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Abstract: A model of the servomechanism used for high-powered actuators in mechanical systems
consists of a position feedback loop around the cascade connection of a memoryless saturation function
with an integrator with a large time constant. The saturation function in the servomechanism has a
linear high gain characteristics for a small input and so the equivalent time constant of the actuator
servomechanism becomes small. As the input to the saturation function becomes larger than the linear
range for a drastic control demand, the output of the saturation function becomes constant irrespective of
the input magnitude and the actuator response has a rate saturation determined by the large time constant
of the integrator and so the time lag of the actuator response behind the demand results in the actual plant
input much different from the demand and the plant may exhibit an undesirable behavior of the system.
Therefore in this paper we consider a control method for a system with rate saturations in the actuator
servomechanisms to keep stable by switching the controller gain according to the input magnitudes to
the saturation functions so that the inputs to the saturation functions are controlled within the permissible
maximum absolute values which are decided according to each level of LQ controller gain groups
determined beforehand to ensure the local absolute stability of the total system whose conditions are
expressed as a linear matrix inequalities optimization problem by introducing a Lure-type Lyapunov
function. In a piecewise linear control the switching function selects a controller gain group by on-line
monitoring the inputs to the saturation functions in the actuator servomechanisms. The effectiveness of
the design method is illustrated with a practical example of dynamic positioning(DP) system.

1. INTRODUCTION

Various procedures have been developed for the design of
controllers that account for the amplitude and rate saturations of
actuators. In Edwards et al. (1999), Hippe et al. (1999), Kapoor
et al. (1998) and Kothare et al. (1994) the basic procedure
of anti-windup design methods is to design a controller first
ignoring the control input saturation and then to add an anti-
windup compensator so that the effect of the control input
saturation on closed-loop performance is minimized. Another
stability analysis and/or synthesis methods for systems with
magnitude and rate saturations have been developed in Hindi
et al. (1998), Khalil (2002), Kiyama et al. (2000), Kothare et al.
(1999), Pare et al. (1998) and Pittet et al. (1997). The basic idea
is the notion of positively invariant set in Blanchini (1999) and
the Lyapunov analysis, and the circle and the Popov criteria are
used within the framework of linear matrix inequalities(LMIs).

On the other hand, gain scheduling controllers have been devel-
oped as a design method for nonlinear control in Lawrence et al.
(1995) and Rugh et al. (2000). In the gain-scheduled controller
which includes an integral control, the velocity algorithm has
to be used so that the linearization property holds in Kaminer
et al. (1995). In Wredenhagen et al. (1994), a piecewise linear
control law based on LQ theory is derived which raises an LQ
gain as the controlled error converges towards the origin. The
notion of gain switching function is introduced, which gives
the successive positively invariant set and the highest LQ gain
possible in the presence of the input bounds.

A model of the servomechanism used for high-powered ac-
tuators in mechanical systems consists of a position feedback
loop around the cascade connection of a memoryless saturation
function with an integrator with a large time constant. The
saturation function in the servomechanism has a linear high
gain characteristics for a small input which is the error between
the actuator demand from the controller and the actual position
value of the actuator and so the equivalent time constant of
the actuator servomechanism becomes small regardless of the
large time constant of the integrator and the time lag of the
actuator response behind the actuator demand is negligible.
As the input to the saturation function becomes larger than
the linear range for a drastic actuator demand, the output of
the saturation function becomes constant irrespective of the
input magnitude and the actuator response has a rate saturation
determined by the large time constant of the integrator and so
the time lag of the actuator response behind the demand results
in the actual plant input much different from the controller
demand and the plant may exhibit an undesirable behavior
such as an excessive overshoot and further the control system
may become unstable. Therefore in this paper we consider a
control method for a system with rate saturations in the actuator
servomechanisms to keep stable by realizing the controller gain
switching according to the input magnitudes to the saturation
functions so that the inputs to the saturation functions are con-
trolled within the permissible maximum absolute values which
are decided to ensure the local absolute stability of the total
system . In design procedures of the control method firstly a
set of LQ gain groups for the linear dynamical system ignoring
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Fig. 2. Saturation function h(·)
the dynamics of actuator servomechanism is computed off-line
by changing the control weight of the quadratic performance
criterion stepwise under the fixed state weight. Secondly the
block diagram of a total system including the actuator ser-
vomechanisms is redrawn as the feedback connection of a linear
dynamical system and a decoupled block of multiple saturation
functions with magnitudes±1 treated as locally sector bounded
nonlinearities. Then the permissible maximum absolute input
values to the nonlinearities are decided according to each level
of LQ controller gain groups determined above, by introducing
a Lure-type Lyapunov function to the redrawned block diagram
to ensure the local absolute stability of the total system whose
conditions are expressed as an LMIs optimization problem in
Boyd et al. (1994). In control procedures a controller gain
switching function is introduced to realize a piecewise linear
control(PLC) law which always gets a local absolute stability
of the total system. The switching function selects a controller
gain group by on-line monitoring the inputs to the saturation
functions in the actuator servomechanisms. The effectiveness
of the design method is illustrated with a practical example
of dynamic positioning(DP) system which holds the position
and heading of a ship under wind disturbances by controlled
thrusters.

2. DESIGN OF PIECEWISE LINEAR LQ CONTROL

2.1 A Set of LQ Gain

Fig.1 shows a block diagram of a system consisting of a con-
troller dynamics K(s), a dynamics of an actuator servomech-
anism and a plant dynamics Gp(s). When the controller gain
is determined based on LQ theory, we ignore the dynamics
of actuator servomechanisms and assume that all outputs can
be measured. By changing the control weight of the quadratic
performance criterion stepwise under the fixed state weight, a
set of LQ gain groups is decided.
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Fig. 3. Feedback connection of a linear dynamic system and
multiple saturation functions

2.2 Permissible Sector Conditions of Saturation Functions

Fig.2 shows one of saturation functions h(·) with the magni-
tudes ±1 in the actuator servomechanism in Fig.1, by scaling
the input and output of the saturator. The saturator h(·) has a lin-
ear gain β in the input range of |q| ≤ 1/β . If the absolute value
of the input q to the saturator h(·) is constrained less than 1/α ,
the sector condition h ∈ [α β ] is satisfied locally. The objective
of this paper is to determine the maximum absolute values 1/α
of inputs to the multiple saturation functions simultaneously as
reciprocals of the minimum sector bounds α to ensure the local
absolute stability of a total system. Firstly we redraw the block
diagram of the total system as a feedback connection of a linear
dynamical system G(s) and a decoupled block of multiple satu-
ration nonlinearities ψ(·) as shown in Fig.3 in Khalil (2002) and
Boyd et al. (1994). ψ(·) is assumed to be diag(ψ1(·) · · ·ψnp(·))
and has sector conditions ψi ∈ [αi βi](1 ≤ i ≤ np). As it is very
difficult to decide the minimum sector bounds αi(1≤ i ≤ np) of
the original multiple saturation functions ψ(·) simultaneously
by checking the condition of positive realness of the loop-
transformed linear dynamical system as in Akasaka (2006), we
use the Lyapunov analysis to accomplish the objective above
by introducing a Lure-type Lyapunov function and derive the
LMIs associated with the original system shown in Fig.3 as
indicated in the chapter 8 Notes of Boyd et al. (1994).

Consider the linear system G(s) with a decoupled block of
multiple saturation functions in Fig.3:

ẋ = Ax + Bu, (1)
q = Cx, (2)

ui = −pi, pi = ψi(qi) (1 ≤ i ≤ np) (3)
where x ∈ RRRnx ,u ∈ RRRnp , p ∈ RRRnp and q ∈ RRRnp . ψ(·) denotes the
decoupled block of saturation functions with the magnitudes
±1 and defined on a scalar qi ∈ RRR1(1 ≤ i ≤ np) by

ψi(qi) �

⎧⎨
⎩

1 qi > 1/βi,

qi |qi| ≤ 1/βi (βi > 0),
−1 qi < −1/βi,

(4)

and on a vector q = (q1, · · · ,qnp) by

ψ(q) � (ψ1(q1), · · · ,ψnp(qnp)). (5)

If the absolute value of the input qi to the saturator ψi(·) is
assumed to be constrained less than or equal to 1/αi > 0, the
function ψi(·) satisfy the sector condition ψi ∈ [αi βi]:

αiq
2
i ≤ qiψi(qi) ≤ βiq

2
i for all qi ∈ RRR1 (1 ≤ i ≤ np), (6)

αi > 0 (1 ≤ i ≤ np). (7)
The sector conditions (6) can be rewritten as

(ψ −K1q)T (ψ −K2q) ≤ 0, (8)
K1 = diag(α1, · · · ,αnp), K2 = diag(β1, · · · ,βnp). (9)

The Lure-type Lyapunov function V (x) is used and given as

V (x) = xT Px + 2
np

∑
i=1

γi

∫ qi

0
(ψi(σ)−αiσ)dσ . (10)

The matrix P and the scalars γi are the data describing the
Lyapunov function and the following conditions are required.

P > 0, (11)
γi ≥ 0 (1 ≤ i ≤ np). (12)

The time derivative V̇ (x) is given by

V̇ (x) = ẋT Px + xT Pẋ+ 2
np

∑
i=1

γi(ψi(qi)−αiqi)q̇i. (13)
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Using (1),(2) and (3), (13) is given by

V̇ (x) =
[

x
u

]T [
P11 P12

PT
12 P22

][
x
u

]
, (14)

P11 = AT P+ PA−CTΓK1CA−ATCT K1ΓC,
P12 = PB−ATCT Γ−CT ΓK1CB,
P22 = −ΓCB−BTCT Γ,
Γ = diag(γ1, · · · ,γnp).

⎫⎪⎪⎬
⎪⎪⎭ (15)

From (14) the stability condition is given by[
P11 P12

PT
12 P22

]
< 0. (16)

Using (2) and (3), (8) is given by[
x
u

]T [
CT K1K2C CT (K1 + K2)/2

(K1 + K2)C/2 I

][
x
u

]
≤ 0. (17)

Equation (17) yields[
CT K1K2C CT (K1 + K2)/2

(K1 + K2)C/2 I

]
≤ 0. (18)

The S-procedure in Boyd et al. (1994) yields the following
sufficient condition for (16) and (18).[

P11 P12

PT
12 P22

]
−λ

[
CT K1K2C CT (K1 + K2)/2

(K1 + K2)C/2 I

]
< 0 (19)

where λ > 0 is a scalar variable. Equation (19) yields[
P̄11 P̄12

P̄T
12 P̄22

]
< 0, (20)

P̄11 = AT P̃ + P̃A−CT Γ̃K1CA−ATCT K1Γ̃C−CT K1K2C,
P̄12 = P̃B−ATCT Γ̃−CT Γ̃K1CB−CT (K1 + K2)/2,
P̄22 = −Γ̃CB−BTCT Γ̃− I,
P̃ = P/λ , Γ̃ = Γ/λ .

⎫⎪⎪⎬
⎪⎪⎭

(21)
The constraint (20) can be rewritten by eliminating the variable
Γ̃K1in Boyd et al. (1994) as

ŨT
[

P̂11 P̂12

P̂T
12 P̄22

]
Ũ < 0, Ṽ T

[
P̂11 P̂12

P̂T
12 P̄22

]
Ṽ < 0, (22)

P̂11 = AT P̃+ P̃A−CT K1K2C,
P̂12 = P̃B−ATCT Γ̃−CT (K1 + K2)/2.

}
(23)

Ũ and Ṽ are orthogonal complements of [CA CB]T and

[−C 0]T respectively. Thus we solve the LMIs optimization
problem in the variables P̃, Γ̃ and K1:

minimize trace(K1 + cΓ̃)
subject to (7),(11),(12) and (22),
c = diag(c1, · · · ,cnp)

(24)

c is the weighting matrix. The problem (24) can be solved by
using the LMI software in Gahinet et al. (1995).

We check to be sure that the solution K1 obtained by the
optimization problem (24) gives the condition of strict positive
realness required by the Popov criterion in Khalil (2002).
Applying the loop transformations by using the solution K1
to Fig.3 we can get the dynamical system Ḡ(s) = M + (I +
sΓ̃)G(s)[I + K1G(s)]−1 where M = (K2 −K1)−1 and we check
that the solution K1 gives the strict positive realness of Ḡ(s).

3. EXAMPLE

3.1 Block Diagram of DP System

Fig.4 shows the DP system concept and DP system holds
the position and heading of a ship under current and wind

disturbances by detecting deviations from the references and
by controlling the thrust vectors. The horizontal ship motion
nonlinear equations are shown in the appendix. Two rotating
thrusters of controllable pitch angle propeller are equipped at
fore and aft parts of the ship body center line that is, a bow
thruster(B/T) and a stern thruster(S/T). The linearized model of
ship motions is expressed by the following state equations.

ẋ1 = x2, (25)
ẋ2 = A1x1 + A2x2 + Bu + d, (26)

x1 =

[
x0
y0
ψ

]
, x2 =

[
ua
va
r

]
=

[
ẋ0
ẏ0
ψ̇

]
, u =

⎡
⎢⎣

φB
θB
φS
θS

⎤
⎥⎦ , d =

[
d1
d2
d3

]
(27)

where φB:B/T propeller pitch angle θB:B/T azimuth angle
φS:S/T propeller pitch angle θS:S/T azimuth angle d1,d2: ac-
celeration components in x0-, y0-direction by disturbance force
d3:angular acceleration component about z0-axis by distur-
bance moment A1,A2 ∈ RRR3×3: constant matrices B ∈ RRR3×4:
constant matrix.

DP system realizes effective combinations of B/T and S/T
thrust vectors to hold the position and heading of a ship against
disturbances. DP controller is fulfilled by PID control and
by using the reference vecor xT

1s = [x0s y0s ψs] = [0 0 0], the
control error vector ε is expressed by the following equation

ε = x1s − x1. (28)

The control demand ud to two thrusters is decided by the
following equation.

ud = LPε + LI

(
1
s

)
ε + LD

(
s

1 + Tcs

)
ε, (29)

uT
d =

[
φBd

φmax

θBd

θmax

φSd

φmax

θSd

θmax

]
=

[
φ ′

Bd θ ′
Bd φ ′

Sd θ ′
Sd

]
(30)

where LP, LI , LD ∈ RRR4×3:PID controller gain matrices, s:
Laplace operator Tc:Time constant φmax:Maximum propeller
pitch angle θmax:Maximum azimuth angle=90o φBd :control
demand of B/T pitch angle θBd :control demand of B/T azimuth
angle φSd :control demand of S/T pitch angle θSd :control
demand of S/T azimuth angle.

Fig.5 shows the block diagram of DP system consisting of ship
motion model(25), (26), PID controller(29) and thrusters’ ser-
vomechanisms. Eight saturation functions included in thrusters’
servomechanisms are named by A1∼D2 as shown in Fig.5.
Actual propeller pitch angles φB,φS and actual azimuth angles
θB,θS are normalized by the following equations so that the
saturation functions have the magnitudes ±1.

φ ′
B =

φB

φmax
, θ ′

B =
θB

θmax
, φ ′

S =
φS

φmax
, θ ′

S =
θS

θmax
. (31)

Signs of φB,φS are positive for forward thrusts and negative
for backward thrusts. Signs of θB,θS are positive for thrusts
toward starboard and negative for thrusts toward port. By the
sign rules above mentioned, normalized variables of thrusters
are constrained as follows.

Controller Thrusters Vessel

Detector

�
Disturbance

� � � � �
�

�

References Position
Heading

+
–

Fig. 4. Concept of dynamic positioning(DP) system
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Fig. 5. Block diagram of dynamic positioning(DP) system

Table 1. General data of the ship

Vessel Thruster
length 88m diameter 2.8m
width 19m speed 200 rpm
draft 4.4m pitch angle ahead 24o

capacity 6080t astern 21o

thruster position 34m max. power 2500PS

−1 ≤ φ ′
B ≤ 1, −2 ≤ θ ′

B ≤ 2,
−1 ≤ φ ′

S ≤ 1, −2 ≤ θ ′
S ≤ 2.

}
(32)

Signs of controller gain matrices’ elements of LP,LI ,LD depend
on the quadrant in which the thrust vector stays and so it is
necessary to calculate thrust demands after changing the signs
of controller gains according to which quadrant the actual thrust
vector stays in.

3.2 Design of Piecewise Linear Control for DP System

(1)A Set of PID Controller Gain

General data of the ship to which the design of PLC is applied
is shown in Table 1. B/T and S/T have the same data. The
linearized model of ship motions is derived from the stationary
condition of holding position and heading under the steady
wind velocity Uw = 15m/sec and wind direction ψw = 30o.
PID controllers’ gains are determined by LQ theory for the
linearized model of ship motions ignoring the dynamics of
actuator servomechanisms. A set of controller gain matrices
LP, LI , LD is composed of 16 groups and the group number
of control gain set is expressed by a variable IPM(1≤IPM≤16)
and the larger IPM indicates the larger gain group.

(2)Permissible Sector Conditions of Saturation Functions

Each thruster’s servomechanism in Fig.5 consists of a cascade
connection of the first servomechanism and the second ser-
vomechanism whose integrators have the same time constants
and so the input to the saturation function in the second ser-
vomechanism is constrained less than the linear range of input
to the saturation function for the demand with the maximum
rate from the first servomechanism. Therefore the saturation
functions A2∼D2 in the second servomechanism are repre-

2 4 6 8 10 12 14 16
0

5

10

15

20

IPM

 

 
E

A1

E
B1

E
C1

E
D1

Maximum absolute input values E vs. group No. IPM

E
(−)

Fig. 6. Maximum absolute input values E

sented by proportional gain elements with the maximum gain
and so the dynamics of the second servomechanism is consid-
ered to be linear. When we redraw the block diagram in Fig.5 to
that in Fig.3, only four saturation functions A1∼D1 are taken
into consideration(np = 4). In the optimaization problem (24) in
2.2, the variables γ1 ∼ γ4 and the weighting coefficients c1 ∼ c4
are set to be equal all and the weighting coefficients are adjusted
so that the strict positive realness condition of Ḡ(s) in 2.2 is
satisfied by the solution K1. The permissible maximum absolute
input values EA1∼ED1 to the saturation functions A1∼D1 are
obtained as reciprocals of the minimum sector bounds α1∼α4
for 16 groups of control gain matrices and the results are shown
in Fig.6. All figure axis labels are shown outside axes on upper
side. The following is known from Fig.6: As the effect on DP
system stability of actuator servomechanisms in which the sat-
uration function has small E is considered to be significant, the
time lags of B/T and S/T propeller pitch servomechanisms af-
fect directly on stability of DP system under wind disturbances
from the fore side.

(3)Gain Switching Function

The flowchart of a control gain group selecting logic is shown in
Fig.7 in which only the input value ER to A1 saturation function
is used as a switching variable monitored by the gain selecting
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Fig. 7. Logic flow chart of gain selection

logic and when multiple inputs to the saturation functions
used as switching variables, OR logic is used in step(5)(6) in
Fig.7. The discrete control of control period 1second is used
and PARAM(IPM) in step(1) shows the control gain group
corresponding to group number IPM which is decided at the
previous iteration. PHIA in step(3) indicates the actual value
φ ′′

B in the first servomechanism of B/T pitch actuator and PHID
in step(4) shows the previous control demand φ ′

Bd in step(19)
for B/T pitch as shown in Fig.5. E(IPM) in step(5) shows the
permissible maximum absolute input value EA1 of A1 function
for the control gain group of group number IPM as shown in
Fig.6. IMAX and IMIN in step(7) and (14) indicate 16 and 1
respectively. In the controller, firstly the control gain group is
selected by IPM which is decided by the previous iteration and
the signs of control gain matrices’ elements are changed by the
quadrant in which the actual thrust vector stays and all control
demands are calculated. Secondly the input of A1 function
ER=φ ′

Bd − φ ′′
B is calculated and IPM used for next iteration is

decided by the logic in Fig.7.

3.3 Evaluation of Design Method

To evaluate PLC for DP system in which the two inputs to A1
and C1 saturation functions are used as switching variables,
the computer simulation using the ship motion nonlinear model
shown in the appendix is carried out under the wind velocity
Uw change 5m/sec→30m/sec at rising time 0.01sec and wind
direction ψw=30o unchanged which is called by disturbance A.
The ship is assumed to be initially at rest under the steady wind
Uw=5m/sec, ψw=30o. The control performance of DP system by
PLC using EA1 and EC1 in Fig.6 is shown in Fig.8 and the stable
time responses are obtained, while the control performance
by the ordinary LQ control with fixed gain controller with
the largest gain group (IPM=16) is shown in Fig.9 and the
settling time in Fig.9 is twice that with PLC in Fig.8. In Fig.8
IPM is decreased from IMAX=16 to 3 at the beginning of
control and then IPM is recovered to IMAX=16. The input
value of C1 function is negligibly small and so the input
value of A1 saturation function as a switching variable is
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Fig. 9. Time responses by fixed gain controller for disturbance
A

effective for PLC of DP system under the disturbance A. In
the implementation of the simulation calculation, firstly the B/T
pitch angle φ ′′

B in step(3) of the gain selecting logic in Fig.7
has to be obtained by the actuator servomechanism “simulator”
which has the same block diagram and receives the same
demand from the controller as the actual servomechanism, but
whose integrator does not saturate(without a wind-up) because
the design method requires the dynamic sytem G(s) in Fig.3 to
be linear. If the B/T pitch angle φ ′′

B in the gain selecting logic is
obtained from the actual servomechanism with the integrator
wind-up, the control performance has more fluctuations in
control deviations and actuator responses than those in Fig.8.
Secondly as the integral control is used and gain switching of
PLC is carried out, it is necessary to use the velocity algorithm
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in order that the linearization property holds in Kaminer et al.
(1995).
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Appendix A. PLANAR MOTION EQUATIONS OF A SHIP

Fig.A.1 shows a coordinate axes of a ship motion. Motion
equations are shown in the following:

(m+ mx)u̇ = (m+ my)vr + TB cosθB + TS cosθS + XH + XW ,

(m+ my)v̇ = −(m+ mx)ur + TB sinθB + TS sinθS +YH +YW ,

(Izz + Jzz)ṙ = (mx −my)uv + LBTB sinθB −LSTS sinθS + NHW ,

NHW = NH + NW

where (x,y,z):Axes of coordinates fixed to a ship m:Mass of
a ship mx,my: Added mass in x- and y-direction Izz,Jzz:Mass
and added mass moment of inertia of a ship u,v:Ship ve-
locity component in x- and y-direction ψ :Heading of a ship
XH ,YH ,NH :Hydrodynamic forces in x- and y-direction and
moment about z-axis XW ,YW ,NW : Wind forces in x- and y-
direction and moment about z-axis TB,TS:Thrusts of B/T and
S/T.

ua = ẋ0 = ucosψ − vsinψ ,

va = ẏ0 = usinψ + vcosψ ,

r = ψ̇
where (x0,y0,z0):Axes of coordinates fixed in space.

Ti = ρn2D4KT (Ji,φi) (i = B,S),
KT (Ji,φi) = KT (φi)+ (αT φi + αC)Ji (i = B,S),
JB = (1−w)(us cosθB + vs sin θB + LBr sinθB)/(nD),
JS = (1−w)(us cosθS + vs sinθS −LSr sinθS)/(nD),
us = u +Uc cos(ψc −ψ), vs = v +Uc sin(ψc −ψ)

where ρ :density of sea water n:revolution speed of thrusters
D:Thruster diameter KT : Thrust coefficient in bollard pull
condition JB,JS:Advance coefficient at thrusters’ location
w:Wake coefficient αT ,αC:Correction factors of KT Uc: Cur-
rent velocity ψc:Current direction LB,LC:thrusters’ locations.

XH = Xc(β )ρ∇∇∇
2
3 V 2

s /2, YH = Yc(β )ρ∇∇∇
2
3 V 2

s /2,

NH = Nc(β )ρ∇∇∇
2
3 LppV 2

s /2,

β = tan−1(vs/us), V 2
s = u2

s + v2
s

where Xc(β ),Yc(β ),Nc(β ):Coefficient functions of attack angle
β for hydrodynamic forces and moment Lpp:Length of a ship
∇∇∇: Capacity.

XW = CX(βw)ρaAATV 2
w/2, YW = CY (βw)ρaAALV 2

w/2,

NW = CN(βw)ρaLppAALV 2
w/2,

uw = u +Uw cos(ψw −ψ), vw = v +Uw sin(ψw −ψ),

βw = tan−1(vw/uw), V 2
w = u2

w + v2
w

where ρa:density of air AAT :Longitudinal projected area of a
ship body above water line AAL:Lateral projected area of a ship
body above water line CX(βw),CY (βw),CN(βw):Coefficient
functions of wind attack angle βw Uw:Wind velocity ψw:Wind
direction.
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Fig. A.1. Coordinate axes of a ship motion
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