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Abstract: The stabilization problem of a class of discrete-time LPV systems is considered. The
plant switches among different operating conditions and, as long as the process operates in a
fixed mode, the physical parameters are varying inside a known compact set. The possibility of
noisy parameter measurements is taken into account, the measure and the control matrices
corresponding to each mode are assumed to be known and time-invariant. The problem
solvability conditions are stated in terms of feasibility of a set of LMIs, and the closed-loop
stability is proved assuming a sufficiently long permanence of each mode.

1. INTRODUCTION

This paper considers the stabilization problem of a
discrete-time LPV plant with the following mode-switch
dynamics. A limited number of different operating con-
ditions are possible and, as long as the process operates
under a fixed mode, its dynamical matrix depends on
parameters which are varying inside a known compact set.
From time to time a sudden change of the operating con-
dition occurs and the physical parameters describing the
process dynamics suddenly switch to another compact set
relative to the new situation. The bounds of the compact
sets containing the physical parameters and the minimum
permanence interval of each mode are usually available.
The physical parameters are not known ”a priori” but
are assumed to be observed in real time. In general, the
actuator and sensor equipments used in all the operating
conditions are known and time-invariant as long as the
plant operates in the same mode. For situations of this
kind see e.g. Ippoliti et al. (2005), Jetto and Orsini (2006)
and references therein. A similar class of systems has been
also considered in Apkarian et al. (1995), Blanchini and
Miani (2003).

The large amount of results for LPV systems can be
classified making reference to the class of systems, to the
type of Lyapunov function, to the kind of control algo-
rithm. The gain-scheduling approach proposed in Becker
and Packard (1994),Packard (1994),Apkarian and Gahinet
(1995),Apkarian et al. (1995), Scorletti and Ghaoui (1998),
gives computationally simple methods, but a parameter-
independent Lyapunov function is used, so that conser-
vative results can be obtained. More general parameter
dependent Lyapunov functions have been exploited in
Feron et al. (1996), Gahinet et al. (1996),Scherer (1996),Yu
and Sideris (1997),Apkarian and R.J.Adams (1998),Wang
and Balakrishnan (2002), Souza et al. (2003),Souza and
Trofino (2004), to derive H2 and H∞ gain scheduling con-
trollers. Switching control of LPV systems using multiple-
parameter dependent Lyapunov functions has been con-
sidered in Lu and Wu (2004). Model predictive controllers
have been proposed in Casavola et al. (2002), Park and
Jeong (2004). Stabilizability problems for LPV systems

with switching and/or polytopic uncertainties have been
considered in Blanchini et al. (2007), Lee (2007). The most
part of the above articles assume an affine dependence of
the system matrices on the physical parameters Apkarian
et al. (1995), Feron et al. (1996), Gahinet et al. (1996),
Casavola et al. (2002), Blanchini and Miani (2003), Souza
et al. (2003), Souza and Trofino (2004), Park and Jeong
(2004) or a LFT structure, Packard (1994), Apkarian and
Gahinet (1995), Apkarian and R.J.Adams (1998), Scorletti
and Ghaoui (1998).

Given the precedent literature, this paper has the three fol-
lowing salient features: i) a family of parameter-scheduled,
observer based controllers is designed. Each controller ro-
bustly stabilizes a fixed mode using constant observer and
regulator gains obtained by a set of LMIs. This greatly re-
duces the computational burden of the control algorithm;
ii) the only assumption on the parameter dependence
is the uniform boundedness; iii) the possibility of noisy
parameter measurements is taken into account.

The overall control algorithm is given by a switching law
driven by a supervisor whose task is to choose the ap-
propriate controller according to the parameter measures.
The problem solvability conditions are stated in terms of
feasibility of a set of LMIs, and the closed-loop stability is
proved assuming that each mode is kept for a sufficiently
long time interval.

The paper is organized in the following way. Some basic
notations and the problem statement are provided in
Section 2, the synthesis procedure of the controller family
is reported in Sections 3 and 4, the extension to noisy
parameter measurements is considered in Section 5. The
stability conditions are stated in Section 6. A numerical
example and concluding remarks end the paper.

2. NOTATION AND PROBLEM STATEMENT

For any square matrix M , the symbols ‖M‖, ‖M‖2 and
λi{M} denote any generic norm, the spectral norm and
the eigenvalues of M respectively. Denoting by mi,j ,
the generic element of M , the matrix norms ‖M‖∞
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and ‖M‖1 are defined as max
1≤i≤n

n
∑

j=1

|mi,j |
△
= ‖M‖∞ and

max
1≤j≤n

n
∑

i=1

|mi,j |
△
= ‖M‖1 respectively. The notation M ≥ 0

(M ≤ 0) means that M is positive (negative) semidefi-
nite, while M > 0 (M < 0) means that M is positive
(negative) definite. Given two (n × m) matrices M and
N , the notation M � N (M � N) means mi,j ≤ ni,j

(mi,j ≥ ni,j), i = 1, · · · , n, j = 1, · · · ,m. If the symbol ≺,
(≻), is used, the strictly inequality holds. The notation
M ∈ [M−,M+] means that M is an interval matrix
satisfying M− � M � M+. The matrix M̄ is defined by
the elements m̄i,j = max{|m−

i,j |, |m
+
i,j |}, i = 1, · · · , n; j =

1, · · · ,m. Clearly one has M � M̄ and if M− � 0n,m,
then M̄ = M+. A time-varying matrix M(·) such that
M(·) ∈ [M−,M+], is called an interval time-varying (ITV)
matrix.
Consider the following discrete-time LPV system Σ

x(k + 1) = A(θ(k))x(k) + B(k)u(k), (1)

y(k) = C(k)x(k), (2)

where: u(·) ∈ IRm is the control input, x(·) ∈ IRn is the
state, y(·) ∈ IRq is the output, θ(·) = [θ1(·), · · · , θp(·)]

T is
a vector of ”a priori” unknown time varying parameters
which are assumed to be measurable in real time. It is
also assumed that A1): there exists an infinite increasing
sequence S of integers {km}, k0 = 0, such that 0 <
τ ≤ km+1 − km < ∞, for some τ ∈ 6Z+, ∀m ∈ 6Z+,

and over each time interval I ′m
△
= [km, km+1) one has

θ(k) = θℓ(k) = [θℓ,1(k), · · · , θℓ,p(k)]T ∈ Θℓ, ∀k ∈ I ′m
and for some fixed ℓ in the range [1, · · · , ℓ̃], ℓ̃ < ∞; A2)
Θℓ is the hyperbox containing all the vectors θℓ(·) such
that θℓ,i(·) ∈ [θ−ℓ,i, θ

+
ℓ,i], i = 1, · · · , p, A3): the vectors

θ−ℓ
△
= [θ−ℓ,1, · · · , θ−ℓ,p]

T , and θ+
ℓ

△
= [θ+

ℓ,1, · · · , θ+
ℓ,p]

T are ”a

priori” known, A5): the elements a
(ℓ)
i,j (θℓ(·)) of Aℓ(θℓ(·))

are uniformly bounded functions of θℓ, ∀θℓ ∈ Θℓ, A6):
B(k) and C(k) are ”a priori” known matrices such that

B(k) = Bℓ, C(k) = Cℓ, ∀k ∈ [km, km+1), ℓ = 1, · · · , ℓ̃,m ∈
6Z+.

From the above assumptions it follows that Σ can be
viewed as a time varying system with mode switch dy-
namics, each mode being described by the triplet Σℓ ≡
(Cℓ, Aℓ(θℓ(k)), Bℓ), ℓ = 1, · · · , ℓ̃, and Aℓ(θℓ(·)) is an ITV

matrix such that Aℓ(θℓ(·)) ∈ IAℓ

△
= [A−

ℓ , A+
ℓ ] for suitably

defined A−
ℓ and A+

ℓ . It follows that to each Aℓ(θℓ(k)) the
corresponding extremal matrix Āℓ can be associated. The
following final assumption is now introduced: A7): each

triplet Σ̄ℓ ≡ (Cℓ, Āℓ, Bℓ), ℓ = 1, · · · , ℓ̃, is controllable
and observable. By now on, for simplicity of notation,
the explicit dependence of the time-varying Aℓ(θℓ(·)) and
of its elements on the subscript ℓ which identifies Θℓ

will be omitted. Hence, in the following, the dynamical
matrix and its elements will be denoted by A(θℓ(·)) and
ai,j(θℓ(·)) respectively. The same simplified notation will
be also adopted for the closed loop time varying dynamical
matrices.
System Σℓ is said uniformly, exponentially, γℓ-stable if its

state transition matrix
∥

∥Φℓ(k, k̄)
∥

∥ =
∥

∥A(ϑℓ(k − 1))...A(ϑℓ(k̄))
∥

∥ ,

is such that,
∥

∥Φℓ(k, k̄)
∥

∥ ≤ mℓγ
(k−k̄)
ℓ ,

∀k, k̄ ∈ 6Z+, k ≥ k̄, for some mℓ > 0 and 0 < γℓ < 1.

The stabilization problem considered consists in finding
(if it exists) a dynamic output controller Σc, scheduled
by the parameter measurements, yielding an uniformly
exponentially stable closed-loop system Σf . The solution
proposed is given by the connection of a family F of time-
varying controllers Σc,ℓ, ℓ = 1, · · · , ℓ̃, with a switching pol-
icy inside F . Each Σc,ℓ has an observer based form where
the observer and the feedback gains are predetermined off-
line on the basis of the extremal plants Σ̄ℓ, ℓ = 1, · · · , ℓ̃.
LMI conditions are given for each Σc,ℓ to stabilize the
corresponding triplet (Cℓ, A(θℓ(·)), Bℓ), ∀θℓ(·) ∈ Θℓ. This
allows each Σc,ℓ to be kept acting as long as θ(·) ∈ Θℓ.
The switching inside F is driven by the current parameter
measurements and the closed-loop stability is proved under
the assumption that each I ′m be sufficiently long.

3. THE CONTROLLER DESIGN PROCEDURE

The following preliminary result is recalled Orsini (2006).
Lemma If

|λi{Āℓ}| < γℓ < 1, i = 1, · · · , n, (3)

then the corresponding Σℓ is uniformly exponentially γℓ-
stable independently of the way the elements ai,j(θℓ(·))
of A(θℓ(·)) vary inside their respective intervals. More-

over ‖Φℓ(k, k̄)‖2 ≤ m̄2,ℓγ
(k−k̄)
ℓ , ∀k, k̄ ∈ 6Z+, k ≥ k̄, with

m̄2,ℓ = (m̄∞,ℓm̄1,ℓ)
1
2 , where m̄1,ℓ and m̄∞,ℓ are positive

constants such that ‖Āk
ℓ ‖1 ≤ m̄1,ℓγ

k
ℓ , ‖Āk

ℓ ‖∞ ≤ m̄∞,ℓγ
k
ℓ .

With reference to Σ ≡ Σℓ, consider the following observer-
like based controller Σc,ℓ

zℓ(k + 1) = (A(θℓ(k)) + LℓCℓ)zℓ(k)

+ Bℓuℓ(k) − Lℓyℓ(k) (4)

uℓ(k) = Kℓzℓ(k), (5)

where zℓ(·) ∈ IRn is the state of Σc,ℓ. The feed-
back connection Σf,ℓ of Σc,ℓ with the ITV plant Σℓ ≡
(Cℓ, A(θℓ(k)), Bℓ) is described by the pair (Cf,ℓ, Af (θℓ(k))),
with

Af (θℓ(k)) =

[

A (θℓ(k)) BℓKℓ

−LℓCℓ A (θℓ(k)) + LℓCℓ + BℓKℓ

]

,(6)

Cf,ℓ = [ Cℓ 0q,n ] . (7)

The state transition matrix of Σf,ℓ is denoted by Φf,ℓ(·, ·).

Applying the transformation matrix T =

[

In 0n

In −In

]

, one

has Σf,ℓ ≡ (Ĉf,ℓ, Âf (θℓ(k))) with

Âf (θℓ(k)) =

[

A (θℓ(k)) + BℓKℓ −BℓKℓ

0n A (θℓ(k)) + LℓCℓ

]

,(8)

Ĉf,ℓ = [ Cℓ 0q,n ] . (9)

The gain matrices Kℓ and Lℓ of Σc,ℓ are designed to assign
the desired eigenvalues λi{Āℓ + BℓKℓ} ∪ λi{Āℓ + LℓCℓ},
i = 1, · · · , n, to the following extreme matrix
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ˆ̄Af,ℓ =

[

Āℓ + BℓKℓ −BℓKℓ

0n Āℓ + LℓCℓ

]

. (10)

This is surely possibly by A7). Let ρ1,ℓ and ρ2,ℓ be two
arbitrarily fixed scalars such that 0 ≤ ρ2,ℓ ≤ ρ1,ℓ ≤ 1 and
let ρℓ = max{ρ1,ℓ, ρ2,ℓ}. The following theorem holds.
Theorem There exists a controller Σc,ℓ given by (4) and
(5) such that Σf,ℓ is λℓ exponentially stable (for some
λℓ < ρℓ) if there exist two matrices U1,ℓ and U2,ℓ and two
diagonal matrices S1,ℓ ≻ 0n and S2,ℓ ≻ 0n, such that the
following LMIs are satisfied,







S1,ℓ

1

ρ1,ℓ

(ĀℓS1,ℓ + BℓU1,ℓ)
T

1

ρ1,ℓ

(ĀℓS1,ℓ + BℓU1,ℓ) S1,ℓ






> 0

(11)






S2,ℓ

1

ρ2,ℓ

(ĀT
ℓ S2,ℓ + CT

ℓ U2,ℓ)
T

1

ρ2,ℓ

(ĀT
ℓ S2,ℓ + CT

ℓ U2,ℓ) S2,ℓ






> 0

(12)

ĀℓS1,ℓ + BℓU1,ℓ � 0n, ĀT
ℓ S2,ℓ + CT

ℓ U2,ℓ � 0n,

−BℓU1,ℓ � 0n. (13)

−ĀℓS1,ℓ − 2BℓU1,ℓ − A−
ℓ S1,ℓ � 0n, (14)

−ĀT
ℓ S2,ℓ − 2CT

ℓ U2,ℓ − A−T
ℓ S2,ℓ � 0n, (15)

The gain matrices Kℓ and Lℓ of Σc,ℓ are given by

Kℓ = U1,ℓS
−1
1,ℓ , Lℓ = (U2,ℓS

−1
2,ℓ )T . (16)

Proof Putting U1,ℓS
−1
1,ℓ

△
= Kℓ and applying the congruence

transformation W1,ℓ = diag[S−1
1,ℓ , S−1

1,ℓ ], condition (11) can
be rewritten as







S−1
1,ℓ

1

ρ1,ℓ

(Āℓ + BℓKℓ)
T S−1

1,ℓ

1

ρ1,ℓ

S−1
1,ℓ (Āℓ + BℓKℓ) S−1

1,ℓ






> 0, (17)

using the Schur complement and putting S−1
1,ℓ

∆
= P1,ℓ, one

has

P1,ℓ −
1

ρ2
1,ℓ

(

Āℓ + BℓKℓ

)T
P1,ℓ

(

Āℓ + BℓKℓ

)

> 0. (18)

As P1,ℓ > 0, condition (18) means that |λi{Āℓ +BℓKℓ}| <
ρ1,ℓ ≤ 1. Moreover, as S1,ℓ is diagonal and strictly positive

and U1,ℓS
−1
1,ℓ = Kℓ, the first of conditions (13) implies

Āℓ + BℓKℓ � 0n.

Putting U2,ℓS
−1
2,ℓ

∆
= LT

ℓ and arguing as before, it follows

that (12) and the second of conditions (13) imply |λi{Āℓ +
LℓCℓ}| < ρ2,ℓ ≤ 1 and Āℓ + LℓCℓ � 0n, respectively. The
third of conditions (13) implies −BℓKℓ � 0n because S1,ℓ

is diagonal and strictly positive. By (10) it follows that
(11)-(13) and (16) give

|λi{
ˆ̄Af,ℓ}| < ρℓ,

ˆ̄Af,ℓ � 02n. (19)

Moreover, by (14) and (15) one has

|A(θℓ(k)) + BℓKℓ| � Āℓ + BℓKℓ,

|A(θℓ(k)) + LℓCℓ| � Āℓ + LℓCℓ,

∀A(θℓ(k)) ∈ [A−
ℓ , A+

ℓ ], k ∈ 6Z+.

Hence, by (8) and (10) one has: |Âf (θℓ(k))| � ˆ̄Af,ℓ,

∀A(θℓ(k)) ∈ [A−
ℓ , A+

ℓ ], k ∈ 6Z+. By lemma and (19), the
uniform exponential λℓ-stability (for some 0 < λℓ < ρℓ) of

Âf (θℓ(k)) follows from the analogous property of ˆ̄Af,ℓ, and
the uniform, exponential λℓ-stability of Af (θℓ(k)) follows

from Af (θℓ(k)) = T−1Âf (θℓ(k))T . △
The requirement that S1,ℓ = P−1

1,ℓ and S2,ℓ = P−1
2,ℓ be

diagonal is not restrictive. In fact if Āℓ + BℓKℓ � 0n,
then |λi{Āℓ + BℓKℓ}| < ρ1,ℓ ≤ 1, if only if the matrix P1,ℓ

satisfying (18) is diagonal, L.Farina and Rinaldi (2000).
An analogous consideration holds for S2,ℓ = P−1

2,ℓ .

By the theorem one has ‖Φ̂f,ℓ(k, k̄)‖
△
= ‖Âf (θℓ(k −

1)) · · · Âf (θℓ(k̄))‖ ≤ m̂f,ℓλ
(k−k̄)
ℓ , where m̂f,ℓ is such that

‖( ˆ̄Af,ℓ)
k‖ ≤ m̂f,ℓλ

k
ℓ , and ‖Φf,ℓ(k, k̄)‖ = ‖Af (θℓ(k −

1)) · · ·Af (θℓ(k̄))‖ ≤ mf,ℓλ
(k−k̄)
ℓ , where mf,ℓ ≤ ‖T‖‖T−1‖

m̂f,ℓ.
The use of two different scalars ρ1,ℓ and ρ2,ℓ in (11) and
(12) introduces more flexibility in the synthesis procedure.
For example if ρ2,ℓ < ρ1,ℓ, an observer dynamics faster
than the feedback compensator dynamics is obtained. If
the values ρ1,ℓ = ρ2,ℓ = 1, are chosen, the assumption of a
reachable and observable Σ̄ℓ ≡ (Cℓ, Āℓ, Bℓ) can be relaxed
to that of input-output stabilizability.

The above theorem implies that if conditions (11)-(15) are
satisfied, then the controller Σc,ℓ not only stabilizes all the
ITV matrices A(θℓ(·)) ∈ [A−

ℓ , A+
ℓ ], but the wider class of

ITV matrices A(θℓ(·)) such that: |A(θℓ(·))+BℓKℓ| � Āℓ +
BℓKℓ, and |A(θℓ(·)) + LℓCℓ| � Āℓ + LℓCℓ, or equivalently:
−Āℓ − 2BℓKℓ � A(θℓ(·)) � Āℓ and −Āℓ − 2LℓCℓ �
A(θℓ(·)) � Āℓ.

Once a family F of stabilizing pairs (Kℓ, Lℓ) has been com-
puted off-line (if any), the supervisor drives the switching
inside F according to the parameter measurements and no
extra calculation has to be performed on line to implement
the control algorithm given by (4) and (5).

4. THE ”POSITIVIZABILITY” NOTION

A limit of the design procedure given in the previous
section is that condition (14) of the theorem can not be
satisfied if Āℓ is unstable and if the ITV matrix A(θℓ(·)) ∈
[A−

ℓ , A+
ℓ ] is negative, namely if A+

ℓ � 0n. As shown in the
proof of the theorem, condition (14) implies |A(θℓ(·)) +
BℓKℓ| � Āℓ + BℓKℓ, ∀A(θℓ(·)) ∈ [A−

ℓ , A+
ℓ ], whence

−Āℓ − 2BℓKℓ � A−
ℓ . (20)

If A+
ℓ � 0n, then Āℓ = −A−

ℓ , and condition (20) can be
rewritten as

A−
ℓ − 2BℓKℓ � A−

ℓ ,
which can not be satisfied because, as shown in the proof of
the theorem, the third of condition (13) implies −BℓKℓ �
0n and BℓKℓ 6= 0 by the instability of Āℓ.

To overcome this limit, the notion of ”output positivizable
system” is introduced here. Given a negative ITV matrix
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A(θℓ(·)), the system Σℓ ≡ (Cℓ, A(θℓ(·)), Bℓ) is said output
positivizable if there exists a (possibly null) matrix Gℓ such
that

A(θℓ(·)) + BℓGℓCℓ ≻ 0n, ∀A(θℓ(·)) ∈ [A−
ℓ , A+

ℓ ]. (21)

It is clear that condition (21) can be satisfied if and only
if there exists a matrix Gℓ solution of the following LMI

A−
ℓ + BℓGℓCℓ ≻ 0n. (22)

If such a matrix Gℓ exists, it can be seen as an internal
static output gain giving the following ”output positivized
system” Σp,ℓ ≡ (Cℓ, Ap(θℓ(·)), Bℓ), where Ap(θℓ(·)) =
A(θℓ(·)) + BℓGℓCℓ. The new extremal matrix is given by
Āp,ℓ = A+

ℓ + BℓGℓCℓ and the corresponding extremal
plant Σ̄p,ℓ ≡ (Cℓ, Āp,ℓ, Bℓ) is reachable and observable by
assumption A7).
In conclusion, for systems Σℓ ≡ (Cℓ, A(θℓ(·)), Bℓ) with
a negative ITV matrix A(θℓ(·)), the design procedure of
the stabilizing Σc,ℓ (if any) consists of the two following
steps: 1) find an internal static output feedback Gℓ solving
the LMI (22), 2) apply the same design procedure of the
previous section to the positivized system Σp,ℓ.

5. NOISY PARAMETER MEASUREMENTS

Assume that some parameter vectors θℓ(·), for some ℓ ∈

[1, ·, ℓ̃], are measured according to,

θ̃ℓ(·) = θℓ(·) + vℓ(·), (23)

where the unknown observation noise vℓ(·) = [vℓ,1(·),
· · · , vℓ,p(·)]

T is such that |vℓ,i(·)| ≤ v̄ℓ, i = 1, · · · , p. It
is also assumed that A8): [θ−ℓ,i − v̄ℓ, θ

+
ℓ,i + v̄ℓ] ∩ [θ−m,i −

v̄m, θ+
m,i + v̄m] = ∅, for at least one value of i ∈ [1, · · · , p],

and 1 ≤ ℓ,m ≤ ℓ̃, ℓ 6= m, A9) the elements ai,j(θ̃ℓ(·))

of the dynamical matrix A(θ̃ℓ(·)) corresponding to the

noisy measures are uniformly bounded functions of θ̃ℓ(·),

∀θ̃ℓ(·) ∈ Θ̃ℓ ⊇ Θℓ, where Θ̃ℓ is the hyperbox containing

all the vectors θ̃ℓ(·) such that θ̃ℓ,i(·) ∈ [θ−ℓ,i − v̄ℓ, θ
+
ℓ,i + v̄ℓ],

i = 1, · · · , p. Assumption A8) guarantees that each mode
can be identified by the supervisor without ambiguity,
A9) implies that A(θ̃ℓ(·)) is an ITV matrix such that

A(θ̃ℓ(·)) ∈ ĨAℓ

△
= [Ã−

ℓ , Ã+
ℓ ], with ĨAℓ

⊇ IAℓ
, because its

elements ai,j(θ̃ℓ(·)) vary over Θ̃ℓ ⊇ Θℓ. Denoting by Ā′
ℓ

the extremal matrix of A(θ̃ℓ(·)), it follows that Ā′
ℓ � Āℓ.

As the controller is scheduled by the measured parameters,
matrix A(θℓ(·)) must be replaced by A(θ̃ℓ(·)) in equation
(4). Arguing as in the Section 3, it is easily seen that

matrices Af (θℓ(·)) and Âf (θℓ(·)) are consequently replaced
by

Af (θ̃ℓ(·)) =

[

A(θℓ(·)) BℓKℓ

−LℓCℓ A(θ̃ℓ(·)) + LℓCℓ + BℓKℓ

]

,

Âf (θ̃ℓ(·)) =

[

A(θℓ(·)) + BℓKℓ −BℓKℓ

∆A(θ̃ℓ(·), θℓ(·)) A(θ̃ℓ(·)) + LℓCℓ

]

,

respectively, where ∆A(θ̃ℓ(·), θℓ(·)) = A(θℓ(·)) − A(θ̃ℓ(·)).
For each fixed θℓ(·), consider the hyperbox Θ̃ℓ containing

all the vectors θ̃ℓ(·) given by (23) and define ∆ℓ as

∆ℓ
△
= max

(θℓ(·),θ̃ℓ(·))∈Θℓ×Θ̃ℓ

|∆A(θ̃ℓ(·), θℓ(·))|. (24)

It follows that |Âf (θ̃ℓ(·))| �
ˆ̄A′

f,ℓ, with

ˆ̄
A′

f,ℓ =

[

Āℓ + BℓKℓ −BℓKℓ

∆ℓ Ā′
ℓ + LℓCℓ

]

. (25)

Hence ˆ̄A′
f,ℓ can be considered the analogous of the ex-

tremal closed loop matrix ˆ̄Af,ℓ given by (10). The idea
is to apply the procedure of Section 3 (or 4 if neces-

sary) to the unperturbed matrix ˆ̄Au
f,ℓ obtained from (25)

assuming ∆ℓ = 0. The corresponding set of LMIs is
obtained from (11)-(15) with minor changes relative to
the observer. It is enough to replace Āℓ with Ā′

ℓ in (12),
in the second of (13) and in (15), and to replace A−

ℓ

with Ã−
ℓ in (15). If this new set of LMIs is satisfied,

then ˆ̄Au
f,ℓ is λℓ-stable so that ‖( ˆ̄Au

f,ℓ)
k‖ ≤ m̂u

f,ℓλ
k
ℓ for

some m̂u
f,ℓ > 0. It is clear that the stability of ˆ̄A′

f,ℓ

is preserved if ‖∆ℓ‖ is sufficiently small. Applying the
method reported in Jetto and Orsini (2007) and based on

the Bellman-Gronwall Lemma, one has that ‖( ˆ̄A′
f,ℓ)

k‖ ≤

m̂u
f,ℓα

k
ℓ , where αℓ = (λℓ + m̂u

f,ℓ‖∆ℓ‖). This implies that,

for any fixed ρ′ℓ ∈ (λℓ, 1), the perturbed closed-loop matrix
ˆ̄A′

f,ℓ is αℓ-stable for some λℓ < αℓ ≤ ρ′ℓ, if ‖∆ℓ‖ ≤

δℓ
∆
= (ρ′ℓ − λℓ)

/

m̂u
f,ℓ. As |Âf (θ̃ℓ(·))| �

ˆ̄A′
f,ℓ, the stability

of Σf,ℓ follows from the lemma and from Af (θ̃ℓ(·)) =

T−1Âf (θ̃ℓ(·))T . More precisely, in the noisy case one has:

‖Φ̂f,ℓ(k, k̄)‖ = ‖Âf (θ̃ℓ(k − 1)) · · · Âf (θ̃ℓ(k̄))‖ ≤ m̂u
f,ℓα

(k−k̄)
ℓ

and ‖Φf,ℓ(k, k̄)‖ = ‖Af (θ̃ℓ(k − 1)) · · ·Af (θ̃ℓ(k̄))‖ ≤

m′
f,ℓα

(k−k̄)
ℓ , where m′

f,ℓ ≤ ‖T‖‖T−1‖m̂u
f,ℓ. Hence the

above synthesis procedure can be applied if the bound v̄ℓ

on each vℓ,i(·), i = 1, · · · , p, is such that the corresponding
‖∆ℓ‖ is sufficiently small, for example if it is overbounded
by the above estimate δℓ. A comprehensive overview of
methods to estimate the maximum perturbation preserv-
ing stability is given in de Ambreu-Garcia et al. (1998).
In conclusion, in the case of noisy parameter measures, the
design procedure of the controller family F consists of the

three following steps: 1) consider the matrix ˆ̄Au
f,ℓ obtained

from (25) assuming ∆ℓ = 0 and check if the corresponding
set of LMIs defined as explained in this section is satisfied,
2) if the set is satisfied, choose ρ′ℓ ∈ (λℓ, 1) and compute
the above bound δℓ on ‖∆ℓ‖ preserving the αℓ-stability of

the perturbed matrix ˆ̄A′
f,ℓ, 3) exploiting the knowledge of

matrix ∆ℓ and the bound v̄ℓ on each vℓ,i(·), i = 1, · · · , p
derive the exact value of ‖∆ℓ‖. If ‖∆ℓ‖ ≤ δℓ, the controller
design procedure can be applied.

6. STABILITY ANALYSIS

The stability analysis of this section refers to both exact
and noisy parameter measurements, provided that ‖∆ℓ‖ ≤

δℓ, ℓ = 1, ·, ℓ̃. By the theorem, inside each I ′m, the norm

of Φf,ℓ(·, ·) is bounded as ‖Φf,ℓ(k, km)‖ ≤ νℓω
(k−km)
ℓ for

some νℓ > 0 and ωℓ < 1, where νℓ = mf,ℓ and ωℓ = λℓ in
the noise free case, while νℓ = m′

f,ℓ and ωℓ = αℓ, in the
noisy measurements case.
Let Φf (·, ·) be the state transition matrix of Σf . For each

j, i ∈ 6Z+, with j ≥ i, one has
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‖Φf (j, i)‖ ≤ c

ℓ̄(j)−1
∏

l=ℓ0(i)

‖Φf,h(l)(kl+1, kl)‖

≤ c

ℓ̄(j)−1
∏

l=ℓ0(i)

νh(l)ω
(kl+1−kl)
h(l) , (26)

where: the empty product is taken as 1, kℓ0(i) is the
minimum km ∈ S such that kℓ0(i) ≥ i, kℓ̄(j) is
the maximum km ∈ S such that kℓ̄(j) ≤ j, c =

‖Φf,ℓ1(kℓ0(i), i)‖‖Φf,ℓ2(j, kℓ̄(j))‖ if j ≥ kℓ̄0(i), otherwise

c = ‖Φf,ℓ1(j, i)‖, for some ℓ1, ℓ2 ∈ [1, · · · , ℓ̃], h(·) is a

function such that h(·) : 6Z+ → [1, · · · , ℓ̃]. It directly
follows that the uniform closed loop asymptotic stability

is guaranteed if νℓω
(km+1−km)
ℓ < 1, ℓ = 1, · · · , ℓ̃, ∀m ∈ 6Z+,

namely if km+1 − km ≥ τ , ∀m ∈ 6Z+, where τ is such that

τ > τmin
△
= max

ℓ∈[1,ℓ̃]
(ln νℓ/ ln(1/ωℓ)). (27)

By the equivalence of uniform asymptotic and exponential
stability, condition (27) also implies that Σf is uniformly
exponentially ω̄ stable for some 0 ≤ ω̄ < 1. The value ω̄ can
be computed as a function of the ωℓ ℓ = [1, · · · , ℓ̃], in the

following way. Let ν and qℓ be defined as ν
△
= max

ℓ∈[1,ℓ̃]
νℓ, and

qℓ
△
= νℓω

τ
ℓ < 1, respectively. Consider the ℓ̃ functions ω̄k

ℓ ,

ℓ = 1, · · · , ℓ̃, where ω̄ℓ is computed imposing the condition

ω̄
(τ+1)
ℓ = qℓ, and define ω̄

∆
= max

ℓ
ω̄ℓ. Taking into account

that i) 0 < ω̄ < 1, ii) c ≤ νℓ1ω
(kℓ0(i)−i)

ℓ1
νℓ2ω

(j−kℓ̄(j))

ℓ2
, it is

easily seen that the way the function νω̄k is defined implies
that the r.h.s. of (26) is upperly bounded by ν3ω̄(j−i),
∀j ≥ i.

7. A NUMERICAL EXAMPLE

Example Consider the LPV system Σ with the following
mode switch dynamics Σℓ = (Cℓ, A (θℓ (·)) , Bℓ), ℓ = 1, 2,

C1 = [ 0.3 0.4 ] , B1 =

[

0.5
0.3

]

,

A (θ1 (·)) =

[

θ11 (·) θ12 (·) 1
0.5 θ11 (·) + θ2

13 (·)

]

,

C2 = [ 0.5 0.5 ] , B2 =

[

1
1

]

,

A (θ2 (·)) =

[

−0.5 θ22 (·)
−1 θ21 (·) θ23 (·)

]

,

where θ11(·) ∈ [0, 1] , θ12(·) ∈ [0, 1.2] , θ13(·) ∈ [−0.6, 0],
θ21(·) ∈ [0.5, 1] , θ22(·) ∈ [−1,−0.6], θ23(·) ∈ [−1,−0.8]. It
follows that

A (θ1 (·)) =

[

[0, 1.2] 1
0.5 [0, 1.36]

]

,

A (θ2 (·)) =

[

−0.5 [−1,−0.6]
−1 [−1,−0.4]

]

.

It is easy to see that Σ̄ℓ, ℓ = 1, 2 satisfies A7). It is
also assumed that km+1 − km ≥ τ = 40,m ∈ 6Z+, and
that θ2(·) = [θ21(·), θ22(·), θ23(·)]

T is observed under an

additive measurement noise v2(·) such that |v2,i(·)| ≤ v̄2 =
0.005, i = 1, 2, and v2,3(·) = 0. This implies that A8)
is satisfied. As the ITV matrix A(θ2(·)) is negative and

Ā2 =

[

0.5 1
1 1

]

is unstable, the positivation procedure

of Section 4 must be applied. Using the internal static
output feedback G2 = 2.5 as a possible solution of (22),
the output positivized system Σp,2 results to be Σp,2 ≡
(C2, Ap (θ2 (·)) , B2) with

Ap (θ2 (·)) = (A (θ2 (·)) + B2G2C2) ∈

[

0.75 [0.25, 0.65]
0.25 [0.25, 0.85]

]

.

Choosing ρ1,1 = ρ2,1 = ρ1 = 0.8 and ρ1,2 = ρ2,2 =
ρ2 = 0.61, it is found that, as for Σ1, the set of LMIs
(11)-(15) admits the solution K1 = [−1.1632,−1.9817],

L1 = [−1.9817,−1.5883]
T
. As for Σ2, the set of LMIs

defined as explained in Section 4 has to be considered.
It is found that the matrix

ˆ̄Au
f,2 =

[

Āp,2 + B2K2 −B2K2

02 Ā′
p,2 + L2C2

]

,

with

Āp,2 =

[

0.75 0.65
0.25 0.85

]

, Ā′
p,2 =

[

0.75 0.655
0.25 0.854

]

,

is stabilized by the pair (K2, L2) with K2 = [−0.2265,
−0.4263], L2 = [−0.8719,−0.498]T . Once the pairs

(Kℓ, Lℓ), ℓ = 1, 2, have been computed, the matrix ˆ̄Af,1

can be obtained by (10) and ˆ̄Au
f,2 by (25), assuming

∆2 = 0. The maximum modulus eigenvalues of ˆ̄Af,1 and
ˆ̄Au

f,2 are λ1 = 0.7743 and λ2 = 0.6057, respectively. It is

found that

∥

∥

∥

∥

(

ˆ̄Af,1

)k
∥

∥

∥

∥

2

≤ m̂f,1λ
k
1 = (199.72) · (0.7743)

k

and

∥

∥

∥

∥

(

ˆ̄Au
f,2

)k
∥

∥

∥

∥

2

≤ m̂u
f,2λ

k
2 = (36.2385) · (0.6057)

k
.

Choosing ρ′2 = 0.9, the Bellman-Gronwall based approach
described in Jetto and Orsini (2007), shows that, for
any α2 ∈ (λ2, ρ

′
2), also the perturbed closed-loop ma-

trix ˆ̄A′
f,2 given by (25) is α2-stable if ‖∆2‖2 ≤ δ2 =

(ρ′2 − λ2)
/

m̂u
f,2 = (0.9 − 0.6057)/36.2385 = 0.0081. For

the given A(θ2(·)) and v2(·), (24) gives

∆2 =

[

0 max
k

|v2,2(k)|

0 max
k

|v2,1(k)| · max
k

|ϑ2,3(k)|

]

=

[

0 0.005
0 0.005

]

,

to which the value ‖∆2‖2 = 0.0071 corresponds. This gives
α2 = (λ2 + m̂u

f,2‖∆2‖2) = (0.6057 + 36.2385 · 0.0071) =

0.863, so that

∥

∥

∥

∥

(

ˆ̄A′
f,2

)k
∥

∥

∥

∥

2

≤ m̂u
f,2 · αk

2 = (36.2385) ·

(0.863)
k
. By the theorem one has

∥

∥Φf,1(k, k̄)
∥

∥

2
≤ mf,1 ·

λ
(k−k̄)
1 = (373.8) · (0.7743)(k−k̄) and

∥

∥Φf,2(k, k̄)
∥

∥

2
≤ m′

f,2 ·

α
(k−k̄)
2 = (61.9131) · (0.863)(k−k̄), from which the value

τmin = 29 is found. Hence condition (27) is satisfied and
Σf is ω̄-stable. Applying the procedure given in Section
6, the value ω̄ = 0.9578 is obtained. In conclusion, the
mode-switch LPV system considered in this example can
be really stabilized using the present approach.
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8. CONCLUSIONS

The stabilization problem for a discrete-time, LPV plant
with mode-switch dynamics has been considered. Condi-
tions for problem solvability have been established in terms
of LMIs which only involve the extremal plants A−

ℓ and Āℓ.
The solution (if any) is given by a family of observer like
based controllers with constant gain matrices. This makes
the method very appealing from the numerical point of
view because the set of LMIs to be checked is independent
of the number of time-varying parameters and all the
calculations can be performed off-line. Another interest-
ing feature is that the method proposed is amenable to
deal with noisy parameter measurements. This is a key
point which is often neglected in the literature though
it represent almost all cases of a practical interest. The
extension of the present approach to the tracking problem
only requires the definition of a proper error system.
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