R
n and xc = 0 for t ≤ 0. The piecewise con-

stant control output in the CA side at sampled time tk is
expressed by

ū(t) = u(t− τca(r
ca
t )) = Ccxc(t− τ2(t, r

ca
t )),

τ2(t, r
ca
t ) = t− tk + τca(r

ca
t ), tk ≤ t < tk+1.

(4)

Define zT = [xT xT
c ]. The closed-loop system in Fig. 1 is

obtained as follows

ż(t) = Ā0(r
sc
t )z(t) + Ā1(r

sc
t )z(t− τ1(t, r

sc
t ))

+ Ā2(r
sc
t )z(t− τ2(t, r

ca
t )),

(5)

where

Ā0(r
sc
t ) =

[

A 0
0 Ac(r

sc
t )

]

, Ā1(r
sc
t ) =

[

0 0
Bc(r

sc
t )C 0

]

,

Ā2(r
sc
t ) =

[

0 BCc(r
sc
t )

0 0

]

.

System (5) is an MJLS with two mode-dependent time-
varying delays τ1(t, r

sc
t ) and τ2(t, r

ca
t ).

2.2 Time Delay Model

The switching of transmission delays may result in the
disorder of the sampled sequence. In this paper, we exclude
the disordering in the sampled sequence, i.e. we assume
that

A1: P(|τ1(tl+1, r
sc
t ) − τ1(tl, r

sc
t )| ≥ h1) = 0,.

A2: P(|τ2(tk+1, r
ca
t ) − τ2(tk, r

ca
t )| ≥ h2) = 0.

Assumptions A1 and A2 restrict the switching of any
two consecutive delays is less than one sampling interval.
These assumptions are not unreasonable as the current
transmission delay in the real communication network is
usually correlated to the previous delay.

The delays τ1(t, r
sc
t ) and τ2(t, r

ca
t ) contain a randomly

piecewise constant part τsc(r
sc
t ) (or τca(r

ca
t ) for τ2) related

to the network transmission delay and a time-varying part
t− tl (or t− tk) related to the inter-sampling effect as
shown in Fig. 2 (b). The time-varying part is bounded by
sampling interval hi and has the derivative τ̇i = 1, i = 1, 2.
The switching probability between two consecutive trans-
mission delays are

Pi,j(r
sc
tl+1

= j|rsctl
= i) = eAsch1 ,

Pi,j(r
sc
tk+1

= j|rcatk
= i) = eAcah2 ,
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Fig. 2. The sampled output measurement y(t), ȳ(t) (a)
and the evolution of time delay τ1(t, r

sc
t ) for certain

sample path of τsc(r
sc
t ) (b).

where Asc = (αsc
i,j), Aca = (αca

i,j) are the transition
generators of Markovian processes rsct and rcat . The upper
and lower bounds of delays are defined as

τ̄1 = h1 + max
i∈Ssc

{τsc(i)}, τ1 = min
i∈Ssc

{τsc(i)},

τ̄2 = h2 + max
i∈Sca

{τca(i)}, τ2 = min
i∈Sca

{τca(i)}.
(6)

Before the main result is introduced, the following defini-
tion and lemma have to be given.

Definition 1. System (5) is said to be is exponential mean
square stable if for any initial condition z0(r

sc
0 , r

ca
0 ), there

exist positive constants b, and ρ such that for all t ≥ 0

E{||z(t)||2|z0(r
sc
0 , r

ca
0 )} ≤ b||z0(r

sc
0 , r

ca
0 )||2e−ρt.

Lemma 1. (Boukas and Liu [2002]). Let X and Y be real
constant matrices with appropriate dimensions. Then

XTY + Y TX ≤ εXTX +
1

ε
Y TY

holds for any ε > 0.

3. MAIN RESULT

In this section, a delay-dependent stability condition as
well as output-feedback controller design for NCS with
random input delay are presented. The approach is derived
by using the Lyapunov-Krasovskii approach and descriptor
transformation. Henceforth, we let τ1(r

sc
t ), τ2(r

ca
t ) denote

τ1(t, r
sc
t ) and τ2(t, r

ca
t ) if no ambiguity occurs. Consider

the integral

z(t) − z(t− τ1(rt)) =

∫ t

t−τ1(rt)

ż(s)ds (7)

and take (7) into (5). The closed-loop system becomes

ż(t) =
(

Ā0(r
sc
t ) + Ā1(r

sc
t ) + Ā2(r

sc
t )

)

z(t)

− Ā1(r
sc
t )

∫ t

t−τ1(rsc
t

)

ż(s)ds

− Ā2(r
sc
t )

∫ t

t−τ2(rca
t

)

ż(s)ds.

Let ξT (t) = [zT (t) żT (t)], the closed-loop system has the
descriptor form

Eξ̇(t) = Â(rsct )ξ(t) − Â1(r
sc
t )

∫ t

t−τ1(rsc
t

)

ξ(s)ds

− Â2(r
sc
t )

∫ t

t−τ2(rca
t

)

ξ(s)ds,

where

Â0(r
sc
t ) =

[

0 I
Ā0(r

sc
t ) + Ā1(r

sc
t ) + Ā2(r

sc
t ) −I

]

, E =

[

I 0
0 0

]

,

Â1(r
sc
t ) =

[

0 0
0 Ā1(r

sc
t )

]

, Â2(r
sc
t ) =

[

0 0
0 Ā2(r

sc
t )

]

.

Theorem 1. If there exist matricesG(l, k),H(l, k),W (l, k),
symmetric positive definite matrices X1(l, k), Q1, Q2 and
scalars n1(l, k) > 0, n2(l, k) > 0, l ∈ Ssc, k ∈ Sca such that
the following LMI holds

[

Ψ1(l, k) ∗ ∗
τ̂1(l)Ψ2(l, k) −τ̂1(l)Q1 ∗
τ̂2(k)Ψ3(l, k) 0 −τ̂2(k)Q2

]

< 0, (8)

where

τ̂1(l) = τ1(l) +
1

2
ᾱsc(τ̄2

1 − τ2
1),

τ̂2(k) = τ2(k) +
1

2
ᾱca(τ̄2

2 − τ2
2),

ᾱsc = max{|αsc
ii |, i ∈ Ssc},

ᾱca = max{|αca
ii |, i ∈ Sca},

Ψ1(l, k) = ψ1(l, k) + ψT
1 (l, k) +

Nsc
∑

h=1

αsc
l,hEX

T (h, k)

+

Nca
∑

j=1

αca
k,jEX

T (l, j) + τ1(l)Q1 + τ2(k)Q2,

X(l, k) =

[

X1(l, k) 0
−n1(l, k)X1(l, k) n2(l, k)X1(l, k)

]

,

X1(l, k) =

[

X11(l, k) 0
0 X12(l, k)

]

,

Ψ2(l, k) =

[

0 0
−n1(l, k)ψ2(l, k) n2(l, k)ψ2(l, k)

]

,

Ψ3(l, k) =

[

0 0
−n1(l, k)ψ3(l, k) n2(l, k)ψ3(l, k)

]

,

ψ2(l, k) =

[

0 0
H(l, k) 0

]

, ψ3(l, k) =

[

0 W (l, k)
0 0

]

,

then the system (5) is exponential mean square stable
under the controller (3) of the form

Ac(l) = G(l, k)X−1
12 (l, k),

Bc(l) = H(l, k)X−1
11 (l, k)C+,

Cc(l) = B+W (l, k)X−1
12 (l, k).

(9)

Proof: The state {ξ(t), rsct , r
ca
t , t ≥ 0} depends on the his-

tory ξ(t+ θ), θ ∈ [−2τ1(r
sc
t ) − 2τ2(r

ca
t ), 0], which implies

however {ξ(t), rsct , r
ca
t , t ≥ 0} is not a Markovian process.

We modify our problem into a new Markovian process by
defining a new process {Ξ(t), rsct , r

ca
t t ≥ 0} taking values

as the following

Ξ(t) = ξ(s+ t), s ∈
[

t− 2τ1(r
sc
t ) − 2τ2(r

ca
t ), t

]

.

Define a set of positive definite matrices
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P (rsct , r
ca
t ) = X−1(rsct , r

ca
t )

and consider a Lyapunov candidate as (10) in the next
page.

Suppose rsct = l ∈ Ssc, r
ca
t = k ∈ Sca and let L(·) be the

infinitesimal generator of {Ξ(t), rsct , r
ca
t }; then

LV1(Ξ(t), rsct , r
ca
t )

= ξT (t)

[

ÂT (rsct )P (rsct , r
ca
t ) + PT (rsct , r

ca
t )Â(rsct )

+

Nsc
∑

h=1

αsc
l,hEP (h, rcat ) +

Nca
∑

j=1

αca
k,jEP (rsct , j)

]

ξ(t)

− 2ξT (t)PT (rsct , r
ca
t )Â1(r

sc
t )

∫ t

t−τ1(rsc
t

)

ξ(s)ds

− 2ξT (t)PT (rsct , r
ca
t )Â2(r

sc
t )

∫ t

t−τ2(rca
t

)

ξ(s)ds.

According to Lemma A.1, it results in

LV1(Ξ(t), rsct , r
ca
t )

≤ ξT (t)

[

ÂT (rsct )P (rsct , r
ca
t ) + PT (rsct , r

ca
t )Â(rsct )

+

Nsc
∑

h=1

αsc
l,hP (h, rcat ) +

Nca
∑

j=1

αca
k,jP (rsct , j)

+ τ1(r
sc
t )PT (rsct , r

ca
t )Q1P (rsct , r

ca
t )

+ τ2(r
ca
t )PT (rsct , r

ca
t )Q2P (rsct , r

ca
t )

]

ξ(t)

+

∫ t

t−τ1(rsc
t

)

ξT (s)ÂT
1 (rsct )Q−1

1 Â1(r
sc
t )ξ(s)ds

+

∫ t

t−τ2(rca
t

)

ξT (s)ÂT
2 (rsct )Q−1

2 Â2(r
sc
t )ξ(s)ds.

(11)

Similarly,

LV2(Ξ(t), rsct , r
ca
t )

≤ τ1(r
sc
t )ξT (t)ÂT

1 (rsct )Q−1
1 Â1(r

sc
t )ξ(t)

+ τ2(r
ca
t )ξT (t)ÂT

2 (rsct )Q−1
2 Â2(r

sc
t )ξ(t)

−

∫ t

t−τ1(rsc
t

)

ξT (s)ÂT
1 (rsct )Q−1

1 Â1(r
sc
t )ξ(s)ds

−

∫ t

t−τ2(rca
t

)

ξT (s)ÂT
2 (rsct )Q−1

2 Â2(r
sc
t )ξ(s)ds

+ ᾱsc

∫ τ
1

−τ̄1

∫ t

t+θ

ξT (s)ÂT
1 (rsct )Q−1

1 Â1(r
sc
t )ξ(s)dsdθ

+ ᾱca

∫ −τ
2

−τ̄2

∫ t

t+θ

ξT (s)ÂT
2 (rsct )Q−1

2 Â2(r
sc
t )ξ(s)dsdθ.

(12)

LV3(Ξ(t), rsct , r
ca
t )

=
1

2
ᾱsc(τ̄2

1 − τ2
1)ξ

T (t)ÂT
1 (rsct )]Q−1

1 Â1(r
sc
t )ξ(t)

+
1

2
ᾱca(τ̄2

2 − τ2
2)ξ

T (t)ÂT
2 (rsct )]Q−1

2 Â2(r
sc
t )ξ(t)

− ᾱsc

∫ −τ
1

−τ̄1

∫ t

t+θ

ξT (s)ÂT
1 (rsct )Q−1

1 Â1(r
sc
t )ξ(s)dsdθ

− ᾱca

∫ −τ
2

−τ̄2

∫ t

t+θ

ξT (s)ÂT
2 (rsct )Q−1

2 Â2(r
sc
t )ξ(s)dsdθ.

(13)

Combine (11)-(13) and set τ̂1(r
sc
t ) = τ1(r

sc
t ) + ᾱsc

2 (τ̄2
1 − τ2

1),

τ̂2(r
ca
t ) = τ2(r

ca
t ) + ᾱca

2 (τ̄2
2 − τ2

2) , it results in

LV (Ξ(t), rsct , r
ca
t )

≤ ξT (t)

[

ÂT (rsct )P (rsct , r
ca
t ) + PT (rsct , r

ca
t )ÂT (rsct )

+

Nsc
∑

h=1

αsc
l,hEP (h, rcat ) +

Nca
∑

j=1

αca
k,jEP (rsct , j)

+ τ1(r
sc
t )PT (rsct , r

ca
t )Q1P (rsct , r

ca
t )

+ τ2(r
ca
t )PT (rsct , r

ca
t )Q2P (rsct , r

ca
t )

]

ξ(t)

+ τ̂1(r
sc
t )ξT (t)ÂT

1 (rsct )Q−1
1 Â1(r

sc
t )ξ(t)

+ τ̂2(r
ca
t )ξT (t)ÂT

2 (rsct )Q−1
2 Â2(r

sc
t )ξ(t)

= ξT (t)Θ(rsct , r
ca
t )ξ(t),

(14)

Pre- and post-multiply Θ(rsct , r
ca
t ) by XT (rsct , r

ca
t ) and

X(rsct , r
ca
t ), it gives

0 > Â(rsct )X(rsct , r
ca
t ) +XT (rsct , r

ca
t )ÂT (rsct )

+

Nsc
∑

h=1

αsc
l,hEX

T (h, rcat ) +

Nca
∑

j=1

αca
k,jEX

T (rsct , j)

+ τ̂1(r
sc
t )XT (rsct , r

ca
t )ÂT

1 (rsct )Q−1
1 Â1(r

sc
t )X(rsct , r

ca
t )

+ τ̂2(r
ca
t )XT (rsct , r

ca
t )ÂT

2 (rsct )Q−1
2 Â2(r

sc
t )X(rsct , r

ca
t ).

(15)

Take
G(rsct , r

ca
t ) = Ac(r

sc
t )X12(r

sc
t , r

ca
t ),

H(rsct , r
ca
t ) = BC(rsct )CX11(r

sc
t , r

ca
t ),

W (rsct , r
ca
t ) = BCc(r

sc
t , r

ca
t )X12(r

sc
t , r

ca
t )

and apply Schur complement to (15) it results in (8).
By simple matrix manipulation, the output-feedback con-
troller is derived in (9).

Since maxθ∈[−2τ,0]{||ξ(t+ θ)||} ≤ ϕ||ξ(t)|| for some ϕ > 0
by Mahmoud and Al-Muthairi [1984], it has

V (Ξ(t), rsct , r
ca
t ) ≤

[

λmax(EP (rsct , r
ca
t )) + ϕ1λmax(R1(r

sc
t ))

+ ϕ2λmax(R2(r
sc
t ))

]

||ξ(t)||2 ≤ Λmax(r
sc
t , r

ca
t )||ξ(t)||2,

where

R1(r
sc
t ) = ÂT

1 (rsct )Q−1
1 Â1(r

sc
t ), ϕ1 =

τ̄2
1

2
+
ᾱsc

6
(τ̄3

1 − τ3
1),

R2(r
sc
t ) = ÂT

2 (rsct )Q−1
2 Â2(r

sc
t ), ϕ2 =

τ̄2
2

2
+
ᾱca

6
(τ̄3

2 − τ3
2),

Λmax(r
sc
t , r

ca
t ) = λmax(EP (rsct , r

ca
t )) + ϕ1λmax(R1(r

sc
t ))

+ ϕ2λmax(R2(r
sc
t )).

Combining with (14), it becomes

LV (Ξ(t), rsct , r
ca
t )

V (Ξ(t), rsct , r
ca
t )

≤ − min
rsc

t
∈Ssc,rca

t
∈Sca

{

λmin(−Θ(rsct , r
ca
t ))

Λmax(rsct , r
ca
t )

}

, −ρ0

and yields in

ELV (Ξ(t), rsct , r
ca
t ) ≤ −ρ0EV (Ξ(t), rsct , r

ca
t ). (16)

Applying Dynkin’s formula into (16), we have
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V (Ξ(t), rsct , r
ca
t ) = V1(Ξ(t), rsct , r

ca
t ) + V2(Ξ(t), rsct , r

ca
t ) + V3(Ξ(t), rsct , r

ca
t ), (10)

where

V1(Ξ(t), rt) = ξT (t)EP (rsct , r
ca
t )ξ(t),

V2(Ξ(t), rt) =

∫ 0

−τ1(rsc
t

)

∫ t

t+θ

ξT (s)ÂT
1 (rsct )Q−1

1 Â1(r
sc
t )ξ(s)dsdθ +

∫ 0

−τ2(rca
t

)

∫ t

t+θ

ξT (s)ÂT
2 (rsct )Q−1

2 Â2(r
sc
t )ξ(s)dsdθ,

V3(Ξ(t), rt) = ᾱsc

∫ −τ
1

−τ̄1

∫ t

t+θ

ξT (s)ÂT
1 (rsct )Q−1

1 Â1(r
sc
t )ξ(s)(s− t− θ)dsdθ

+ ᾱca

∫ −τ
2

−τ̄2

∫ t

t+θ

ξT (s)ÂT
2 (rsct )Q−1

2 Â2(r
sc
t )ξ(s)(s− t− θ)dsdθ.

EV (Ξ(t), rsct , r
ca
t ) − EV (Ξ(0), rsc0 , r

ca
0 )

= E

[
∫ t

0

LV (Ξ(s), rscs , r
ca
s )ds

]

≤ −ρ0

∫ t

0

ELV (Ξ(s), rscs , r
ca
s )ds.

(17)

Using the Gronwall-Bellman lemma, (17) results in

EV (Ξ(t), rsct , r
ca
t ) ≤ e−ρ0t

EV (Ξ(0), rsc0 , r
ca
0 ).

Since

V (Ξ(t), rsct , r
ca
t ) ≥

[

λmin(EP (rsct , r
ca
t )) + ϕ1λmax(R1(r

sc
t ))

+ ϕ2λmax(R2(r
sc
t )

]

||ξ(t)||2 = Λmin(rsct , r
ca
t )||ξ(t)||2,

it it becomes

E||ξ(t)||2 ≤
e−ρ0t

EV (Ξ(0), rsc0 , r
ca
0 )

minrsc
t
∈Ssc,rca

t
∈Sca

{

Λmin(rsct , r
ca
t )

} . (18)

Equation (18) implies exponential mean square stability
and completes the proof.

Remark 1. The delays τ1(t, r
sc
t ) and τ2(t, r

ca
t ) contain

the transmission delays and the time-varying component
bounded by the corresponding sampling intervals, see (2)
and (4). Accordingly, the transmission delay as well as the
sampling rate are conjointly treated by a single stability
condition in Theorem 1. The solution of Theorem 1 indi-
cates the trade-off between the sampling intervals h1, h2

and transmission delays τsc(r
sc
t ), τca(r

ca
t ) whereby the ex-

ponential mean square stability is guaranteed.

Remark 2. In case of the constant transmission delay, i.e.
τsc(r

sc
t ) = τsc and τca(r

ca
t ) = τca, Theorem 1 reduces to the

delay-dependent stability and controller design condition
for systems with input delay.

Remark 3. The switching output-feedback controller is
obtained in an LMI by the diagonal requirement of
X1(r

sc
t , r

ca
t ). This setting comes with some conservatism.

Theorem 1 can be applied to certain restricted unstable
plants, e.g. two-mode input delay MJLS with one unstable
subsystem. A similar example can be found in Boukas
and Liu [2002]. However, in the example the delay is
constant and appears only in the state. A more feasible
LMI problem setting for general unstable plants remains
still open and belongs to future research.

4. NUMERICAL EXAMPLE

To illustrate the efficacy of the proposed approach, a nu-
merical example with switching output-feedback controller
design is given in this section.

Example 1. Consider a LTI plant:

ẋ = −1.3x+ u,

y = x,

which is interconnected with an output-feedback controller
of the form (3) through a communication network. Assume
the plant and the controller have the same sampling inter-
vals h1 = h2 = 15 ms, the network has the set of trans-
mission delays: τsc(r

sc
t ) = {15, 25}ms in the SC channel

and τca(r
ca
t ) = {5, 15}ms in the CA channel with mode

transition generator

Asc =

[

−3 3
2 −2

]

, Aca =

[

−3 3
1 −1

]

.

The resulting delays, i.e. the sum of transmission de-
lays and sampling intervals, are τ1(r

sc
t ) = {30, 40}ms and

τ2(r
ca
t ) = {20, 30}ms. Solving Theorem 1 by YALMIP

toolbox in Matlab, the feasible output-feedback controllers
associated with SC delays are

Ac(1) = −9.6121, Bc(1) = −3.9316, Cc(1) = −0.0852

for τsc(1) = 15 ms and

Ac(2) = −5.3656, Bc(2) = −2.8489, Cc(2) = −0.4981

for τsc(2) = 25 ms.

The closed-loop system is simulated with 100 random
initial distribution probabilities of SC and CA delays using
the dde23 solver from MATLAB. One of the 100 sample
paths for the SC and CA delays is shown in Fig. 3 (a).
The initial condition of the closed-loop system is given
by x0 = 1, −τ̄1 − τ̄2 < t < 0. The output-feedback con-
troller is synchronously switched with transmission delay
τsc(l), l = 1, 2. The mean state trajectory of switching
output-feedback controller as well as the standard design
with buffering at the controller side, i.e. holding the SC
delay constant by τsc(2), are presented in Fig. 3 (b).
The mean state trajectory of switching output-feedback
controller converges exponentially to a ball bounded by the
radius ||x|| = 0.01 after t0.01 = 4.14 s and t0.01 = 4.75 s for
the standard design with buffering. Clearly, the switching
output-feedback controller has superior performance over
standard design approach. It can be seen that the pro-
posed approach has the performance benefit even when the
Markovian delay has only two modes, i.e. the total delay
difference is 10 ms. If the SC delay has Nsc > 2 modes, the
delay difference is higher. The benefit is expected to be
more obvious.

Open problems that will be addressed in the future re-
search includes: i) the implementation of delay-dependent
switched controller over real communication network using
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Fig. 3. The sample path of SC and CA delays (a) and the
mean state trajectory of switching controller (solid);
for comparison, controller with buffering SC delay
(dashed).

time-stamping technique. This requires precise synchro-
nization between sensors and controller; ii) the packet
dropout results from sampled sequence disorder and net-
work transmission.

5. CONCLUSION

Motivated by the random transmission delay in networked
control systems (NCS) this paper concerns a novel control
approach towards Markovian jump linear systems with
random input delays and gives a sufficient stability con-
dition and controller design method. Exponential mean
square stability is guaranteed for independently random
transmission delays from sensor-to-controller (SC) and
controller-to-actuator (CA) using a Lyapunov-Krasovskii
functional. A delay-dependent output-feedback controller
is proposed and the performance benefit over the standard
buffering approach is demonstrated. The example shows
the proposed control approach is very promising for future
NCS applications.
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