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Abstract: A discrete-time adaptive ILC scheme is presented for systems with time-varying parametric 
uncertainties. Using the analogy between the discrete-time axis and the iterative learning axis, the new 
AILC can incorporate a recursive Least-Squares algorithm, hence the learning gain can be tuned iteratively 
along the learning axis and pointwisely along the time axis. When the initial states are random and the 
reference trajectory is iteration-varying, the new AILC can achieve the pointwise convergence over a finite 
time interval asymptotically along the iterative learning axis. An extension of the new AILC is also 
developed by using nonlinear data weighting to systems without assuming any growth conditions on the 
nonlinearity. 

 

1. INTRODUCTION 

In control practice, many control tasks will end in a finite 
interval and repeat, e.g. the track following control of a hard 
disk drive and the temperature or pressure control in a batch 
reactor. By the time-varying nature of parameters and the 
finite time interval, the well-established adaptive control 
methods (Goodwin & Sin, 1984; Kanellakopoulos, 1994) are 
not applicable. While, in such a circumstance iterative 
learning control (ILC) methods, evolved over the past two 
decades (Arimoto et al., 1984; Saab, 1995; Sun & Wang, 
2003; Xu, 1997), are most suitable. However, majority of ILC 
schemes developed hitherto focus on the systems with non-
parametric uncertainties without making full use of the prior 
knowledge about the parameterization, and as a result still 
require the identical conditions on the initial value and target 
trajectory. 

Recently several adaptive iterative learning control schemes 
have been developed (Narushima et al, 1995; Fukuda & Shin, 
1998; Choi & Lee, 2000; Xu & Viswanathan, 2000; Norrlöf, 
2002), which introduce parametric adaptation law in the 
learning process. A major issue that remains is still the 
requirement of the identical conditions on the initial states and 
the reference trajectory, if the pointwise tracking performance 
is to be obtained. Without these two identical conditions, what 
ILC can guarantee is often a bounded tracking performance 
over the finite interval.  

In this work we investigate the possibility of extending the 
well-established discrete-time adaptive control method to 
cope with the iterative learning control tasks with time-
varying parametric uncertainties. Using the analogy between 
the discrete time axis and the iterative learning axis, a new 
adaptive iterative learning control approach – adaptive ILC 

(AILC) – is presented. A Least-Squares algorithm is used to 
update the AILC parameters iteratively along the learning axis. 
Comparing with the discrete-time adaptive control, the new 
AILC has two distinct features: 1) achieving a pointwise 
convergence over a finite interval, and 2) coping with time-
varying parameters. Comparing with existing discrete-time 
ILC, the new discrete-time AILC also has two distinct 
features: 1) the strict identical initial condition is not required, 
and 2) the reference trajectory can vary from iteration to 
iteration. 

Furthermore, we present an extension of the new AILC to 
more general systems with nonsector nonlinearities. As a 
result, a modified AILC algorithm is presented by using 
nonlinear data weighting and also achieves the almost perfect 
tracking performance with random initial system states and 
iteration-varying reference.  

It is also worth mentioning that the most interesting feature of 
the new AILC is the direct heritage of discrete-time adaptive 
control in controller configurations, analysis methods, and 
convergence properties. These novelties are achieved via 
replacing the discrete time axis with the iteration axis, in 
conjunction with appropriate time domain modification, as we 
will demonstrate later in this work. 

This paper is organized as follows. Section 2 presents the 
problem formulation and the new AILC design. Section 3 
shows the learning convergence. Section 4 gives an extension 
to more general systems with nonsector nonlinearities. An 
illustrative example is provided in Section 5. Finally, some 
conclusions are given in Section 6. 

2. LEAST-SQUARES ADAPTIVE ILC 
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2.1  Problem Formulation 

To focus on and clearly demonstrate the underlying idea and 
method, we consider a simple discrete-time system with only 
one unknown parameter 

),()),(()()1( tuttxttx kkk +=+ ξθ  },,1,0{ Tt L∈      (1) 

where Rtxk ∈)(  is the measurable system state, Rtuk ∈)(  is 
the system control input, )(tθ  is an unknown time-varying 
parameter, and )),(( ttxkξ  is a known scalar nonlinear 
function which is bounded for bounded ).(txk  The subscript, 

},,1,0{ L∈k  denotes the learning iterations. 

Denote the target trajectory at the k-th iteration as ),(trk  
},,,1,0{ Tt L∈  which belongs to a compact set over all 

iterations. 

Define the tracking error ),1()1()1( +−+=+ trtxte kkk  
},,,1,0{ Tt L∈  we have 

).1()()),(()(
)1()1()1(

+−+=
+−+=+

trtuttxt
trtxte

kkk

kkk

ξθ
          (2) 

The objective of AILC is to find an appropriate control input 
sequence },1,,1,0{),( −∈ Tttuk L  such that the system 
output )(txk  follows the target trajectory ),(trk  i.e., the 
tracking error ),(tek  },,,1{ Tt L∈  converges to zero as the 
iteration number k approaches infinity. 

Remark 1: Note that we assume the initial states ),0(kx  
cannot be manipulated via any control signals. Thus the initial 
error ),0(ke  shall be excluded from the learning control 
objective. 

2.2  New Adaptive ILC Design 

The presented learning control law at the k-th iteration is 

),),(()(ˆ)1()( ttxttrtu kkkk ξθ−+= }1,,1,0{ −∈ Tt L    (3) 

where )(ˆ tkθ  is to learn the time-varying parameter )(tθ  and 
updated iteratively as follows 

),1()),(()()(ˆ)(ˆ
1111 ++= −−−− tettxtPtt kkkkk ξθθ         (4) 

)(1 tPk−  is a learning gain updated iteratively as below 

.
)),(()(1

)),(()(
)()(

1
2

2

1
22

2
21 ttxtP

ttxtP
tPtP

kk

kk
kk

−−

−−
−−

+
−=

ξ
ξ

         (5) 

The initial values of ),(ˆ
0 tθ  },,,1,0{ Tt L∈  can be chosen 

arbitrarily, e.g. zero if no prior knowledge about )(tkθ  is 
available. Similarly, we can choose the initial values 

,0)( 01 >=− PtP  },,,1,0{ Tt L∈∀  with 0P  a sufficiently 
large scalar. 

Remark 2: Because of the time-varying parameters and finite 
time tracking, adaptive control approaches are not suitable. 

Remark 3: The adaptive learning law (4) and (5) is processed 
along the iterative learning axis k, not along the time axis t. 
Nevertheless, the time index plays an important role, because 
the process under control is dynamical in the time domain. 

Remark 4: Looking into the parameter updating law (4), the 
non-causal form is required, that is when computing ),(ˆ tkθ  

)1(1 +− tek  is used. The non-causal term plays a key role in 
convergence analysis, as we will show in subsequent section. 

Remark 5: In standard ILC, the control updating law is in 
essence a linear integrator along the iteration axis and often 
with an iteration-invariant gain. In contrast, the AILC law (3)-
(5) provides a more generic and nonlinear updating law along 
the iteration axis, and further provides a nonlinear gain 
updating law. 

3. LEARNING CONVERGENCE ANALYSIS 

To restrict our discussion, the following assumptions are 
exposed on system (1). 

Assumption 1: The nonlinear function )),(( ttxkξ  satisfies 
linear growth condition, i.e., t∀  and ,k∀  

,)()),(( 0
2

0
1 txccttx kk +≤ξ                        (6) 

where ∞<< 0
10 c  and .0 0

2 ∞<< c  

Assumption 2: The unknown time-varying parameter ),(tθ  
the target trajectory ),(trk  and the initial states ),0(kx  are 
uniformly bounded for all Tt ,,1,0 L=  and .,1,0 L=k  

Remark 6: Note that in Assumption 2, we only assume the 
existence of such bounds, without requiring the exact values. 

The convergence property of the presented AILC is 
summarized in the following theorem. 

Theorem 1: For system (1) under assumptions 1 and 2, the 
AILC law (3)-(5) guarantee that the parameter estimation 
error is bounded and the tracking error converges to zero 
pointwisely over the finite time interval },,2,1{ TL  as k  
approaches to infinity. 

Proof: Define the parametric estimation error 
),(ˆ)()( ttt kk θθφ −=  substituting the control law (3) into the 

error dynamics (2) yields 

).),(()()1( ttxtte kkk ξφ=+                        (7) 

Define a non-negative function ),()()( 21
1 ttPtV kkk φ−

−=  the 
difference of the function )(tVk  along the iteration axis is 

).1()),(()(

)1()),(()(2
)()]()([

)()()()()()(
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      (8) 

From (5), we obtain 
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).),(()()( 1
21

2
1
1 ttxtPtP kkk −

−
−

−
− += ξ                   (9) 

Using (9) and the error dynamics (7), we have 

),1(

)()),(()()]()([
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1

2
11
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1
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=−

−

−−−
−
−

−
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te

tttxttPtP

k

kkkkk φξφ
     (10) 

and 

).1(2)1()),(()(2 2
1111 +−=+− −−−− tetettxt kkkk ξφ      (11) 

Substituting (10) and (11) into (8) yields 

)].),(()(1)[1()()( 1
2

1
2

11 ttxtPtetVtV kkkkk −−−− −+−=− ξ  (12) 

In terms of (9), we can derive 
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From (13), (12) can be rewritten as 

0
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     (14) 

Thus )(tVk  is non-increasing, implying that )(tkφ  is bounded. 

Summing (14) from 0 to k leads to 

.
)),(()(1

)1(
)()(

1 1
2

2

2
1

0 ∑
= −−

−

+

+
−=

k

i ii

i
k ttxtP

te
tVtV

ξ
         (15) 

Consider that )(tVk  is nonnegative, )(0 tV  is finite in the 
interval },,,1,0{ TL  thus according to the convergence 
theorem of the sum of series, we have 

,0
)]),(()(1[

)1(
lim 212

1
=

+

+

−
∞→ ttxtP

te

kk

k
k ξ

              (16) 

Now let us derive the asymptotic learning convergence of 
)1( +tek  in terms of (16) along the iterative learning axis. 

From assumptions 1 and 2, it is straightforward to derive 
,)0()0()0( ∞∈+≤ lrxe kkk  and 

.)()()()),(( 0
2

0
2

0
1

0
2

0
1 trctecctxccttx kkkk ++≤+≤ξ  

 Since )(trk is known bounded, there exist appropriate 

constants )(max
],0[

0
2

0
1

*
1 trccc k

Tt∈
+=  and 0

2
*
2 cc =  such that 

,)()),(( *
2
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1 teccttx kk +≤ξ                      (17) 

then 
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      (18) 

where )0(*
2

*
11 keccc +=  and *

22 cc =  are constants. 

Therefore, 212
1 )]),(()(1[ ttxtP kk ξ−+ satisfies the linear 

growth condition. By virtue of the Key Technical Lemma 
(Goodwin & Sin, 1984), the convergence property (16) 
together with the linear growth condition (18) implies the 
asymptotical convergence of )(tek  over the entire finite time 
interval },,2,1{ TL  along the iteration axis k.          □ 

4. EXTENSION TO MORE GENERAL CASES WITH 
NONSECTOR NONLINEARITIES 

It shall be noted that it has to impose linear growth conditions 
on the nonlinearities to guarantee the convergence property of 
the presented AILC in Section 3. If, on the other hand, the 
nonlinear function )(Lξ  is not sector-bounded, then 

212
1 )]),(()(1[ ttxtP kk ξ−+  is not satisfied with the linear 

growth condition. Thus the Key Technical Lemma is not 
applicable. To solve this problem, we present a modified 
Least-Squares algorithm by using nonlinear data weighting in 
this section. The almost perfect tracking performance is also 
achieved without assuming any growth conditions on the 
nonlinearities. 

The modified Least-Squares algorithm is presented as 

),1()),(()()()(ˆ)(ˆ
11111 ++= −−−−− tettxtPttt kkkkkk ξαθθ (19) 

,
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  (20) 

where )(1 tk−α  is a nonnegative weighting coefficients. 

Subtracting )(tθ  from both sides of (19) and in terms of the 
definition of ),(tkφ  we have 

).1()),(()()()()( 11111 +−= −−−−− tettxtPttt kkkkkk ξαφφ   (21) 

From (20), it is easy to derive 

).),(()()()( 1
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1
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1
1 ttxttPtP kkkk −−

−
−

−
− += ξα           (22) 

Still definite ).()()( 21
1 ttPtV kkk φ−

−=  Using (21) and (22), the 
difference of )(tVk  with respect to iteration axis is 
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(23) 
Thus )(tVk  is non-increasing, implying that )(tkφ  is bounded. 
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Following the same steps that lead to (16) in Theorem 1, we 
conclude that 

.0
)),(()()(1

)1()(
lim 2

1

2
=

+

+

−
∞→ ttxtPt

tet

kkk

kk
k ξα

α
             (24) 

If we can choose )(tkα  such that L,2,1,0=∀k  

and },,,1,0{ Tt L∈∀  ,0
)),(()()(1

)(
2

1
>>

+ −

d
ttxtPt

t

kkk

k

ξα
α

 

then we can acquire that .0)1(lim =+
∞→

tekk
 

To show the learning convergence, we need introduce the 
following Lemma. 

Lemma 1: There must exist a constant 01 >d  satisfies that for 
L,2,1,0=∀k  and },,,1,0{ Tt L∈∀  

.1
)),((
)),((

)),((
)),((

)(

1
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1
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1
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1
1

dttx
ttx

ttx
ttx

tP
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k
k

k
>++ −

−

−
−

ξ
ξ

ξ
ξ

  (25) 

Proof:  We arbitrarily choose a positive constant 0δ  and 
examine the following two cases. 

(1) When 01
22 )),(()),(( δξξ >≥ − ttxttx kk  or 

,)),(()),(( 0
2

1
2 δξξ >≥− ttxttx kk  then (25) is satisfied with 

.1
01
−> δd  

(2) When 01
22 )),(()),(( δξξ ≤≤ − ttxttx kk  or 

,)),(()),(( 0
2

1
2 δξξ ≤≤− ttxttx kk  then (25) is satisfied with 

.001 Pd δ>  

The above discussion shows that (25) is satisfied for all 
L,2,1,0=k  and },,1,0{ Tt L∈  with { }.  ,max 00

1
01 Pd δδ −>   

Remark 7: It shall be noted that in Lemma 1, we only need to 
show the existence of 1d , without requiring the exact value. 

Theorem 2: If we choose that ),),((1)( 1
2 ttxt kk ++= ξα  then 

for system (1) under Assumption 2, the modified AILC 
algorithm (3), (19) and (20) guarantees that the parameter 
estimation error is bounded and the tracking error converges 
to zero pointwisely over the finite time interval },,2,1{ TL  as 
k  approaches to infinity. 

Remark 8: Note that we allow )(tkα to be a positive nonlinear 
function of all measured variables up to and including the 
time instant t of the (k+1)-th iteration. This does not affect the 
causality of the algorithm since )(1 txk+  is needed for 
computation of ).1(1 ++ tek  

Proof: The boundedness of parameter estimation error has 
been shown from (23). Now we show the learning 
convergence of the tracking error. From (22) and (25), we can 
derive 
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(26) 

that is ,)),(()( 1
2

1 dttxtP kk ≤− ξ  so we have 
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this implies 
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Thus 

.0
)),(()(1
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(29) 
From (29), clearly we can conclude that .0)1(lim =+

∞→
tekk

   □ 

5.  ILLUSTRATIVE EXAMPLE 

Consider a numerical example 

),()),(()()1( tuttxttx +=+ ξθ  

where )3/4sin(2)( πθ tt =  is a time-varying parameter; 
100,,1,0 L=t  is the tracking interval; L2,1,0=k  is the 

iteration number. The initial state value )0(kx  is randomly 
varying in the interval ( ]1  ,0  when the iteration k evolves. Fig. 
1 shows the initial state )0(kx  over 100 iterations. 

The desired trajectories are chosen as the following two 
functions. 

Class 1, if k is odd  

⎪
⎩

⎪
⎨

⎧

≤<−×
≤<+

≤≤−×
=+

10070),10/()^1(5.0
7030),5/cos(3.0)10/sin(5.0

300),10/()^1(5.0
*)()1(

ttround
ttt

ttround
ktrk ππτ  

Class 2, if k is even 
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⎪
⎩

⎪
⎨

⎧

≤<+
≤<−×

≤≤+
=+

10070),5/cos(3.0)10/sin(5.0
7030),10/()^1(5.0

300),5/cos(3.0)10/sin(5.0
*)()1(

ttt
ttround

ttt
ktrk

ππ

ππ
τ  

where )(kτ  is also randomly varying in the interval ( ]1  ,0  as 
k evolves.  Fig. 2 shows the target trajectory at the first four 
iterations. 

 

Fig. 1. The profile of random initial state value ).0(kx  

 

Fig. 2.  The target trajectory at the first four iterations 

Case 1: The nonlinear function ))(sin()),(( txttx kk =ξ . Note 
that the linear growth condition (Assumption 1) is satisfied, 
thus the standard adaptive ILC law (3)-(5) can be used. Since 

)0(ke  is not learnable, we will check the interval 
}.100,,1{ L∈t  Fig. 3 shows the learning convergence w.r.t. 

the iteration k. The horizon is the iteration number and the 
vertical axis is the maximum absolute tracking error, 

.)()(sup }100,,1{
*
max, txtre kktk −= ∈ L  

It shall be noted that the modified AILC (3), (19) and (20) is 
also applicable for case 1. Let )).((sin1)( 2

1 txt kk +=−α  
Checking the interval },100,,1{ L∈t  the simulation result is 
given in Fig. 4.  

We can see from figures 1-4 that despite the random initial 
values and the random variations of the target trajectory along 
the iteration axis, the tracking error over the interval 

}100,,1{ L∈t  converges asymptotically to zero along the 
iteration axis, except for the initial instant that is not learnable. 

 

Fig. 3. The asymptotic convergence of the tracking error by 
means of the presented AILC (3)-(5) 

 

Fig. 4. The asymptotic convergence of the tracking error by 
means of the modified AILC (3), (19), (20). 

For comparison, a P-type ILC 
)1(01.0)()( 11 +×+= −− tetutu kkk  is applied. The best 

performance is shown in Fig. 5, which is however only 
bounded instead of asymptotic convergence. 

 

Fig. 5. The bounded convergence of the tracking error by 
means of the P-type ILC. 
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Case 2: The nonlinear function ).()),(( 2 txttx kk =ξ  Note that 
the linear growth condition is not satisfied and the nonlinear 
function is just bounded for bounded ).(txk  Thus the adaptive 
ILC law (3)-(5) is not applicable and a finite escape 
phenomenon, as shown in Fig. 6, along the iterative learning 
axis k will arise. Instead, applying the modified AILC law (3), 
(19) and (20) with ),(1)( 4

1 txt kk +=−α  Fig. 7 shows the 
learning convergence w.r.t. the iteration k. 

From figures 6 and 7, we can see that the modified algorithm 
can cope with more general systems without assuming any 
growth conditions on the nonlinearities and still achieves the 
almost perfect tracking performance with random conditions 
on the initial values (Fig. 1) and the target trajectories (Fig. 2) 
along the iteration axis. While the presented standard AILC 
(3)-(5) cannot.  

 

Fig. 6. Finite escape phenomenon with nonsector 
nonlinearities by means of the presented AILC (3)-(5). 

 

Fig. 7. The asymptotic convergence of the tracking error for 
systems with nonsector nonlinearities by means of the 
modified AILC (3), (19), (20). 

6. CONCLUSIONS 

A new discrete-time adaptive ILC approach is presented. By 
parameterization, the new AILC constitutes a nonlinear 
iterative learning mechanism, and incorporates a RLS in the 
learning mechanism to update the parametric learning gain. 

Comparing with the existing ILC, the new AILC and its 
modification can perform well when the initial state value and 
the target trajectory are varying along the iteration axis. 
Meanwhile, an extension of the new AILC is presented by 
using nonlinear data weighting such that it can cope with 
systems without assuming any growth conditions on the 
nonlinearities. Both the theoretical analysis and simulation 
results confirm the effectiveness of the presented AILC 
method and its extension.  

REFERENCES 

Arimoto S., S. Karamura and F. Miyazaki (1984). Bettering 
operation of robots by learning. J. Robot. Syst., 1(2), 123-
140. 

Choi J. Y. and J. S. Lee (2000). Adaptive iterative learning 
control of uncertain robotic systems. IEE Proc. D, 
Control Theory Application, 147(2): 217-223. 

Fukuda M. and S. Shin (1998). Model reference learning 
control with a wavelet network. Iterative Learning 
Control (Z. Bien and J.-X. Xu ed.), Kluwer Academic 
Publishers, pp. 211-226. 

Goodwin G. C. and K. S. Sin (1984). Adaptive Filtering 
Prediction and Control, Prentice-Hall, Inc., Englewood 
Cliffs, New Jersey 07632. 

Kanellakopoulos I. (1994). A discrete-time adaptive nonlinear 
system. IEEE Trans. Automat. Contr., 39(11): 2362-2365. 

Narushima M., Itamiya K., and Shin S. (1995). Model 
reference learning control for nonlinear systems, J. of 
Systems Eng., 5: 124-132 

Norrlöf M. (2002). An adaptive iterative learning control 
algorithm with experiments on an industrial robot. IEEE 
Trans. on Robotics and Automotion, 18(2): 245-251. 

Saab S. S. (1995). A discrete-time learning control algorithm 
for a class of linear time-invariant systems. IEEE Trans. 
Automat. Contr., 40(6): 1138-1141. 

Sun M. and D. Wang (2003). Initial shift issues on discrete-
time iterative learning control with system relative degree. 
IEEE Trans. Automat. Contr., 48(1): 144-148. 

Xu J. X. (1997). Analysis of iterative learning control for a 
class of nonlinear discrete-time systems. Automatica, 
33(10), 1905-1907 

Xu, J.-X., & Viswanathan, B. (2000). Adaptive robust 
iterative learning control with dead zone scheme. 
Automatica, 36, 91-99. 

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

14437


