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Coah., México. ( e-mail: vsantiba@itlalaguna.edu.mx) 1

Abstract: In this note we are concerned with controller design for robot manipulators equipped
with brushed DC-motors in the case when the electric dynamics of these actuators is not
neglected. We present, for the first time, stability proofs which show that PD control with desired
gravity compensation and the classical PID controller presented previously in the literature
under the assumption that no actuator dynamics exists can also be designed in this case. In
the case of the classical PID controller we show that design can be done without the exact
knowledge of neither robot nor actuator parameters. We present, for the first time, a theoretical
justification for use of torque control, a strategy commonly used in industrial practice to control
brushed DC-motors.

1. INTRODUCTION

Although many robots use electric motors (brushed DC-
motors in particular) as actuators, most controllers for
robot manipulators existing in the literature are designed
under the assumption that the actuator dynamics can be
neglected. The main reason for this, as stated by Ailon et
al. [2000], is that the introduction of an electrical system
between the control input and the torque actually applied
to the robot links complicates the controller design in
robotics. However, some studies as those reported by Tarn
et al. [1991] and Eppinger and Seering [1987] have shown
that neglecting the actuator dynamics may result in closed
loop performance degradation. This has motivated lots of
works on robot control taking into account the dynamics of
the brushed DC-motors used as actuators (see Ailon et al.
[1997], Ailon et al. [2000], Burg et al. [1996], Mahmoud
[1993], Colbaugh and Glass [1995], Oya et al. [2004],
and references therein). However, these works introduce
control schemes that are, in fact, more complicated than
their counterparts designed under the assumption that the
actuator dynamics can be neglected. Some disadvantages
of complex strategies are the sensibility to numerical
errors, input voltage saturation and noise amplification,
as recognized by Ortega et al. [1998] pp. 257, 395, 403.

On the other hand, robot control theory based on the
assumption that the actuator dynamics can be neglected
has succeeded to design simple PID control strategies. For
instance, a PD control strategy was proposed by Takegaki
and Arimoto [1981] which achieves global asymptotic
stability and only requires the exact knowledge of a
reduced number of the robot mechanical parameters (the
desired gravity compensation term). Later, Kelly [1995],
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Ortega et al. [1995], Alvarez et al. [2000], Kelly et al. [2005]
Ch. 9 and Meza et al. [2007] have presented local and
semiglobal stability proofs for the classical PID controller.
An interesting advantage of this PID controller is that it
does not require the exact knowledge of any of the robot
mechanical parameters. Further, this control scheme is
widely used in industrial practice.

Two are the main contributions of the present note. First,
we show that the stability proofs of the fore mentioned
PD and PID controllers can be extended to the case
when the dynamics of the brushed DC-motors used as
actuators is taken into account. Thus, we present for
the first time a theoretical justification for use of PID
controllers in industrial robots equipped with brushed DC-
motor actuators which, on the other hand, is a common
practice. We stress the importance of this result: we
present detailed stability analysis showing that simple PID
controllers can be designed in this case whereas most works
reported until now have been forced to design complex
nonlinear controllers because of complications originated
by the actuator electric dynamics even for regulation tasks
(see Colbaugh and Glass [1995], for instance). Second we
present, for the first time, a theoretical justification for
use of torque control (see Parker Automation [1998], for
instance), a common strategy in industrial practice to
control brushed DC-motors when they are used to actuate
rigid robots among lots of other mechanical systems. This
result is a refinement of ideas reported by Hernández-
Guzmán et al. [2007].

Our proposals have the following features: i) the exact
knowledge of neither any robot parameter nor any ac-
tuator parameter is required in the case of classical PID
control and ii) contrary to the common assumption, the
electric actuator dynamics does not need to be fast com-
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pared to robot dynamics. Hence, contrary to Kokotovic
et al. [1986], for instance, we solve the problem without
relying on singular perturbations. On the other hand,
we stress that the methodology presented by Astolfi and
Ortega [2003] is not useful for our purposes. This is because
that paper needs the exact knowledge of both the robot
and the actuator dynamics to compute acceleration and
to complete an error equation for the actuator electrical
subsystem. Our results rely on the following items: 1)
torque constant equals back electromotive constant in a
brushed DC-motor (which, although a well know fact, has
not been exploited until now in robot control analysis
and design) and 2) a novel error variable is introduced
to describe the electric dynamics of actuators. These ideas
have their origin in the work by Hernández-Guzmán et al.
[2007] where a simple linear adaptive controller is designed.

Finally, we stress the following. Nowadays, it is widely
recognized that use of brushless DC-motors presents a
number of advantages with respect to use of brushed
DC-motors. However, we believe that study of brushed
DC-motors as actuators in robotics is still important.
From a practical point of view lots of robots equipped
with brushed DC-motors already exist which require a
controller to be redesigned in many instances. From a
theoretical point of view, the study that we present in
this note has not been presented before and, given the
linear model of these actuators, it represents a first step
towards the solution of this control problem for robots
equipped with actuators whose models are more complex,
i.e. brushless DC-motors.

This paper is organized as follows. In section 2 we present
the dynamic model of rigid robots that we consider as
well as some useful properties. Section 3 is devoted to
present our main results in two propositions and some
concluding remarks are given in section 4. Finally, some
remarks on notation. We use λmin(A(x)) and λmax(A(x))
to represent, respectively, the smallest and the largest
eigenvalues of the symmetric positive definite matrix A(x),
for any x ∈ Rn. Given an x ∈ Rn and a matrix A(x) the

norm of x is defined as ‖x‖ =
√

xT x and the induced

norm of A(x) is defined as ‖A‖ =
√

λmax(AT A) which
implies ‖A‖ = λmax(A(x)) if A(x) is a symmetric positive
definite matrix. Symbol p = (d/dt) denotes the differential
operator.

2. THE DYNAMIC MODEL OF RIGID ROBOTS

The dynamic model of an n degrees of freedom rigid robot
equipped only with revolute joints and with n brushed DC-
motors as actuators is given as (see Ailon et al. [2000]):

L
di

dt
+ r i + Kbq̇ = u (1)

D(q)q̈ + C(q, q̇)q̇ + g(q) + Kv q̇ = Kmi (2)

where q ∈ Rn represents the link positions, C(q, q̇)q̇ is
known as the Coriolis and centrifugal effects term, Kv

is the n × n diagonal positive definite matrix of viscous
friction coefficients and g(q) is the gravitational effect

term, given as g(q) = ∂U(q)
∂q

, where U(q) is the potential

energy due to gravity. We define the gear ratio constant
diagonal matrix as θ = Nq, where θ ∈ Rn represents

the actuator positions. D(q) is the inertia matrix which is
n×n symmetric and positive definite. Variables i, u ∈ Rn

represent, respectively, the electric current and voltage
in the brushed DC-motors armature circuits, while L,
r, Ke and Ka are n × n diagonal and positive definite
matrices representing the inductance, resistance, back-
electromotive constant and torque constant, respectively.
We define Kb = KeN and Km = NKa. Torque applied
to robot links is given as τ = Kmi. Throughout this note
we use qd ∈ Rn and q̃ ∈ Rn to represent, respectively, the
constant desired link positions and the links position error
defined as q̃ = qd − q.

As it is by now well known, some important properties of
this model are the following.
Property 1. (Koditschek [1984], Kelly [1995]). Matrices

Ḋ(q) and C(q, q̇) satisfy:

q̇T

(

1

2
Ḋ(q) − C(q, q̇)

)

q̇ = 0, ∀q̇ ∈ Rn (3)

Ḋ(q) = C(q, q̇) + CT (q, q̇) (4)

Property 2. (Kelly [1995], Tomei [1991b], Kelly et al. [2005]
pp. 101). There exist positive constants kg and kc such that
for all w, y, z, q ∈ Rn, we have:

‖C(w, y)z‖ ≤ kc‖y‖‖z‖ (5)
∥

∥

∥

∂g(q)

∂q

∥

∥

∥
≤ kg (6)

‖g(w) − g(y)‖ ≤ kg‖w − y‖ (7)

An important property of brushed DC-motors is related
to power conservation. The electric power transformed
into mechanical power is given in terms of the back-
electromotive force, ebef = Keθ̇, and the electric current
through the armature circuits Pe = eT

bef i whereas the
resulting mechanical power is given in terms of velocity
and the electromagnetic torque Pm = θ̇T τem, where
τem = Kai. From power conservation Pe = Pm, we obtain
Ke = Ka which implies, because of the diagonal property
of all the involved matrices, that Kb = Km (Hernández-
Guzmán et al. [2007]).

Finally, we list some well known properties of norms. Let
w, y ∈ Rn be two vectors and let B(x) and M(x) be two
n × n matrices the former being symmetric and positive
definite ∀x ∈ Rn, then:

±yT M(x)w ≤ ‖y‖‖M(x)‖‖w‖ (8)

±yT B(x)w ≤ ‖y‖‖B(x)‖‖w‖ =

= λmax(B(x))‖y‖‖w‖ (9)

yT B(x)y ≥ λmin(B(x))‖y‖2 (10)

3. MAIN RESULT

Our first main result is related to controller introduced for
the first time by Takegaki and Arimoto [1981] for the case
of no actuator dynamics (also see Tomei [1991b], Tomei
[1991a], Kelly [1997], Kelly et al. [1994]).

Proposition 1. (PD with desired gravity compensation)
Consider plant (1), (2) together with controller:
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u =−ra i + KP q̃ − KD q̇ + RK−1
m g(qd) (11)

where KP and ra are n × n diagonal positive definite
matrices such that:

λmin

(

KmR−1KP

)

> kg (12)

R = r + ra

Under this condition it is always possible to find a n × n
diagonal positive definite matrix KD such that the closed
loop system (1), (2), (11) has an unique equilibrium point,
where q̃ = 0 and q̇ = 0, which is globally asymptotically
stable.

Proof. Replacing control law (11) in (1) and defining:

ρ = i − R−1[KP q̃ + RK−1
m g(qd)]

yields:

Lρ̇ = −Rρ − Kb q̇ − KD q̇ + LR−1KP q̇

Let KD be an arbitrary diagonal positive definite matrix.
Choose:

KD = LKD + LR−1KP (13)

to write:

Lρ̇ = −Rρ − Kb q̇ − LKD q̇ (14)

Due to the diagonal property of all matrices involved we
obtain from this:

ρj =
−Kbj

Lj

p +
Rj

Lj

q̇j +
−KDj

p +
Rj

Lj

q̇j , j = 1, . . . , n

where subindex j represents the j-th diagonal entry if a
matrix or the j−th component if a vector. Define ρ = ̺+σ,
where:

̺j =
−Kbj

Lj

p +
Rj

Lj

q̇j , σj =
−KDj

p +
Rj

Lj

q̇j , j = 1, . . . , n

This allows to write:

L ˙̺ =−R̺ − Kb q̇

Lσ̇ =−Rσ − LKD q̇

Note that these expressions are equivalent to (14). Use of
this and defining KP = KmR−1KP yields the closed loop
system:

d

dt











q̃
q̇

̺
σ











=











−q̇
D(q)−1[−C(q, q̇)q̇ − g(q) + Km̺
+Kmσ + KP q̃ + g(qd) − Kv q̇]

−L−1R̺ − L−1Kb q̇
−L−1Rσ − KD q̇











(15)

Proceeding as Tomei [1991b] it is easy to see that the
equilibrium point (q̃, q̇, ̺, σ) = (0, 0, 0, 0) is unique and the
following scalar function:

w(q̃, q̇) =
1

2
q̇T D(q)q̇ + U(q) − U(qd) + q̃T g(qd) +

1

2
q̃T KP q̃

is positive definite and radially unbounded if (12) is
satisfied. Thus, we can use:

W (q̃, q̇, ̺, σ) =
1

2
̺T L̺ +

1

2
σT KmK−1

D σ + w(q̃, q̇) (16)

as a Lyapunov function candidate. The time derivative of
W along the trajectories of the closed loop system (15) is
given as:

Ẇ = −̺T R̺ − σT KmK−1
D L−1Rσ − q̇T Kv q̇ (17)

where (3) and Km = Kb have been used. Hence, Ẇ is a
globally negative semidefinite function. This, together with
the fact that W is a positive definite radially unbounded
function allow to use the LaSalle invariance principle to en-
sure global asymptotic stability of (q̃, q̇, ̺, σ) = (0, 0, 0, 0).
Note that this result is also possible even if Kv = 0. Thus
proposition 1 has been proven.

Remark 2. Matrices KP and KD in controller (11) have
to satisfy (12) and (13). Being KD an arbitrary positive
definite matrix it is always possible to satisfy (13) without
requiring the exact knowledge of neither L nor R. Further,
use of approximate values of L and R suffices to compute
a lower bound for KD such that (13) is satisfied.

Remark 3. Variable ρ is introduced to represent the ac-
tuator electric dynamics and it can be seen as a kind of
electric current error. Using σ we show that filtering of the
velocity feedback term KD q̇ succeeds to introduce suitable
damping. This is done similarly as position filtering is
shown to introduce suitable damping by Kelly et al. [1994].

Remark 4. Matrices Km and R, i.e. r, have to be exactly
known because of the feedforward compensation of gravity.
Recall that g(qd) is a torque produced through an electric
current which is generated by voltage applied to actuators.
Thus, constants Km and R must be known in order to
compute the required voltage.

Now we present our second main result which is concerned
with classical PID control. The main motivation for this
controller is to avoid the requirement of an exact knowl-
edge of both Km and r. Our proposal is based on the
version without actuator dynamics presented by Kelly et
al. [2005] Ch. 9 and Meza et al. [2007].

Proposition 5. (Classical PID control) Consider plant (1),
(2) together with controller:

u = −ra i + KP q̃ − KD q̇ + KI

t
∫

0

q̃(s)ds (18)

There always exist n × n, diagonal and positive definite
matrices ra, KP , KD, KI such that the closed loop system
(1), (2), (18) has an unique equilibrium point, where q̃ = 0
and q̇ = 0, which is asymptotically stable.

Proof. Let KD be an n × n arbitrary diagonal positive
definite matrix. Let KP and α > 0 be a n × n diagonal
positive definite matrix and a constant scalar, respectively,
which have to satisfy conditions to be defined later. Define
R = r + ra and choose:

KP = KP + LR−1KI + αKm + αLKD (19)

KD = LKD + LR−1KP (20)

Using this, defining:
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ρ = i − R−1[KP q̃ + KI

t
∫

0

q̃(s)ds]

and replacing (18) in (1) we obtain:

Lρ̇ = −Rρ − Kbq̇ − LKD q̇ + α(Km + LKD)q̃ (21)

Due to the diagonal property of all the involved matrices
we can write this as:

ρj =
1

p +
Rj

Lj

(

−Kbj

Lj

q̇j +
αKmj

Lj

q̃j

)

+

+
1

p +
Rj

Lj

(

−KDj q̇j + αKDj q̃j

)

, j = 1, . . . , n

where subindex j represents the j-th diagonal entry if
a matrix or the j−th component if a vector. Defining
ρ = ̺ + σ, where:

̺j =
1

p +
Rj

Lj

(

−Kbj

Lj

q̇j +
αKmj

Lj

q̃j

)

σj =
1

p +
Rj

Lj

(

−KDj q̇j + αKDj q̃j

)

, j = 1, . . . , n

we obtain:

L ˙̺ =−R̺ − Kb q̇ + αKmq̃

Lσ̇ =−Rσ − LKD q̇ + αLKD q̃

These expressions are equivalent to (21). Using this we
obtain the following closed loop system:

d

dt

















q̃
q̇

z
̺
σ

















=



















−q̇
D(q)−1[−C(q, q̇)q̇ − g(q)+

+Km̺ + Kmσ + K ′

P q̃ + K ′

Iz+
+g(qd) − Kv q̇]

αq̃ − q̇
−L−1R̺ − L−1Kb q̇ + αL−1Km q̃

−L−1Rσ − KD q̇ + αKD q̃



















(22)

where:

K ′

I =
KI

α

K ′

P = KP − KI

α

z =

t
∫

0

(αq̃(s) − q̇(s))ds − (K ′

I)
−1g(qd)

KP = KmR−1KP , KI = KmR−1KI (23)

The closed loop system (22) has the unique equilibrium
point (q̃, q̇, z, ̺, σ) = (0, 0, 0, 0, 0). Consider the following
scalar function:

V (q̃, q̇, z) = V1(q̃) + V2(q̃, q̇) + V3(z)

V1(q̃) =
1

2
(1 − β)q̃T K ′

P q̃ + U(q) − U(qd) + q̃T g(qd)

V2(q̃, q̇) =
1

2
q̇T D(q)q̇ − αq̃T D(q)q̇ +

β

2
q̃T K ′

P q̃

V3(z) =
1

2
zT K ′

Iz

for some constant 0 < β < 1. Recalling K ′

P = KP − KI

α
and proceeding as Tomei [1991b] and Kelly [1997] we find
that V1 is positive definite if:

λmin(KP ) − λmax(KI)

α
>

kg

1 − β
(24)

In order to prove that V2 is positive definite we use the
fact that this function can be lower bounded as:

V2 ≥
1

2
λmin(D(q))‖q̇‖2 +

β

2
λmin(K ′

P )‖q̃‖2 −
−αλmax(D(q))‖q̃‖ ‖q̇‖

i.e.:

V2 ≥
α

2

[

‖q̇‖
‖q̃‖

]T







1

α
λmin(D(q)) −λmax(D(q))

−λmax(D(q))
β

α
λmin(K ′

P )







[

‖q̇‖
‖q̃‖

]

Recalling K ′

P = KP − KI

α
we realize that matrix in last

expression in positive definite if:

λmin(KP ) − λmax(KI)

α
>

α2

β

λ2
max(D(q))

λmin(D(q))
(25)

i.e. V2 is positive definite under this condition. Hence, V is
positive definite and radially unbounded if (24), (25) are
satisfied and K ′

I is positive definite. Thus, we propose the
following scalar function as Lyapunov function candidate:

W (q̃, q̇, z, ̺, σ) = V (q̃, q̇, z) +
1

2
̺T L̺ +

1

2
σT KmKD

−1σ

Straightforward computations including use of (3), (4) and
Kb = Km show that the time derivative of W along the
trajectories of (22) is given as:

Ẇ = −̺T R̺ − σT KmKD
−1L−1Rσ − q̇T Kv q̇ −

−αq̃T C(q, q̇)T q̇ + αq̇T D(q)q̇ − αq̃T (g(qd) − g(q)) −
−αq̃T (KP − KI/α)q̃ + αq̃T Kv q̇

Using (5), (6), (7), (8), (9), (10) we obtain:

−αq̃T (KP − KI/α)q̃ ≤−α[λmin(KP ) − λmax(KI)/α]‖q̃‖2

−q̇T Kv q̇ ≤−λmin(Kv)‖q̇‖2

−αq̃T C(q, q̇)T q̇ ≤ αkc‖q̃‖‖q̇‖2

αq̇T D(q)q̇ ≤ αλmax(D(q))‖q̇‖2

−αq̃T (g(qd) − g(q))≤ αkg‖q̃‖2

αq̃T Kv q̇ ≤ αλmax(Kv)‖q̇‖‖q̃‖
Thus, we can write:

Ẇ ≤−
[

‖q̇‖
‖q̃‖

]T

Q

[

‖q̇‖
‖q̃‖

]

− ̺T R̺ −

−σT KmKD
−1L−1Rσ

where:
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Q = α







Q11 −1

2
λmax(Kv)

−1

2
λmax(Kv) Q22







Q11 =
λmin(Kv)

α
− [λmax(D(q)) + kc‖q̃‖]

Q22 = [λmin(KP ) − kg] −
λmax(KI)

α
Note that Q is positive definite if and only if:

Q11Q22 >
1

4
λ2

max(Kv) (26)

Q11 > 0, Q22 > 0

From these conditions we obtain:

λmin(Kv)

λmax(D(q)) + kc‖q̃‖
> α >

λmax(KI)

λmin(KP ) − kg

(27)

which implies that η > ‖q̃‖ where:

η =
1

kc

[

λmin(Kv)[λmin(KP ) − kg]

λmax(KI)
− λmax(D(q))

]

(28)

Note that Q can always be rendered positive definite as
follows. Choose a (small) α > 0 satisfying the left hand
inequality in (27). This ensures that Q11 > 0. Using
this value of α we can always satisfy the right hand
inequality in (27), i.e. to ensure Q22 > 0, by choosing
simultaneously a large KP and a small KI . From (23)
we realize that KP and KI are adjusted through KP

and KI which are used in (19), (20) to compute KP and
KD. Finally, such a selection also renders the product
Q11Q22 arbitrarily large to satisfy (26). Further, (25) and
(24) are also satisfied through such a selection. Hence, we

conclude that Q is positive definite, i.e. Ẇ ≤ 0, in a ball
centered at the origin of R5n with radius η, given in (28).
Moreover, we also conclude that W is a positive definite
radially unbounded function. Thus, application of the
LaSalle invariance principle ensures asymptotic stability
of the equilibrium point (q̃, q̇, z, ̺, σ) = (0, 0, 0, 0, 0). This
completes the proof of proposition 5.

Remark 6. Conditions that matrices R, i.e. ra, KP , KD

and KI have to satisfy are summarized in (19), (20),(24),
(25), (26), (27), (28) together with (23). Note that KD

is an arbitrary positive definite matrix whereas KP is
arbitrary as long as it is larger than a lower bound
satisfying the fore mentioned conditions. Hence, (19), (20)
can be satisfied without requiring the exact knowledge of
any of R, L or Km by choosing large enough matrices KP

and KD. Further, all of the fore mentioned conditions can
be tested as follows. From (19), (20) we can write:

KP = (I − αLR−1)−1[ KP − LR−1KI − αKm − αKD ]

where I stands for the n × n identity matrix. Note that
(I−αLR−1)−1 can always be rendered positive definite, no
matter the value of L, by choosing a large R, i.e. a large ra,
whereas factor in brackets is ensured to be positive definite
by choosing a large KP . This means that KP is positive
definite given the diagonal property of all the involved
matrices. We can proceed as follows. Propose diagonal
positive definite matrices KP , KD and KI . Use bounds
on the remaining matrices to compute a minimum value

for KP by using the previous expression. Using this value,

the proposed KI , bounds on matrices R−1 and Km and
(23) we can obtain λmin(KP ) and λmax(KI). With these
values we can test conditions (24), (25), (26), (27), (28).
If they are not satisfied repeat the procedure using new
values for KP , KD and KI . On the other hand, a value for
α can be proposed just to verify that such constant exists
satisfying the forementioned conditions. Thus, controller
(18) can be tuned without requiring the exact knowledge
of any parameter of neither the robot nor the actuators.

Remark 7. Although the previous proof is based on the
ideas presented by Kelly et al. [2005] Ch. 9 and Meza et al.
[2007] however an important modification is introduced in
the present note to improve performance. We use term
β
2 q̃T K ′

P q̃ in V2(q̃, q̇) instead of term α
2 q̃T Kv q̃ used in those

works. The tuning procedure proposed in the cited works
requires:

λmin(Kv) >
λmax(KI)

λmin(KP ) − kg

λ2
max(D(q))

λmin(D(q))
(29)

Being Kv only due to the viscous friction of robot in the
present note, λmin(Kv) is a small positive constant. This

together with factor
λ2

max(D(q))
λmin(D(q)) in (29) impose either a

very large KP (i.e. KP ) or a very small KI (i.e. KI). Both
of these possibilities degrade closed loop performance. A
large KP produces very large initial voltages to be applied
to DC-motor actuators which result in very large peak
torques applied to robot links. On the other hand a small
KI results in very large settling times. In the cited works
(29) is imposed by the condition that V2(q̃, q̇) (in terms
of α

2 q̃T Kv q̃ in those works) has to satisfy in order to
be a positive definite function. In the present note the
counterpart of such a condition is given in (25) which does
not involve Kv.

Remark 8. According to τ = Km i, the torque applied
by brushed DC-motors to robot joints is proportional to
current. This fact motivates the industrial practice of de-
signing drives for these motors which include some current
controllers ensuring the generation of the desired torque.
This is known as torque control (see Parker Automation
[1998], for instance). This means that voltage applied to
motors is computed as:

u = γ(i∗ − i) (30)

where γ is a n×n diagonal positive definite matrix and i∗

represents the value of the electric current i necessary to
generate the desired torque τ∗, i.e.:

i∗ = K−1
m τ∗ (31)

When a PD controller is used as the desired torque we
have:

τ∗ = κp q̃ − κd q̇ + g(qd) (32)

Note that controller (11) is retrieved from (30), (31), (32)
by setting:

ra = γ

KP = γK−1
m κp

KD = γK−1
m κd
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We stress that ra = γ is chosen to be large (see Chiasson
[2005] pp. 76), i.e. ra ≫ r, which means that R ≈ ra, i.e.:

RK−1
m ≈ γK−1

m

On the other hand, when a PID controller is used as the
desired torque we have:

τ∗ = κp q̃ − κd q̇ + κi

t
∫

0

q̃(s)ds (33)

Note that controller (18) is retrieved from (30), (31), (33)
by setting:

ra = γ

KP = γK−1
m κp

KD = γK−1
m κd

KI = γK−1
m κi

Thus, an important contribution of our results is the
presentation, for the first time, of a theoretical justifica-
tion for torque control when used to control rigid robot
manipulators which are actuated by brushed DC motors.
We stress that such a strategy is a common practice in
industrial applications.

4. CONCLUSIONS

We have presented two controllers for robot manipulators
whose design takes into account the electric dynamics of
the brushed DC-motors used as actuators. Contrary to
the common assumption inductance is not required to be
small. A PD controller with desired gravity compensation
is proposed which needs knowledge of the armature circuits
resistance and the torque constant because of feedforward
compensation of gravity. It is clear that this requirement
disappears in robots without any effect of gravity. The
classical PID controller is proposed to deal with the effect
of gravity. Although this controller does not require the
exact knowledge of neither robot nor actuator parameters,
however it relies on viscous friction present at the robot
joints. In spite of this, nonzero PID gains always exist
ensuring asymptotic stability of the desired equilibrium
point. We have presented, for the first time, a formal jus-
tification for torque control which is a strategy commonly
used in industrial practice to control brushed DC motors.
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